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Abstract

Recently, knowledge graphs (KGs) have won
noteworthy success in commonsense question
answering. Existing methods retrieve relevant
subgraphs in the KGs through key entities and
reason about the answer with language mod-
els (LMs) and graph neural networks. How-
ever, they ignore (i) optimizing the knowledge
representation and structure of subgraphs and
(ii) deeply fusing heterogeneous QA context
with subgraphs. In this paper, we propose a dy-
namic heterogeneous-graph reasoning method
with LMs and knowledge representation learn-
ing (DHLK), which constructs a heterogeneous
knowledge graph (HKG) based on multiple
knowledge sources and optimizes the structure
and knowledge representation of the HKG us-
ing a two-stage pruning strategy and knowl-
edge representation learning (KRL). It then
performs joint reasoning by LMs and Rela-
tion Mask Self-Attention (RMSA). Specifically,
DHLK filters key entities based on the dictio-
nary vocabulary to achieve the first-stage prun-
ing while incorporating the paraphrases in the
dictionary into the subgraph to construct the
HKG. Then, DHLK encodes and fuses the QA
context and HKG using LM, and dynamically
removes irrelevant KG entities based on the
attention weights of LM for the second-stage
pruning. Finally, DHLK introduces KRL to
optimize the knowledge representation and per-
form answer reasoning on the HKG by RMSA.
We evaluate DHLK at CommonsenseQA and
OpenBookQA, and show its improvement on
existing LM and LM+KG methods.

1 Introduction

Question answering (QA) is a challenging task that
requires machines to understand questions asked
by natural language and respond to the questions
based on the knowledge acquired. Recently, QA
has made remarkable progress with the develop-
ment of Language Models (LMs) (Devlin et al.,

∗Corresponding author.

2019; Liu et al., 2019; Lan et al., 2020; Raffel
et al., 2020). Fine-tuning based on LMs has now
become a major paradigm for QA tasks. LMs are
pre-trained on a general large-scale corpus contain-
ing rich world knowledge, which the machine can
utilize when fine-tuning downstream tasks using
LMs. In some simple, fact-based QA tasks, such as
SQuAD (Rajpurkar et al., 2016, 2018) and RACE
(Lai et al., 2017), machine has surpassed humans in
terms of answer accuracy. However, the machine
remains less satisfactory in some structured rea-
soning QA tasks that require commonsense knowl-
edge.

Commonsense knowledge is the general law
summarized by human beings through observation,
research, and reflection of various phenomena in
the objective world, which is verified by the long-
term experience of countless people and is the com-
mon daily consensus of people. When humans
answer questions, they use this knowledge uncon-
sciously. For example, if you ask “John had an
urgent matter to attend to at his company, and he
drove fast to the company but stopped at an in-
tersection, what could have happened?”. We can
reason that John may be passing through the inter-
section when the traffic light turns red. Thus, he
has to stop and wait for the light to turn green. This
commonsense reasoning is easy for humans. How-
ever, considering that commonsense knowledge is
a relatively tacit knowledge, LMs do not capture it
well.

Knowledge graphs (KGs) store a large amount
of commonsense knowledge that can be used by
machines to make sound judgments, and this knowl-
edge can provide the machines with displayed and
interpretable evidence. Therefore, some methods
(Lin et al., 2019; Feng et al., 2020; Yasunaga et al.,
2021; Sun et al., 2022; Zheng and Kordjamshidi,
2022; Zhang et al., 2022) have introduced KGs
into LMs-based QA methods to model and reason
about structured knowledge in KGs through graph
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What furniture will you normally find near a side chair?

A. bedroom                B. table*              C.wheel barrow

D. building                                          E. office                                    

QA context

Knowledge paths and paraphrases

relatedto relatedto
  side bank table

relatedto usedfor
  side  top table

madeof relatedto
  furniture  wood table

isa relatedto
  furniture desk table

relatedto
  chair

¾¾¾¾¾® ¾¾¾¾¾®

¾¾¾¾¾® ¾¾¾¾¾®

¾¾¾¾¾® ¾¾¾¾¾®

¾¾¾® ¾¾¾¾¾®

isa
desk table

atlocation atlocation
  chair cat table

atlocation atlocation
  side chair room table

atlocation atlocation
  side chair bedroom table

  ......

   side chair :

¾¾¾¾¾® ¾¾¾®

¾¾¾¾¾® ¾¾¾¾¾®

¾¾¾¾¾® ¾¾¾¾¾®

¾¾¾¾¾® ¾¾¾¾¾®

a straight-backed chair without arms.

   a piece of furniture with tableware for a meal laid out on it.

