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Abstract

Can language models transform inputs to pro-
tect text classifiers against adversarial attacks?
In this work, we present ATINTER, a model
that intercepts and learns to rewrite adversar-
ial inputs to make them non-adversarial for a
downstream text classifier. Our experiments on
four datasets and five attack mechanisms reveal
that ATINTER is effective at providing better
adversarial robustness than existing defense ap-
proaches, without compromising task accuracy.
For example, on sentiment classification us-
ing the SST-2 dataset, our method improves
the adversarial accuracy over the best exist-
ing defense approach by more than 4% with
a smaller decrease in task accuracy (0.5 % vs.
2.5%). Moreover, we show that ATINTER gen-
eralizes across multiple downstream tasks and
classifiers without having to explicitly retrain
it for those settings. For example, we find that
when ATINTER is trained to remove adversar-
ial perturbations for the sentiment classification
task on the SST-2 dataset, it even transfers to a
semantically different task of news classifica-
tion (on AGNews) and improves the adversarial
robustness by more than 10%.

1 Introduction

Neural models in NLP have been shown to be vul-
nerable to adversarial attacks both during training
time (Gu et al., 2017; Wallace et al., 2019, 2021;
Chen et al., 2021) and at deployment (Ebrahimi
et al., 2018; Jin et al., 2020; Garg and Ramakr-
ishnan, 2020a). The attacks of the latter type aim
to craft adversarial inputs by introducing small,
imperceptible perturbations in the input text that
erroneously change the output label of a classifi-
cation model. Defending against such attacks is
important because it ensures the integrity and relia-
bility of NLP systems. If undefended, for example,
an attacker could adversarially manipulate a spam
email to evade a spam detector.

∗Work done during internship at Bloomberg

An ideal defense mechanism against such ad-
versarial attacks should maintain good task perfor-
mance on non-adversarial inputs, effectively mit-
igate adversarial attacks, and be transferable to
other models and datasets. The transferability of
defenses is a valuable property because it allows
easy application to new and unknown models with-
out retraining the underlying classification model.
This is particularly useful when complete access
to the model is not possible; for example when the
model is accessed through an API. Most existing
methods do not satisfy these desiderata, typically
lacking in one or more desired properties. For ex-
ample, the methods that use input randomization
like SAFER (Ye et al., 2020) and Sample Shield-
ing (Rusert and Srinivasan, 2022) significantly de-
grade task accuracies due to the smoothing and
aggregation involved, and are thus ineffective de-
fenses. Another set of methods— e.g., adversarial
training (Jia and Liang, 2017; Ebrahimi et al., 2018)
and SHIELD (Le et al., 2022)—require model re-
training; while serving as effective defenses, they
cannot be transferred to other models and datasets
without retraining the classifier.

In this work, we present a novel strat-
egy for defending against adversarial attacks
that satisfies the aforementioned desiderata.
Our method—Adversarial Text Interceptor and
Rewriter ( ATINTER)—is based on the intuition
that automatically generated adversarial inputs can
be undone by learning to manipulate the textual
inputs instead of retraining the classification model.
Specifically, we employ an encoder-decoder mod-
ule that intercepts and rewrites the adversarial in-
put to remove any adversarial perturbations before
feeding it to the classifier1. Our method differs
from existing input randomization approaches in
that it does not rely on random word replacements

1By intercepting, we simply mean that ATINTER stops
the input from directly going to the classifier and processes it
first to remove the adversarial perturbations.
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Figure 1: Modular application of ATINTER, which is trained for defending a BERT classifier for the SST-2 dataset.
Demonstrating transferability across models, ATINTER successfully defends a RoBERTa classifier on SST-2
without retraining. Similarly, ATINTER is successful in defending a BERT model for a news classification task on
AGNews. Refer to section 5 for a more detailed discussion.

or deletions to counteract adversarial changes. In-
stead, we employ a separate model that is explicitly
trained to remove adversarial perturbations. One
benefit of this strategy is that it dissociates the
responsibility of ensuring adversarial robustness
from the classification model and delegates it to an
external module, the text rewriter. Consequently,
the rewriter module serves as a pluggable compo-
nent, enabling it to defend models that it was not
explicitly trained to protect. Figure 1 demonstrates
this scenario.

We demonstrate the effectiveness of our ap-
proach using a T5 model (Raffel et al., 2020) as
the general-purpose text rewriter, but our method
is applicable to any transformer-based text gener-
ator/rewriter. Through extensive experimentation
and comparison with existing methods, we show
that ATINTER effectively removes adversarial per-
turbations, and consistently outperforms other de-
fense approaches on several datasets for text classi-
fication. When used as a pluggable component, AT-
INTER exhibits good transferability to new models
and datasets without the need for retraining (ex-
amples shown in fig. 1). Specifically, we find that
this T5-based rewriter trained to remove adversar-
ial perturbations for the sentiment classification
task on the SST-2 dataset, also removes adversar-
ial perturbations for a news classification model
(on AGNews), increasing adversarial robustness by
over 10%.

In summary, our contributions are:

1. We propose a novel defense mechanism

against adversarial attacks, called ATINTER
that uses a text rewriter module, along with a
simple strategy to train this module2.

2. We demonstrate its effectiveness on four
benchmark datasets and five adversarial at-
tacks. Compared with competitive baselines,
our method substantially improves the adver-
sarial robustness with a much smaller decrease
in accuracy on non-adversarial inputs.