  ......

table :

Figure 1: An example from CommonsenseQA , we
retrieve knowledge paths from ConceptNet (Speer et al.,
2017) and key entity paraphrases from WordNet (Miller,
1995) and Wiktionary.

neural networks (GNNs) (Scarselli et al., 2009).
Related methods generally follow the following
steps: (i) Extracting key entities in the QA context
using entity recognition methods; (ii) Retrieving
relevant knowledge subgraphs in KGs based on
key entities; (iii) Initializing subgraph entities us-
ing pre-trained word embedding models; and (iv)
Designing a GNNs-based reasoning module to per-
form joint reasoning with LMs. Therefore, sub-
graphs’ quality and the joint method of GNNs and
LMs are crucial to the reasoning performance.

Currently, combining LMs and GNNs to solve
commonsense QA (CQA) task has proven to be an
effective method but still contains some problems:
(i) In the key entities-based subgraph extraction
method, the goodness of the key entities largely
determines the quality of the subgraph. As shown
in Figure 1, entities such as “wood”, “bank”, “top”,
and “cat” are some noisy knowledge for the cur-
rent question, and they affect the model’s judgment
during the inference process. But a part of the
noisy knowledge can be solved by optimizing key
entities. In the example of Figure 1, “side chair”
is a noun phrase, which should be considered as
a whole when retrieving knowledge based on it,
and this will reduce the introduction of some noisy
knowledge; (ii) The knowledge representation of
entities in subgraph are mostly obtained by Glove

(Pennington et al., 2014), LMs, and so on, ignoring
the semantic associations between entities; addi-
tionally, the knowledge representations obtained
are less effective; (iii) Given that the QA context
and subgraph have different structures, existing
methods encode QA context and subgraph sepa-
rately, with shallow interactions only at the GNN
layer through message passing (Yasunaga et al.,
2021; Zheng and Kordjamshidi, 2022) or at the out-
put layer through attention mechanism (Sun et al.,
2022) or MLP (Feng et al., 2020; Zhang et al.,
2022; Yasunaga et al., 2022), lacking deep fusion
of QA context and subgraph, which will hinder the
inference capability of the model.

Based on the above problems, we propose a
Dynamic Heterogeneous-graph reasoning method
based on Language models and Knowledge repre-
sentation learning (DHLK). Specifically, given a
question and choice, we first use KeyBERT (Groo-
tendorst, 2020) to extract the candidate entities and
introduce WordNet (Miller, 1995) and Wiktionary 1

vocabularies to filter the candidate entities and then
obtain the key entities, which can remove some
noisy entities in the subgraph retrieval process and
realize first-stage pruning of the subgraph. We also
incorporate the paraphrases of key entities in the
two dictionaries as entities into the subgraph to con-
struct a heterogeneous knowledge graph (HKG).
Then, we use LM to encode the QA context and
HKG and fuse the QA context and HKG in the
encoding process. In addition, we dynamically re-
move irrelevant entities according to the attention
weights of LM to achieve the second-stage pruning
of the subgraph. Finally, we combine KRL and
Relation Mask Self-Attention (RMSA) to optimize
the knowledge representation of HKG and incor-
porate the path information in the HKG into the
QA context. In summary, our contributions are
threefold:
• We construct the HKG based on multiple

knowledge sources and introduce a two-stage prun-
ing strategy and KRL to optimize the structure and
knowledge representation of the HKG.
• We effectively fuse the QA context and HKG

in the encoding phase of LM to achieve better rea-
soning performance.
• We evaluate our method on CommonsenseQA

and OpenBookQA, proving the effectiveness of the
method through a series of ablation experiments
and case studies.

1https://www.wiktionary.org/
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2 Related Work

Recently, large LMs such as UnifiedQA (Khashabi
et al., 2020), T5 (Raffel et al., 2020) and GPT-3
(Brown et al., 2020) have been widely applied in
QA tasks, such as open-domain question answering
(ODQA) and CQA, driving the development of QA.
However, larger LMs result in disproportionate re-
source consumption and training time. Therefore,
many works have enhanced the reasoning ability
of machines by introducing external knowledge,
hoping to achieve good answering results while
reducing resource consumption and training time.

Knowledge-enhanced ODQA. ODQA model
utilizes external knowledge to answer questions,
typically consisting of a retriever and a reader com-
ponent. With the development of LMs, Retrieval
Augmented Architectures (Lewis et al., 2020; Guu
et al., 2020) have become the mainstream method
for ODQA. They apply LMs to retriever-reader
and conduct joint training of the retriever-reader.
However, previous works (Karpukhin et al., 2020;
Izacard and Grave, 2021) primarily focused on un-
structured knowledge sources, such as Wikipedia.
Recently, some works (Min et al., 2019; Zhou et al.,
2020; Hu et al., 2022) have started incorporating
structured KGs into the retriever-reader architec-
ture to enhance retrieval effectiveness and ques-
tion answering capabilities. For example, UniK-
QA (Oguz et al., 2022) converts KG triplets into
text and merges them with unstructured knowledge
repositories. KG-FiD (Yu et al., 2022) utilizes KG
to establish relational dependencies between re-
trieved paragraphs and employs GNNs to sort and
prune the retrieved paragraphs. Grape (Ju et al.,
2022) constructs a localized bipartite graph for each
pair of question and article, learning knowledge
representations through GNNs.