3. We show that ATINTER can be used as a
pluggable module without retraining and that
its ability to defend models is transferable to
new models (e.g., BERT → RoBERTa) as well
as new datasets (BERT on SST-2 → BERT on
AGNews).

2 Related Work

Adversarial Attacks Most adversarial attacks
use heuristic-based search methods to substitute
vulnerable parts of the input with carefully chosen
adversarial text (Ebrahimi et al., 2018; Jin et al.,
2020; Jia and Liang, 2017). These substitutions
can be performed at the character-level (Gao et al.,
2018; Belinkov and Bisk, 2018), word-level (Ren
et al., 2019; Jin et al., 2020; Garg and Ramakrish-
nan, 2020b; Li et al., 2020; Zhang et al., 2021), or
both (Li et al., 2018). Finally, while adversarial
attacks show that NLP models are over-sensitive
to small perturbations, NLP models have also been

2Code will be available at https://github.com/
bloomberg
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shown to be under-sensitive to certain perturbations
like input reduction, etc. (Feng et al., 2018; Gupta
et al., 2021). We refer the reader to the detailed
recent survey of Wang et al. (2022b).

Defenses against Adversarial Attacks The typi-
cal strategies employed for defending text classifi-
cation systems against adversarial attacks involve
either retraining the classifiers using adversarial ex-
amples or incorporating randomized smoothing at
the input stage to make robust predictions. The de-
fenses of the former type involve adversarial train-
ing (Goodfellow et al., 2015; Alzantot et al., 2018),
certified training (Jia et al., 2019; Zhou et al., 2021;
Huang et al., 2019), and other specialized training
schemes (Le et al., 2022; Jiang et al., 2022). While
adversarial training lacks in effectiveness (Alzantot
et al., 2018), the certification based methods are
only applicable for a specific set of perturbations;
e.g., Jia et al. (2019) restrict word substitutions to
belong to a counter-fitted embedding space (Mrkšić
et al., 2016). More recently, Le et al. (2022) pro-
posed SHIELD, that trains a stochastic ensemble
of experts by only patching the last layer of the
BERT classifier. We use SHIELD, and adversarial
training for comparison with our proposed method.

On the other end of the spectrum are the mod-
els that do not retrain the classifier and instead
use randomized smoothing techniques to enhance
the robustness of the models (Cohen et al., 2019;
Zhou et al., 2019; Ye et al., 2020; Rusert and Srini-
vasan, 2022; Wang et al., 2022a). Ye et al. (2020)
introduced a defense called SAFER, that signifi-
cantly improves certified robustness by perform-
ing randomized substitutions using a synonym net-
work. Rusert and Srinivasan (2022) proposed an-
other randomization defense called Sample Shield-
ing, which relies on making an ensemble of predic-
tions on different random samples of the input text.
One major drawback of utilizing randomization-
based techniques is that they may result in a signifi-
cant decrease in task accuracies on non-adversarial
inputs. To overcome this limitation, Bao et al.
(2021) proposed ADFAR, which trains an anomaly
detector for identifying adversarial examples and
performs frequency-aware randomization only for
the adversarial inputs. The authors observe that this
scheme preserves adversarial robustness without
sacrificing the task performance. We adopt AD-
FAR, Sample Shielding, and SAFER as the other
set of baselines for our work.

𝐱

�̂�1

�̂�2

Figure 2: Geometry of an adversarial attack. An at-
tacker moves a point x (red circle) to the other side of
the decision boundary along the red dotted arrows. x̂1

represents the example after one change, x̂2 denotes
the final adversarial example. Our model ATINTER
aims to restore these points to their original position
(represented by the green curved arrows).

3 Learning to Remove Adversarial
Perturbations

As mentioned in section 2, most existing methods
that operate on the textual input rely on randomiza-
tion to remove any adversarial perturbations. We
present a model that learns to remove these pertur-
bations by rewriting the text. Although similar to
paraphrasing in terms of the task interface, our goal
is different; we focus on removing the perturbation
instead of just preserving the meaning. The rest of
this section formalizes this intuition.

3.1 Notation
Given a sequence of tokens x, suppose we have a
trained classifier with parameters θ, which maps x
to the output label y from the label space Y as

y = argmax
yi∈Y

Pθ(yi|x)

When the classifier makes a correct prediction, y =
y∗, the true label for that input. For a successful
adversarial attack, the adversary takes the input
sequence x and produces a perturbed variant x̂ by
making a small change to x such that the prediction
made by the model is incorrect:

argmax
yi∈Y

Pθ(yi|x̂) ̸= y∗

Additionally, the adversary ensures that the pertur-
bation is meaningful and imperceptible.3

Typically, this perturbation is achieved via
an iterative process, during which the adversary

3Most attacks ensure this by enforcing constraints on the
part-of-speech tags of the replaced words as well as maintain-
ing the fluency through an LM perplexity score.