Knowledge-enhanced CQA. CQA also requires
external knowledge to answer questions, but it is
more focused on commonsense questions. From
the perspective of knowledge and QA context fu-
sion, there are currently two main methods. Some
works (Bian et al., 2021; Xu et al., 2021, 2022) feed
the retrieved knowledge together with the QA con-
text into the LM, utilizing self-attention to fuse the
knowledge. However, the self-attention treats the
input knowledge and QA context indiscriminately,
which can undermine the semantic information of
the QA context. Other works (Lin et al., 2019; Feng
et al., 2020; Lv et al., 2020; Yasunaga et al., 2022;
Zheng and Kordjamshidi, 2022) combine LM and

GNNs to solve CQA. For example, QAGNN (Ya-
sunaga et al., 2021) uses LM to estimate the im-
portance of subgraph entities and considers the QA
context as an additional node connected to the sub-
graph. JointLK (Sun et al., 2022) uses the bidirec-
tional attention module to fuse the two modalities
while designing a pruning module to remove ir-
relevant entities from the subgraph. GREASELM
(Zhang et al., 2022) fuses encoding representations
from LM and GNNs through multi-layered modal-
ity interaction operations. However, these works
encode the QA context and KG subgraph in iso-
lation, leading to limited interaction between tex-
tual and KG representations. Additionally, they
don’t consider the influence of key entities and
knowledge representations on subgraph retrieval
and model inference.

In contrast to previous works, we propose to
reduce noisy knowledge by optimizing the set of
key entities in the subgraph retrieval process. In
addition, we use LM to encode and fuse the two
modalities and prune the subgraph according to the
attention weights of LM. Meanwhile, during the
inference process, we introduce the KRL algorithm
to optimize the knowledge representation of the
subgraph. Figure 2 shows the overall architecture
of our method.

3 Methods

3.1 Task Formulation

We focus on the multi-choice CQA task in this
paper. Given a question q and a set of candidate
choices {c1, c2, ..., cb}, we need to select the one
that best fits the question’s meaning. In general,
CQA does not provide the background knowledge
related to the question. Therefore, we need to re-
trieve relevant knowledge from KG and combine
it to reason about the answer. In this paper, we re-
trieve a relevant subgraph from ConceptNet based
on key entities in question and choice, and iden-
tify the paraphrases of the key entities in WordNet
and Wiktionary. Meanwhile, we explicitly take the
paraphrases as some additional entities (paraphrase
entities) connected to the KG subgraph. Therefore,
our method starts with the HKG construction.

3.2 HKG Construction

In the KG-based CQA task, the subgraph needs
to be retrieved from the KG based on key entities.
Therefore, the key entities determine the quality
of the subgraph. We use KeyBERT to identify

14050



QA CE

LM Encoder

PE

Dynamic Pruning

RMSA

Layer
KG2QA Layer

KRL

Layer

Integrator & Classifier

KRL LossClassifier Loss

Masking

Pruning

LM-to-CE AttentionLM-to-CE AttentionLM-to-CE Attention

      question entities                  correlation entities                  choice entities               paraphrase entities

Reasoning based

on RMSA

PartOfPartOf

MaxPooling

PartOfPartOf

RMSA Layer

Constructing HKG

Figure 2: The overall architecture of our proposed DHLK model, which takes as input the QA context (question
+ choice) and the entities in the HKG. The CE and PE denote concept entities extracted from ConceptNet and
paraphrase entities extracted from the dictionaries, respectively.

candidate entities Ê = {ê1, ê2, ..., ên} in ques-
tion and choice. Meanwhile, we identify phrase
entities in Ê based on WordNet and Wiktionary
vocabularies, and remove the subwords that con-
stitute phrase entities in Ê, to obtain key entities
E = {e1, e2, ..., em} and their corresponding para-
phrases P = {p1, p2, ..., pm}. Here n,m denotes
the number of candidate entities and key entities,
and n ≥ m.

Following the work of Yasunaga et al. (2021),
we retrieve the subgraph in ConceptNet according
to E. The subgraph consists of multiple knowl-
edge paths within two-hops, and each path con-
tains at most two triples. Meanwhile, we separately
connect the question key entities and choice key
entities in the subgraph, and define the relation be-
tween them as “SameQA”. In addition, we consider
P as paraphrase entities and connect them with the
corresponding key entities to construct HKG, and
define the relation between them as “DefAs”. We
give all the relations included in HKG in Appendix
A. From the knowledge source perspective, HKG
contains two types of entities, i.e., concept entities
and paraphrase entities.

3.3 LM-Based Encoding
Inspired by K-BERT (Liu et al., 2020), we con-
struct two visible matrices and use RoBERTa (Liu
et al., 2019) to encode the QA context, concept
entities, and paraphrase entities in HKG. The visi-
ble matrix and the encoding process are described
further below.

We connect the QA context with the concept en-

tities and construct the visual matrix M according
to the following rules:

(i) The tokens contained in the QA context are
visible to each other.

(ii) The tokens belonging to the same concept
entity are visible to each other.

(iii) The key entities exist in the concept entities,
and they are also extracted from the QA context.
Therefore, the key entities and the corresponding
tokens in the QA context are visible to each other.

The value of Mi,j is 0 or 1, where Mi,j = 1
means that tokens are visible to each other, and
Mi,j = 0 means that tokens are invisible to each
other. In RoBERTa model, M is further defined as

M̃ =

{
0 Mi,j = 1
−∞ Mi,j = 0

(1)

Based on M̃ , we introduce Mask Self-Attention
(MSA) into RoBERTa to encode the QA context
and concept entities. Formally, the MSA is defined
as

Qi+1,Ki+1,V i+1 = hiWq,h
iWk,h

iWv (2)

si+1 =
Qi+1Ki+1⊤

√
d

(3)

αi+1 = softmax(si+1 + M̃) (4)

hi+1 = si+1V i+1 (5)

where hi is the hidden state of RoBERTa at i-th
layer. Wq, Wk and Wv are trainable model parame-
ters. αi+1 is the attention weights after integrating
M̃ . d denotes the hidden layer size of RoBERTa.
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We feed the QA context, concept entities, and M
into RoBERTa to obtain the tokens embeddings of
the QA context and concept entities: {q̃i}Ai=1 ∈ Rd

and {c̃i}Zi=1 ∈ Rd. Here A and Z denote the num-
ber of tokens of QA context and concept entities,
respectively.

Similarly, we construct a visible matrix M̂ to
prevent the change in paraphrases meaning due to
the interaction between different paraphrases. In
M̂ , only the tokens located in the same paraphrase
are visible to each other. We connect all the para-
phrases and feed them into RoBERTa along with
M̂ to obtain the tokens embeddings {p̃i}Fi=1 ∈ Rd

of the paraphrase entities. Here F denotes the num-
ber of paraphrase tokens.

3.4 Dynamic Pruning

Although we prune the HKG by filtering key en-
tities during its construction, noisy entities persist
in the HKG. Therefore, we prune the HKG in the
second-stage according to the importance of the
concept entities to the QA context.

We take the embedding representation q̃1 of the
[CLS] position in RoBERTa as semantic represen-
tation of the QA context. For the concept entities in
HKG, we obtain the token-level attention weights
w = {wj , wj+1, ..., wk} of each entity for q̃1 by
equation 3, and then obtain the node-level attention
weight w̃ by

ŵ =
1

k

k∑

i=j

wi (6)

w̃ =
ŵ − ŵmin

ŵmax − ŵmin
(7)

where ŵmax, ŵmin are the maximum and mini-
mum values of node-level attention weights. Next,
we remove the entities with w̃ < µ in the HKG and
remove the edges connected to these entities in the
HKG.

3.5 KRL Layer

HKG can be viewed as the knowledge subgraph
composed of multiple triples connections. To ob-
tain better entity and relation embeddings, we in-
troduce KRL to optimize knowledge representation
and improve the reasoning effect.

Entity and relation embeddings. For a triplet
(h, r, t), h,t are the entities in HKG, and r is the
concatenated edge between the entities. Based on

the tokens embeddings {t̃i}Ti=1 ∈ Rd of each en-
tity obtained in Section 3.3, we obtain the entity
embedding ẽ by

ẽ = Wtfavg({t̃1, t̃2, ..., t̃T }) (8)

where Wt ∈ Rd×dt is a linear transformation, favg
is an average pooling function. Similarly, we feed
all the relations and corresponding paraphrases into
RoBERTa to obtain the relation embedding r̃ by
equation 8.

For simplicity, we follow TransE (Bordes et al.,
2013), combined with a negative sampling strategy
to optimize entity and relation embeddings. TransE
training objective is

LKRL =
∑

(h,r,t)∈S

∑

(h′,r,t′)∈S′
(h,r,t)[

γ + dr(h, t)− dr(h
′
, t

′
)
] (9)

dr(h, t) = ∥h+ r − t∥p (10)

where γ > 0 is a margin hyperparamet, dr is the
scoring function, we take the norm p as 1, and S′ is
the samples obtained by negative sampling. For the
negative sampling strategy, we randomly sample
entity in other HKGs in the same batch to replace
the head entity or tail entity.

3.6 RMSA Layer
Inspired by (Wang et al., 2020a; Shao et al., 2020),
we introduce the relation into Mask Self-Attention
to construct RMSA and combine LM and RMSA
for reasoning.