13983



makes incrementally small modifications to the in-
put (Ebrahimi et al., 2018; Jin et al., 2020). Assume
that the adversary makes k successive changes to
the input taking the original input x to the final
adversarial variant x̂k, represented as follows

x → x̂1 → x̂2 → ... → x̂k

To construct an adversarial input, the adversary
selects perturbations such that the probability of
the true label decreases after each successive mod-
ification until the required incorrect prediction is
achieved. In other words, the adversary wants

Pθ(y
∗|x) > Pθ(y

∗|x̂1) > · · · > Pθ(y
∗|x̂k) (1)

In summary, given an input sequence x, an adver-
sary keeps introducing small changes (x → x̂1,
etc.), each of which reduces the predicted probabil-
ity of the correct label y∗. Figure 2 shows a visual
representation of the adversarial process, which
moves the example marked x to the wrong side of
the decision boundary by following the red arrows.

3.2 Training the Text Rewriter
As we saw in section 2, the most common strategy
to counter such adversarial attacks is to retrain the
model with new parameters θnew such that

argmax
yi∈Y

Pθnew(yi|x̂k) = y∗

In this work, our objective is to keep the model
parameters θ unchanged and instead manipulate
the input x by rewriting it. To this end, we de-
fine ATINTER that intercepts and rewrites poten-
tially adversarial inputs. ATINTER is a text-to-text
transducer, which we will denote by Tϕ with its
own trainable parameters ϕ.

To effectively counteract adversarial inputs, the
transformation function Tϕ, must transform the in-
put x such that the task classifier makes the correct
prediction on the transformed text:

argmax
yi∈Y

Pθ(yi|Tϕ(x̂k)) = y∗

We can guarantee this outcome by simply training
Tϕ to ensure that Tϕ(x̂k) = x. In other words, our
goal is to learn a transformation function, Tϕ, that
is capable of undoing or reversing the impact of
adversarial modifications. However, merely train-
ing the rewriter to reverse the final step x̂k may
not be sufficient because x̂k is produced through a
series of small changes. Therefore, in addition to

undoing x̂k, the rewriter should also be able to re-
verse each intermediate step. This strategy is based
on the intuition that each successive change made
to the input x in constructing an adversarial input
x̂k is in itself adversarial; all intermediate changes
decrease the probability of the true label and are
thus undesirable (eq. (1)). Green curved arrows
in fig. 2 show the task of the rewriter. Figure 3 in
the appendix shows an example of this process.

In summary, any adversarial modification made
to the input at any stage should be reversed by AT-
INTER , i.e.,

Tϕ(x̂i) = x,∀i ∈ {1, k} (2)

Finally, on non-adversarial inputs, we do not need
to make any changes, and the function Tϕ should
therefore act as an identity function on these inputs:

Tϕ(x) = x (3)

Training Details We use the T5 model (Raf-
fel et al., 2020) as the starting point for our text
rewriter ATINTER. Since we need adversarial ex-
amples to train our rewriter, we follow Bao et al.
(2021) and choose TextFooler (Jin et al., 2020) for
generating these examples on the whole training
set. The training data for ATINTER consists of
input-output pairs of the form (x̂i,x): as described
in eq. (2), for every adversarial modification x̂i,
including the ones with intermediate changes, and
the original, unperturbed sequence x is the desired
output. In addition, as per eq. (3), the training data
also includes unperturbed examples of the form
(x, x). Figure 4 shows an illustrative example.

We train the base variant of the T5 model for 5
epochs with the starting learning rate of 5× 10−5.
More details on the hyperparameters are provided
in the appendix appendix A.2. We use the Trans-
formers (Wolf et al., 2020) for our implementation.

4 Experimental Setup

In this section, we will detail the datasets we use
for our experiments, the baseline defense mech-
anisms, and the adversarial attacks they will be
pitted against, and the three metrics we will use to
compare the defense methods.

4.1 Datasets
We evaluate our proposed defense on four text clas-
sification datasets.
Stanford Sentiment Treebank (SST-2) The SST-2
dataset is used for sentiment classification (Socher
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Dataset # Avg. words # Labels Size

SST-2 9.4 2 68K
MR 21.6 2 11K
AGNews 44.1 4 127K
MNLI 33.9 3 433K

Table 1: Summary of the datasets used in this paper.
The three columns show the average number of words
in the input, the number of labels, and the total size of
the dataset. For MNLI, the input size is calculated by
concatenating premise and hypothesis.

et al., 2013) among two labels: positive, and neg-
ative. We use the splits from the GLUE bench-
mark (Wang et al., 2019); we use the validation
set for reporting our results since the test set is not
available publicly.
Rotten Tomatoes Movie Reviews (MR, Pang and
Lee, 2005) Similar to SST-2 task, the goal is to
predict a movie review’s sentiment (positive vs.
negative). We use the official test set for evalua-
tion.
AG News (Zhang et al., 2015) This is a news clas-
sification dataset with four possible labels (sports,
world, science/technology, business). The test set
contains 7600 examples and since it can take a
long time for robustness evaluation across all seven
models and the five attackers, we randomly choose
1000 examples for our evaluation set.
Multi-Genre Natural Language Inference (MNLI,
Williams et al., 2018) This is a standard dataset
for Natural Language Inference (NLI) where
the goal is to determine the inferential rela-
tion between a premise and a hypothesis. The
dataset requires sentence-pair classification among
three labels (entailment, neutral, and contradic-
tion). Again, we sample 1000 instances from the
validation-matched subset for evaluation.