First, we separately obtain the initial embed-
ding representation E0 = {ẽi}Vi=1 ∈ Rdt and
R0 = {r̃i}Bi=1 ∈ Rdt of all entities and the re-
lations between entities in HKG by Section 3.5.
Here V and B denote the number of entities and
relations, respectively. Then, we apply L-layer
RMSA to update the embedding representations
of entities and relations in HKG. Specifically, the
computation process of the l-th layer RMSA can
be formulated as

α̃l−1 = (El−1W e
q )(E

l−1W e
k +Rl−1W r

k )
⊤ (11)

αl−1 = softmax(α̃l−1/
√
dt +Mhkg) (12)

Ẽl−1 = αl−1(El−1W e
v +Rl−1W r

v ) (13)

El = LayerNorm(Ẽl−1) (14)
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where W e
q , W e

k , W e
v , W r

k and W r
v are trainable

model parameters, Mhkg is the adjacency matrix
of HKG after pruning.

We obtain the HKG graph embedding represen-
tation g̃ by

g̃ = fmax(ẽ
q) (15)

where fmax is maximum pooling function, ẽq is all
question entities embeddings.

3.7 Integrator & Answer Prediction

After L-layer RMSA iteration, we obtain the enti-
ties and relations embeddings in HKG. Then, we
incorporate the path information of HKG into the
QA context by a KG2QA layer and then connect it
with the g̃ to predict the answer.

KG2QA. HKG is composed of multiple paths
X = {x1, x2, ..., xy}, each of which is a sequence
of multiple triples. Same as Lin et al. (2019), we
define the k-th path between the i-th question entity
eqi ∈ Eq and the j-th choice entity ecj ∈ Ec as

Xi,j [k] = [(eqi , r0, t0), ...(tn−1, rn, e
c
j)] (16)

We use GRU to encode X and use the last hidden
layer state as X’s embedding representation X̃ .

Not all paths are helpful for answering questions,
so we dynamically select the appropriate paths by
the relevance between the paths and the QA con-
text. First, we compute the similarity score spq

between the paths and QA context through the co-
sine similarity algorithm. Then, we retain top β%
of the knowledge paths X̃q according to spq. Fi-
nally, we obtain the QA context representation Q̃p

of the fusion paths information by

spq = softmax
(
(q̃W q

q )(X̃
qW p

k )
⊤
)

(17)

Q̂p = LayerNorm(spqX̃
qW p

v + q̃) (18)

Q̃p = favg(Q̂
p) (19)

Here q̃ is the tokens embeddings of the QA context,
W q

q , W p
k and W p

v are trainable model parameters.
Finally, we feed g̃, Q̃p and Q̃q into the MLP to

predict the answer probability.

p = MLP ([g̃; Q̃p; Q̃q]) (20)

Here Q̃q is obtained by averaging the pooling of q̃.

4 Experiment

4.1 Datasets

We evaluate our method on CommonsenseQA (Tal-
mor et al., 2019) and OpenBookQA (Mihaylov
et al., 2018). Given that the test set of Common-
senseQA is not public, we conduct experiments
on the in-house dataset (IHdata) splitted by (Lin
et al., 2019) (specific details of the datasets are in
Appendix B).

4.2 Implementation Details

For the CQA tasks, we use two types of exter-
nal knowledge: knowledge graph and dictionary.
Given a question and choice, we extract at most 100
knowledge paths within two-hops in ConceptNet
(Speer et al., 2017) based on the question key enti-
ties and the choice key entities. We also retrieve the
paraphrases of the key entities in WordNet (Miller,
1995) and Wiktionary. In the experiment, we use
RoBERTa-large (Liu et al., 2019) as the encoder
and Adamw (Loshchilov and Hutter, 2019) as the
model optimizer. For some hyperparameters, we
set the learning rate to 1e-5, the batch size to {4, 5},
the epochs to {3, 6}, RMSA’s layer number L=4,
dynamic pruning threshold µ=0.38, and knowledge
path’s retention rate β=40%. Each model is trained
using one GPU (NVIDIA_A100), which takes 1.5
hours on average.

4.3 Compared Method

We compare with the mainstream RoBERTa-
large+KG methods, including RN (Santoro
et al., 2017), RGCN (Schlichtkrull et al., 2018),
GconAttn (Wang et al., 2019), KagNet (Lin et al.,
2019), MHGRN (Feng et al., 2020), QAGNN
(Yasunaga et al., 2021), JointLK (Sun et al.,
2022), DRGN (Zheng and Kordjamshidi, 2022),
GREASELM (Zhang et al., 2022) and DRAGON
(Yasunaga et al., 2022). Meanwhile, we compare
our method with DESC-KCR (Xu et al., 2021),
which also uses both KG and dictionary types of
knowledge. But since DESC-KCR uses ALBEER-
xxlarge (Lan et al., 2020) as the encoder, we re-
trained the DESC-KCR model in IHdata using
RoBERTa-large (Liu et al., 2019) for a fair compar-
ison.

4.4 Main results

Table 1 and Table 2 give the experimental re-
sults on CommonsenseQA and OpenBookQA. On
both datasets, our method achieves consistent
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Methods IHdev-Acc.(%) IHtest-Acc.(%)
Fine-tuned LMs (w/o KBs) 73.07 (±0.45) 68.69 (±0.56)
+ RGCN 72.69 (±0.19) 68.41 (±0.66)
+ GconAttn 72.61 (±0.39) 68.59 (±0.96)
+ KagNet 73.47 (±0.22) 69.01 (±0.76)
+ RN 74.57 (±0.91) 69.08 (±0.21)
+ MHGRN 74.45 (±0.10) 71.11 (±0.81)
+ QA-GNN 76.54 (±0.21) 73.41 (±0.92)
+ DESC-KCR 78.21(±0.23) 73.78 (±0.39)
+ DGRN 78.20 74.00
+ GREASELM 78.5(±0.5) 74.20(±0.4)
+ JointLK 77.88 (±0.25) 74.43 (±0.83)
+ DRAGON ∗ - 76.00
+ DRAGON (w/o MLM) ∗ - 73.80
+ DHLK (ours) 79.39 (±0.24) 74.68 (±0.26)

Table 1: Performance comparison on Commonsense
QA in-house split. The DRAGON model undergoes
MLM training on the BookCorpus dataset and requires
training on 8 A100 GPUs for 7 days. Meanwhile, our
method outperforms DRAGON when the MLM task is
removed.

Methods RoBERTa AristoRoBERTa
Fine-tuned LMs (w/o KB) 64.80 (±2.37) 78.40 (±1.64)
+ RGCN 62.45 (±1.57) 74.60 (±2.53)
+ GconAttn 64.75 (±1.48) 71.80 (±1.21)
+ RN 65.20 (±1.18) 75.35 (±1.39)
+ MHGRN 66.85 (±1.19) 80.60
+ QAGNN 70.58 (±1.42) 82.77 (±1.56)
+ DESC-KCR ∗ - -
+ DGRN 69.60 84.10
+ GREASELM - 84.80
+ JointLK 70.34 (±0.75) 84.92 (±1.07)
+ DRAGON 72.00 -
+ DRAGON (w/o MLM) 66.40 -
+ DHLK (ours) 72.20 (±0.40) 86.00 (±0.79)

Table 2: Accuracy on the test set of OpenBookQA.
Methods with AristoRoBERTa use the textual evidence
by Clark et al. (2020) as an additional input to the QA
context. DESC-KCR does not provide pre-processed
data from OpenBookQA. Therefore we cannot train the
DESC-KCR model on OpenBookQA.

improvements compared to fine-tuned LM and
other LM+KG methods. On CommonsenseQA,
DHLK improves 6.32% and 5.99% on IHdev and
IHtest compared to fine-tuned RoBERTa, respec-
tively. Compared to other LM+KG methods,
DHLK has also achieved highly competitive re-
sults. (DRAGON further pre-trained on BookCor-
pus, so it outperforms us on IHtest.) Similarly,
our method achieves better experimental results
on OpenBookQA. Compared to the best JointLk
method, our method improves by 1.08%.

In Tables 3 and 4, we also compare with sim-
ilar methods in the leaderboard, and our method
achieves competitive results.

Methods Dev-Acc. (%) Test-Acc.(%)
RoBERTa (Liu et al., 2019) 78.5 72.1
RoBERTa + FreeLB (Zhu et al., 2020) 78.81 72.19
RoBERTa + HyKAS (Ma et al., 2019) 80.1 73.2
RoBERTa + KE 78.7 73.3
Albert (Lan et al., 2020) 80.5 73.5
RoBERTa + KEDGN (ensemble) - 74.4
XLNet + Graph Reasoning (Lv et al., 2020) 79.3 75.3
RoBERTa + MHGRN (Feng et al., 2020) - 75.4
ALBERT + Path Generator (Wang et al., 2020b) 78.42 75.6
RoBERTa + QA-GNN (Yasunaga et al., 2021) - 76.1
Albert (Lan et al., 2020) (ensemble) - 76.5
RoBERTa + JointLK (Sun et al., 2022) - 76.6
RoBERTa + DHLK (ours) 80.85 77.6

Table 3: Performance comparison on Commonsense
QA official leaderboard.