4.2 Baselines and Adversarial attacks

Baselines We compare our model with a number
of baselines: Adversarial Training (AT, Alzantot
et al., 2018), SHIELD (Le et al., 2022), SAFER (Ye
et al., 2020), SampleShielder (Rusert and Srini-
vasan, 2022), and ADFAR (Bao et al., 2021).
SAFER and SampleShielder are input random-
ization methods, while AT, and SHIELD require
model retraining. ADFAR requires retraining the
model and also uses input randomization. We could
not compare the results with DISP (Zhou et al.,
2019) as we were not able to run their implemen-

tation. We have provided more details in the ap-
pendix appendix A.

Adversarial Attacks We use the open source
toolkit TextAttack (Morris et al., 2020a,b) to evalu-
ate all models on five black-box adversarial attacks.
TextFooler (Jin et al., 2020), PWWS (Ren et al.,
2019), and BAE (Garg and Ramakrishnan, 2020b)
attack at the word-level, DeepWordBug (DWB,
Gao et al., 2018) attacks at the character-level,
and TextBugger (Li et al., 2018) attacks at both
word and character-level. TextFooler and PWWS
use counter-fitted word embeddings (Mrkšić et al.,
2016), while BAE uses the BERT as a masked lan-
guage model (Devlin et al., 2019) to find the best
word replacements. We provide an example of each
of them in table 6 in the appendix.
We perform our main experiments with a BERT-
base classifier as the victim model with hyperpa-
rameters as suggested by Devlin et al. (2019).

4.3 Evaluation

Evaluation Metrics We measure the quality of
the defense methods using three metrics, namely
Clean Accuracy (Clean Acc.), Adversarial Accu-
racy (AA), and Average number of queries (#Q).
Clean Accuracy is the accuracy of the model on
clean non-adversarial inputs, measured on the orig-
inal validation or test sets. A model that retains the
clean accuracy of the original model is desirable.
Adversarial Accuracy (AA) The Attack Success
Rate (ASR) of an attack is the percentage of in-
stances where the attack algorithm successfully
constructs an adversarial example. A defense
method that makes a model more robust results in
a lower ASR. We report the Adversarial Accuracy
of the defense methods, defined as 100− ASR.
Average Number of Queries (#Q) is the measure of
the cost for an attacker, and is the average number
of forward passes (queries) to the model by the
attacker. On average, a more robust defense method
requires more queries.

Evaluation Protocol The adversarial accuracy
depends on the number of queries an attacker is
allowed to perform - a lower query budget entails a
higher AA. There is currently no established proto-
col for evaluating the adversarial robustness of text
classification systems. In this study, we do not im-
pose a restriction on the number of queries allowed
to the attacker, resulting in the most challenging
conditions for the defense methods.
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5 Main Results

Table 2 shows the results for the defense methods
on all four datasets. Additionally, table 9 in the ap-
pendix summarizes the results in terms of average
improvements for the five adversarial attacks.

As observed from the table, our proposed
method ATINTER provides a consistent and sub-
stantial improvement in terms of adversarial ro-
bustness over the baselines. We find that there is
a trade-off between clean accuracy and adversar-
ial robustness for all the models, aligning with the
findings of Raghunathan et al. (2020). The results
show that ATINTER maintains the highest level of
clean accuracy on all datasets except MR, where
SAFER improves it by more than 1%, but does so
at the cost of making the model less robust.

The most formidable baseline is ADFAR, which
employs an anomaly detector to identify adver-
sarial inputs and uses input randomization for
handling adversarial instances. Our method sub-
stantially outperforms ADFAR on all settings ex-
cept one. Furthermore, we observe that Sam-
pleShielder performs well on AGNews but not on
other datasets. This can be attributed to the fact
that SampleShielder randomly removes parts of the
input before making a prediction. This is effective
for tasks with longer inputs and simpler semantics
(such as topic classification on AGNews), but does
not work for others where removing parts of the
input can alter the label. Additionally, while Sam-
pleShielder provides the best adversarial accuracies
on the MNLI dataset, the clean accuracy is almost
close to random. Our proposed model ATINTER
on the other hand, provides the best balance be-
tween adversarial and clean accuracies.

5.1 Results against other attack types

Several defense methods, including ours, utilize
adversarial examples from one attack type to train
their models. The true effectiveness of adversarial
defenses is determined when they are tested against
previously unseen adversarial attacks. Our evalua-
tion using four other attacks, excluding TextFooler,
accomplishes this. Each of these attacks differ from
TextFooler in one or more aspects. For example,
while TextFooler is a token-level attack, DeepWord-
Bug (DWB) is a character-level attack. TextBugger,
on the other hand, is a multi-level attack, capable of
attacking at both token and character level. BAE re-
places words uses a BERT MLM while TextFooler
uses GloVe word embeddings. PWWS, in com-

parison, employs a different algorithm for token
replacement.

From table 2, we observe that, as compared
to the baselines, ATINTER provides significant
improvements in robustness against other attacks.
Notably, while ATINTER is only trained against
synonym substitutions from TextFooler, it is able
to generalize to other attacks that operate at the
character level. Lastly, the improvement against
BAE is less than that against other attacks. We
hypothesize that this is due to the fact that BAE
employs a BERT language model for word replace-
ments, which is different from the technique used
by TextFooler.