Methods Test-Acc.(%)
Careful Selection (Banerjee et al., 2019) 72.0
AristoRoBERTa 77.8
KF+SIR (Banerjee and Baral, 2020) 80.0
AristoRoBERTa + PG (Wang et al., 2020b) 80.2
AristoRoBERTa + MHGRN (Feng et al., 2020) 80.6
ALBERT + KB 81.0
AristiRoBERTa + QA-GNN (Yasunaga et al., 2021) 82.8
T5 (Raffel et al., 2020) 83.2
AristoRoBERTa + DRGN (Sun et al., 2022) 84.1
AristoRoBERTa + GREASELM (Zhang et al., 2022) 84.8
AristoRoBERTa + JointLK (Sun et al., 2022) 85.6
UnifiedQA(11B)∗ (Khashabi et al., 2020) 87.2
AristoRoBERTa + DHLK (our) 86.8

Table 4: Accuracy on the OpenBookQA leaderboard
test set. All listed methods use the provided science
facts as an additional input to the language context. The
UnifiedQA (11B params) is 30x larger than our model.

5 Analysis

5.1 Ablation Studies

We conduct ablation studies on the Commonsense
IHdev set to further analyze the effectiveness of
each module of DHLK.

Impact of DHLK module. Table 5(a) shows the
experimental results after ablation of each model
of DHLK. Disabling the KG2QA module results
in a performance decrease of 1.24%, showing that
KG2QA can effectively incorporate the paths infor-
mation from HKG into the QA context. Removing
the KRL module results in a 0.83% decrease in the
DHLK’s performance, demonstrating that optimiz-
ing the knowledge representation of HKG by KRL
can improve the reasoning ability of the model.
Removing the dynamic pruning module results in
0.66% decrease of DHLK’s performance, which
proves that there is some unfavorable knowledge in
HKG for model reasoning. After removing the vis-
ible matrix M in the RoBERTa encoding process,
the performance decreases by 3.53%. The reason
is that when M is removed, all tokens are visible to
each other when encoding QA context and concept
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Methods IHdev-Acc.(%)
DHLK 79.61
- KG2QA 78.37
- KRL 78.78
- Dynamic pruning 78.95
- Visual matrix M 76.08
- Paraphrase entities 79.11

(a) Impact of DHLK module

RMSA Layers IHdev-Acc.(%)
L = 2 78.62
L = 3 79.27
L = 4 (final) 79.61
L = 5 79.19
L = 6 78.86

(b) Impact of RMSA layers
Pruning threshold µ IHdev-Acc.(%)
µ = 0.34 77.72
µ = 0.36 78.62
µ = 0.38 (final) 79.61
µ = 0.40 79.36
µ = 0.42 78.95

(c) Impact of HKG pruning threshold

Retention rate β (%) IHdev-Acc.(%)
β = 36 78.70
β = 38 79.44
β = 40 (final) 79.61
β = 42 78.38
β = 44 78.46

(d) Impact of paths retention rate

Table 5: Ablation results on the CommonsenseQA
IHdev set.

entities by RoBERTa, too many concept entities
can change the original meaning of QA context and
also have an impact on dynamic pruning. Finally,
removing paraphrase entities from HKG results in
a 0.5% performance degradation, which is due to
the fact that paraphrase entities can further enhance
the semantic representation of key entities.

Impact of RMSA layers. We further analyze the
effect of the number of RMSA layers on DHLK. As
shown in Table 5(b), the DHLK performance grad-
ually increases as the number of layers increases,
and the best performance is achieved when L = 4.

Impact of pruning threshold and retention
rate. We analyze the thresholds of the dynamic
pruning module and the KG2QA module, respec-
tively (see in Table 5(c) and Table 5(d)). For the
dynamic pruning module, DHLK achieves the best
performance when we remove entities with node-
level attention weights less than 0.38 in the HKG.
Similarly, for the KG2QA module, DHLK achieves
the best performance when we retain the top 40%
of the paths most relevant to the QA context.

(a) HKG constructed based on candidate entities

(b) First-stage pruning based on  dictionary's vocabularies

(c) Second-stage pruning based on LM's attention weights
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Figure 3: A case study on two-stage pruning. The ques-
tion and the corresponding answer are “What furniture
will you normally find near a side chair?” and “table”.
For simplicity, we give only part of the entities in the
figure and remove the paraphrased entities.

5.2 Case study

We analyze the two-stage pruning strategy of
DHLK by a case study. As shown in Figure 3(a),
when we extract the subgraph in ConceptNet based
on the candidate entities, we introduce some unre-
lated entities to the question inevitably. For exam-
ple, “side chair” is a noun phrase and should be con-
sidered as a whole. When it is split into “side” and
“chair”, the “side” has different meanings from it.
Meanwhile, “side” and “chair” also introduce some
irrelevant entities to the current question, such as
“bank”, “top”, “cat”, etc. Therefore, in Figure 3(b)
we introduce the dictionary’s vocabularies to fil-
ter the candidate entities and remove the subwords
that make up the phrase entities, so that some irrel-
evant entities such as “bank”, “top” and “cat” can
be removed when retrieving the subgraph.