5.2 Transferability to other classifiers
As mentioned previously, one motivation for using
a separate robustness module like ours is that it can
be transferred to other text classification models
without retraining the rewriter. We use ATINTER
which was trained to remove adversarial perturba-
tions for the BERT classifier on the SST-2 dataset
and employ it, without retraining, to remove adver-
sarial perturbations for other classifiers on the same
dataset. We assess the transferability of ATINTER
against three classifiers, namely: RoBERTa (Liu
et al., 2019), DistilBERT (Sanh et al., 2019), and
ALBERT (Lan et al., 2019).

The results for evaluation against TextFooler
are presented in table 3. We observe that ATIN-
TER is effective in enhancing adversarial robust-
ness for models other than BERT. Importantly, this
improvement is achieved without much drop in
performance on the clean examples (< 1% in all
cases). On average, ATINTER improves adver-
sarial accuracy by 16.6% across the three models.
Surprisingly, the improvement for the RoBERTa
model is even more pronounced than that for the
BERT model. We hypothesize that this transferabil-
ity from ATINTER is due to two factors. First, ad-
versarial attacks often result in similar adversarial
changes, particularly for the same dataset. Second,
previous research has demonstrated that adversar-
ial examples transfer across classifiers for the same
task (Papernot et al., 2016; Liu et al., 2017).

5.3 Transferability to other tasks and datasets
As explained in the previous section, ATINTER
allows for its application to tasks and datasets
for which it was not trained. We now assess the
transferability of our method with respect to other
tasks and datasets. We use the ATINTER trained
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Dataset Defense Clean
Acc.

TextFooler TextBugger BAE PWWS DWB

AA #Q AA #Q AA #Q AA #Q AA #Q

SST-2

None 92.4 4.8 95.4 31.3 49.3 33.9 60.4 13.4 143.1 18.6 34.7
AT 88.4 5.7 91.6 23.1 46.3 34.6 61.8 13.2 139.4 10.1 32.3
SHIELD 88.8 6.6 90.9 25.1 51.4 28.5 61.3 13.6 137.1 9.7 33.2
SAFER 89.3 8.7 91.9 27.7 48.4 36.3 62.2 16.2 138.8 16.5 32.4
SampleShielder 76.8 6.6 97.1 25.7 58.4 28.8 66.2 17.7 143.8 17.5 36.2
ADFAR 89.9 19.5 115.4 29.3 58.1 37.1 68.7 20.9 142.7 22.8 36.1
ATINTER 92.0 24.0 136.7 40.5 54.3 34.2 60.4 22.9 150.1 25.3 38.0

MR

None 84.2 10.7 117.7 37.3 56.1 38.4 64.4 18.7 150.0 22.3 40.5
AT 84.2 11.3 118.6 34.3 54.8 35.9 65.8 19.2 151.1 18.1 38.2
SHIELD 82.1 12.1 98.7 22.3 60.8 27.4 65.6 18.2 141.7 18.7 37.2
SAFER 85.5 3.7 88.1 23.4 49.3 33.4 59.8 10.6 142.0 16.0 34.0
SampleShielder 76.2 12.1 105.5 26.5 58.2 27.3 61.7 21.4 150.7 24.3 39.7
ADFAR 82.4 17.5 120.5 26.0 59.6 31.4 65.5 23.0 148.8 22.6 38.2
ATINTER 84.3 21.1 140.2 45.7 61.0 38.6 65.8 26.4 154.2 32.5 43.6

MNLI

None 83.5 1.1 81.3 4.2 54.1 19.3 59.2 2.4 188.3 4.2 41.5
AT 80.8 2.7 105.0 6.3 59.3 20.7 62.5 3.5 190.4 6.9 41.7
SHIELD 79.5 2.9 103.8 6.7 60.2 20.9 63.1 3.4 191.1 7.9 44.0
SAFER 78.0 1.7 101.3 10.3 58.8 24.5 62.9 5.3 196.7 8.3 44.1
SampleShielder 41.4 17.5 178.3 17.2 102.2 41.7 100.1 26.1 231.2 19.9 57.0
ADFAR 78.1 10.5 117.8 7.6 64.3 16.3 61.6 11.0 200.7 9.4 44.9
ATINTER 83.0 16.1 158.2 9.7 67.3 20.4 61.5 10.9 195.2 9.5 45.4

AGNews

None 94.9 18.2 334.1 47.7 180.9 84.8 116.8 43.2 353.0 38.9 110.1
AT 94.1 19.1 379.2 49.1 189.7 83.4 117.1 44.1 355.6 39.7 114.2
SHIELD 92.4 20.1 385.3 51.7 190.9 81.8 114.4 44.9 359.4 39.7 112.4
SAFER 91.2 15.7 280.6 33.6 156.6 78.8 119.9 45.8 361.2 40.8 114.7
SampleShielder 90.8 52.6 425.6 56.7 216.9 84.4 119.5 49.8 365.4 41.6 115.4
ADFAR 92.4 58.3 422.2 52.5 245.1 79.7 136.3 45.9 368.4 47.1 115.8
ATINTER 94.7 73.0 520.0 63.9 222.9 87.3 123.5 63.9 375.2 49.7 117.3

Table 2: Results comparing model robustness using the clean accuracy (%) and adversarial accuracy (%) on the five
adversarial attacks: None indicates the BERT model without any defense and therefore acts as a baseline model.
Notably, our model ATINTER yields superior results across the board without significant drop in clean accuracy.

Clean Acc Adv. Acc.

BERT 92.4 4.8
+ ATINTER 92.0 24.0
RoBERTa 94.1 5.0
+ ATINTER 93.7 25.1
DistilBERT 90.0 2.9
+ ATINTER 89.5 17.8
ALBERT 91.1 4.2
+ ATINTER 90.4 19.0

Table 3: Transferability to other models.The ATIN-
TER is trained for defending the BERT model and is
evaluated for its ability to defend other models without
retraining. The results are shown for the SST-2 dataset
for its validation subset.

Clean Acc Adv. Acc.

BERT-SST2 92.4 4.8
+ ATINTER 92.0 24.0
MR 84.2 10.7
+ ATINTER 84.2 29.3
AGNews 94.2 18.2
+ ATINTER 93.1 30.8
MNLI 83.5 1.1
+ ATINTER 83.2 2.8

Table 4: Results comparing transferability of ATINTER
to other tasks. The ATINTER trained for the BERT
model on SST-2 dataset is evaluated for BERT classifiers
on other datasets without retraining.
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Model Params. Clean Acc Avg. AA

t5-small 60M 92.4 21.9
t5-base 220M 92.0 29.4
t5-large 770M 92.4 37.8
t5-3b 3B 92.1 45.9

Table 5: Results comparing the robustness w.r.t the size
of ATINTER model. All the models are evaluated on
SST-2 with the BERT-base classifier. We report here
the averaged adversarial accuracies for compactness.
Please refer to the appendix table 7 for detailed numbers.

for sentiment classification on SST-2 using BERT
and apply for the BERT model trained on other
datasets. We perform this evaluation on three
datasets, namely MR, AGNews, and MNLI.

We present the results in the table 4. We find
that our model ATINTER exhibits strong transfer-
ablity for other datasets. Again, as with previous
results, we see only small drops in performance on
non-adversarial inputs. The favorable results on the
MR dataset shows that ATINTER effectively trans-
fers for a different dataset of the same task. Note
that the improvement in adversarial accuracy for
MR is even higher than a model that is specifically
trained for removing adversarial perturbations for
the MR dataset (see table 2). This is explained by
the fact that the MR dataset is much smaller and
thus the ATINTER trained on that dataset has fewer
adversarial instances to learn from (10k vs. 67k).
We notice more than 12% increase in adversarial
accuracy on the AGNews dataset. This is perhaps
most surprising, since not only the task is seman-
tically different with different set of classes, but
the domain of the dataset is also different (movies
vs. news). On the MNLI dataset though, we notice
only small improvement, perhaps because it is a
semantically harder task.

In summary, our proposed model ATINTER
transfers across both models and datasets. This
observation can motivate the training of a single
rewriter module for all tasks and datasets. The ben-
efits of such an approach are two-fold. First, since
the defense capability transfers across models, a
single shared model could be more robust than the
individual ones. Second, having a single shared is
more practical as it reduces the overhead in deploy-
ment of ATINTER. We leave the exploration of this
shared rewriter approach to future work.

5.4 Effect of the model size

For all experiments in previous sections, we used
the base variant of the T5 model for training AT-
INTER. We now investigate the effect of the size
of the rewriter module on the adversarial robust-
ness. For the SST-2 dataset, we train four variants
of ATINTER with different sizes: t5-small,
t5-base, t5-large, t5-3b. The results are
shown in table 5. We observe that with increased
size, the rewriter module defends the classification
model more robustly.

5.5 Pre-training the Rewriter

One additional benefit of having a separate rewriter
module is that we can pre-train the rewriter without
using any task-specific datasets. We demonstrate
this approach by artificially constructing a training
corpus using the Wikipedia text. Specifically, we
sample 100k sentences from the English Wikipedia
and randomly substitute 15% of the words in each
of those sentences with one of the neighbors from
the GloVe embedding space (Pennington et al.,
2014). The pre-training task for the rewriter is
to simply reverse this perturbation by generating
the original unperturbed sentence. Note that this
setup is close to but does not perfectly simulate
the actual adversarial attack scenario, as the pertur-
bations used in the latter are chosen with greater
precision. We observe that this pre-training im-
proves the ATINTER by more than 2.5% in terms
of adversarial accuracy without any significant de-
crease in clean accuracy. Due to space constraints,
the results are shown in table 8 in the appendix .

5.6 Latency at Inference

One limitation of our proposed strategy is that it
utilizes two neural models to make predictions,
hurting the overall inference time. We measure
latency for each of the models by averaging their
inference time over 200 examples (100 clean +
100 adversarial). We observe that ATINTER is
slower than model retraining approaches (22.0 ms
for SHIELD vs. 95 ms for ATINTER), while be-
ing faster or competitive with input randomization
methods. SAFER is the slowest of all since it per-
forms averaging over a large number of candidate
synonyms.

One possible approach to reduce inference time
could be to use more efficient text generation mod-
els like non-autoregressive text generation (Gu
et al., 2018). Moreover, a method based on text-
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editing can also be promising (Malmi et al., 2022).
We leave these explorations to the future work.

6 Conclusion

In this paper, we explore a novel strategy to de-
fend against textual adversarial attacks that does
not require model retraining. Our proposed model,
ATINTER intercepts and rewrites adversarial in-
puts to make them non-adversarial for a down-
stream text classifier. We perform experiments on
four text classification datasets and test its effec-
tiveness against five adversarial attacks. The results
suggest that, in comparison with baselines, our pro-
posed approach is not only more effective against
adversarial attacks but is also better at preserving
the task accuracies. Moreover, when used as a
pluggable module, ATINTER shows great transfer-
ability to new models and datasets—on three new
datasets, it improves adversarial accuracy by 10.9%
on average. We expect the future work to focus on
improving inference time latency by using more
sophisticated text generation methods.

7 Limitations

This work is subject to two limitations. First, our
experiments were restricted to text classification
tasks and we did not evaluate if our methods can
effectively defend against adversarial attacks for
other tasks like QA, etc. (Jia and Liang, 2017). It
therefore remains unexplored if our conclusions
transfer beyond the text classification tasks.

Second, the primary contribution of our
work, ATINTER relies on using a language model
like T5, which is trained on large amount of text
in English. It is possible that our approach is not
as effective for languages where such a model is
not freely available. Additionally, in this work, we
did not explore the impact of large language model
pretraining on our results.

8 Ethical Considerations

This work is concerned with protecting or defend-
ing against adversarial attacks on text classification
systems. For modeling, our method ATINTER
uses another neural network based language model
T5 (Raffel et al., 2020). This means the ATINTER
can itself be attacked by an adversary. We believe
that attacking a pipelined model such as ATINTER
is not straightforward for the following two reasons.
First, performing an adversarial attack on a model
typically requires access to output scores from that

model. Since ATINTER is used in a pipeline with
a task classifier, the attacker can never get access to
ATINTER’s output scores. This adds an additional
layer of complexity for the adversary. Second, tar-
geted adversarial attacks on sequence-to-sequence
models (such as ATINTER) are much less promi-
nent and it is generally more difficult to make small
alterations in the input without forcing a more sig-
nificant change in the textual output (Cheng et al.,
2020; Tan et al., 2020). Nevertheless, we have not
explored this possibility and therefore recommend
practitioners interested in using this work to care-
fully check for this.

Additionally, the experiments were only per-
formed on four text classification datasets. Al-
though we expect our method to be effective for
other classification tasks like Toxicity detection,
Hate Speech identification, but considering the sen-
sitive nature of these applications, we urge the prac-
titioners to first comprehensively evaluate our work
on those tasks before deploying in a real world
scenario.

For all our experiments, we used pre-established
and published datasets, which do not pose any se-
rious ethical concerns. For transparency and re-
produciblity, we will make our code publicly avail-
able.
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A Appendix

A.1 Implementation Details
SHIELD We find that SHIELD is very sensi-
tive to the τ hyperparameter involved. There
is a strong trade-off between the clean accuracy
and adversarial robustness for the change in τ .
For reporting the results, we try four values of
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Attack Type Can humans Example
identify it?

TextFooler word-level NO Org: The child is at the beach.
Adv: The youngster is at the shore.

TextBugger char-level, YES Org: I love these awful 80’s summer camp movies.
word-level Adv: I love these aw ful 80’s summer camp movies.

BAE word-level NO Org: The government made a quick decision.
Adv: The doctor made a quick decision.

PWWS word-level NO Org: E-mail scam targets police chief.
Adv: E-mail scam targets police headman.

DeepWord char-level YES Org: Subject: breaking news. would you ref inance ...
Adv: sujbect woulg yuo hvae an [OOV] ...

Table 6: Summary of the black-box adversarial attacks: Comparing the adversarial attacks we use in this work
along with related information such as attach type, human perceptibility, and an example input for each attack. The
third column indicates whether a human can easily identify if textual input was modified or not based on grammar
syntax, semantics, and other language rules.

Model # Params
Clean
Acc.

TextFooler
AA

TextBugger
AA

BAE
AA

PWWS
AA

DWB
AA

Avg. AA

t5-small 60M 92.43 11.29 31.39 33.62 15.51 17.49 21.86
t5-base 220M 91.97 23.96 40.52 34.16 23.06 25.31 29.40
t5-large 770M 92.43 31.14 50.99 36.85 30.4 39.45 37.77
t5-3b 3B 92.09 39.33 57.53 42.67 35.1 54.79 45.88

Table 7: Detailed Results with different sizes of the ATINTER. AA stands for Adversarial Accuracy. The results
shown here are for the SST-2 dataset and the BERT classifier.
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τ = [1.0, 0.1, 0.01, 0.001] and report the results
for the model that retains the accuracy the most.

SAFER Since SAFER is an input randomization
method, the default implementation provides dif-
ferent results for different runs, although we do
not see any substantial change in numbers. For
reporting clean accuracy, we average it with the
numbers obtained with each of the five attacks. Ad-
ditionally, since SAFER aggregates predictions by
considering a large number of candidates for ran-
dom synonym replacements for each word it de-
cides to perturb, we found it is not practical to run
with number of candidates equal to 100 (used in
the original implementation). Therefore, we report
the numbers with n = 30 in this paper.

ADFAR The official ADFAR implementation 4

only provides instructions to reproduce results for
MR dataset (more specifically for tasks with single
input classification and with only two possible la-
bels). We, therefore, modify the codebase to make
it work for AGNews –that has four classes, and
MNLI, where the task is sentence-pair classifica-
tion. We will release our modified codebase for
ADFAR for the community to reproduce these re-
sults.

DISP We were not able to run the open-sourced
implementation of DISP during our experiments 5.
We experimented with several different versions
of both PyTorch and the transformers libraries but
were still unsuccessful. More details can be found
at a github issue we created at: 6.

A.2 Hyperparameters for training ATINTER

We list here the hyperparameters we used for train-
ing our model.

1. Learning Rate: We found that the learning
rate of 5e-5 works best. We performed the
learning rate search over the set [1e-5, 5e-5,
1e-6, 5e-6]. Also, we find the best learning
rate for the SST-2 dataset and use the same
for other datasets.

2. Batch Size: For all our models, except
t5-3b, we use the batch size of 16 during
training. Wherever, the batch of 16 did not

4https://github.com/LilyNLP/ADFAR
5https://github.com/joey1993/

bert-defender
6https://github.com/joey1993/

bert-defender/issues/2

Model Clean Acc Adv. Acc.

ADFAR (Bao et al., 2021) 89.9 19.5
ATINTER (pre-training only) 92.3 9.6
ATINTER (SST-2) 92.0 24.0

+ pre-training 91.9 26.5

Table 8: Effect of Pretraining ATINTER using
wikipedia sentences. Results shown for the SST-2
dataset.

fit the GPU (for example on the 16GB V100),
we use gradient accumulation to have the ef-
fective batch size of 16. We did not perform
any hyperparameter search for batch size due
to computational reasons.

3. Sequence Length: Since examples in the SST-
2 and MR datasets are smaller, we used the
source and target side sequence lengths to
both be 128. For AGNews, we use the se-
quence length of 512 and for MNLI, we use
256.

4. Number of epochs: For all our models (ex-
cept that involve wiki pre-training), we used
5 epochs. For the pre-training setup, we used
10 epochs.

For training t5-3b, we needed to use
DeepSpeed 7 for our experiments.

A.3 Reproducibility Details
Dataset Splits We use the dataset splits from the
Huggingface datasets repository. 8. For datasets
where we use a subsample of the test set, we use
the random seed 1 to first shuffle and then evaluate
on first 1000 instances.

Hardware We run most of our experiments us-
ing the Nvidia V100 (32 GB) GPU. Some of the
later experiments with T5-3b required even larger
GPU RAM and therefore, I was able to use Tesla
A100 (40 GB VRAM) for last few experiments.
Additionally, the servers had CPU: AMD EPYC
7513 32-Core Processor with CPU RAM 512 GB.

7https://github.com/microsoft/
DeepSpeed

8https://huggingface.co/datasets
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BERT-SST-2
an already thin story boils down 
to surviving invaders seeking an 

existent anti-virus
negative (0.7)✓

BERT-SST-2
an already lean story boils down 
to surviving invaders seeking an 

existent anti-virus
negative (0.55) ✓

BERT-SST-2
an already lean story boiled down 
to surviving invaders seeking an 

existent anti-virus
positive (0.6) ✗

!"

!"!

!

Figure 3: Illustration of how an adversarial example is generated. Given a non-adversarial, correctly predicted
sentence x, a typical adversary makes a word substitution to first obtain x̂1 which lowers the predictive probability
and then makes another substitution to generate x̂, such that the predicted label becomes incorrect.

an already thin story boils down 
to surviving invaders seeking an 

existent anti-virus

an already lean story boils down 
to surviving invaders seeking an 

existent anti-virus

an already lean story boiled down 
to surviving invaders seeking an 

existent anti-virus
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𝒯𝜙

Text Rewriter

A Text-to-Text Model

an already thin story boils down 
to surviving invaders seeking an 

existent anti-virus

an already thin story boils down 
to surviving invaders seeking an 

existent anti-virus

an already thin story boils down 
to surviving invaders seeking an 

existent anti-virus

𝒯𝜙 𝒙 = 𝒙

𝒯𝜙 $𝒙𝟏 = 𝒙

𝒯𝜙 $𝒙 = 𝒙

Inputs Targets

Figure 4: Training Setup for the Text Rewriter. For a non-adversarial example x, the rewriter should learn to simply
reproduce the same text as output. For the other two inputs (x̂1, and x̂), the rewriter learns to restore the original
input x. Please refer to the main text for more details.
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Defense SST-2 MR MNLI AGNews

Clean
Acc.

Adv.
Acc.

Clean
Acc.

Adv.
Acc.

Clean
Acc.

Adv.
Acc.

Clean
Acc.

Adv.
Acc.

AT -4.0 -4.0 0.0 -1.5 -2.7 1.8 -0.7 -1.0
SHIELD -3.6 -3.7 -2.1 -5.1 -4.0 1.9 -2.5 1.2
SAFER -3.1 0.3 1.3 -6.5 -5.5 3.8 -3.7 -4.2
SampleShielder -15.6 -1.4 -8.0 -3.6 -42.1 - -4.1 9.4
ADFAR -2.5 4.2 -1.8 -1.4 -5.4 4.7 -2.7 10.2
ATINTER -0.4 7.4 0.1 6.2 -0.5 6.3 -0.2 21.9

Table 9: Summary of the main results. Absolute percentage change in Clean Accuracy and Adversarial Accuracies
averaged over the five adversarial attacks.
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