We consider the above process as the first-stage
pruning of HKG. However, the subgraph obtained
by this process is static and there are still some
noisy entities in HKG. We think that the entities
that are weakly associated with the QA context
should be removed dynamically in the model in-
ference process. Therefore, as shown in Figure 3
(c), in the second-stage pruning, we dynamically re-
move entities with less relevance to the QA context,
e.g., “wood”, during the model reasoning based on
the LM’s attention weights.

5.3 Error Analysis

To further analyze why our model fails on some
questions. As shown in Appendix C, we randomly
select 50 examples for analysis and classify them
into the following classes.

Inappropriate paraphrases. Some entities
have multiple paraphrases, even though we extract
paraphrases based on entity POS tags in the QA
context and the similarity of each paraphrase to
the QA context, there are still some entities whose
paraphrases are inappropriate. For example, the
paraphrase of “fair” in the first example should be
“(used of hair or skin) pale or light colored”, but the
paraphrase we extracted is “a competitive exhibi-
tion of farm products”, which is inconsistent with
the question in the example.

Indistinguishable knowledge paths. When we
analyze the error examples, we find that some
questions have similar knowledge paths in mul-
tiple choices. In such cases, the model predicts
answers that are also consistent with human com-
monsense. For example, in the second example, the
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“hedgehog” and “porcupine” have similar knowl-
edge paths and the same paraphrase.

Lack of relevant knowledge. Although we use
multiple knowledge sources, there is still much
knowledge that is not covered. In the third exam-
ple, the question is about the content of the self-
referential book written by Kramer. This requires
some knowledge of Kramer’s life to answer, but
we did not retrieve this knowledge in ConcetNet or
the dictionaries.

Incomprehensible questions. When the ques-
tion is too long or rather abstract, the model is diffi-
cult to make correct judgment. The fourth example
asks “The pencil sharpener in the classroom is bro-
ken, and the teacher tells the students where they
should go to find another.”. Although our model
retrieves the correct paths and paraphrases, it lacks
further understanding of the question and cannot
model the current question scenario. The lack of
this ability led to our method’s unsatisfactory re-
sults in answering some complex questions.

6 Conclusions

In this paper, we propose DHLK, a CQA method
based on LM and KRL. Our main innovations in-
clude: (i) Constructing the HKG based on KG and
dictionary, and introducing a two-stage pruning
strategy and KRL to optimize the structure and
knowledge representation of the HKG; (ii) Deeply
fusing the QA context and HKG in the encoding
stage of LM, and designing a KG2QA module to
incorporate the paths information of HKG into the
QA context. The effectiveness of DHLK is demon-
strated via experimental results and analysis on
CommonsenseQA and OpenBookQA.

Limitations

In this section, we will analyze the limitations of
our method. First, we introduce multiple knowl-
edge sources to construct HKG, and encoding this
knowledge through LM consumes more GPU re-
sources. Second, some useful knowledge may be
removed when retrieving knowledge from key enti-
ties optimized by dictionary vocabulary. Then, we
experimentally demonstrate that the paraphrase de-
scriptions are effective in improving the reasoning
ability of the model, but due to resource constraints,
we are unable to incorporate the paraphrases of
all entities into HKG. Finally, our method uses
the simpler TransE algorithm when optimizing the
knowledge representation using KRL due to GPU

constraints, which may not be able to model the
complex relationships in HKG well.
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A Relation types

Table 6 gives all the relation types used in our
method, 19 relations in total. We view all the rela-
tions as undirected in our experiments.

Relations Merged Relation
Antonym

DistinctFrom
Antonym

AtLocation
LocatedNear

AtLocation

CapableOf CapableOf
Causes

CausesDesire
MotivatedByGoal

Causes

CreatedBy CreatedBy
IsA

InstanceOf
DefinedAs

ISA

Desires Desires
HasSubevent

HasFirstSubevent
HasLastSubevent
HasPrerequisite

Entails
MannerOf

HasSubevent

PartOf
HasA

PartOf

HasContext HasContext
HasProperty HasProperty

Madeof Madeof
NotCapableOf NotCapableOf

NotDesires NotDesires
ReceivesAction ReceivesAction

RelatedTo
SimilarTo
Synonym

RelatedTo

UsedFor UsedFor
SameQA SameQA

DefAs DefAs

Table 6: HKG involves relationship types. We follow
the relationship type defined by (Yasunaga et al., 2021)
and add “SameQA” and “DefAS” to it, which represent
the relationship between key entities and the relation-
ship between key entities and paraphrase entities, re-
spectively.

B Details of Datasets

CommonsenseQA is a multiple-choice QA dataset
that requires different types of commonsense
knowledge to answer questions, with each question

Datasets Train Dev Test
CSQA(Official) 9,741 1,221 1,140
CSQA(IHdata) 8,500 1,221 1,241

OBQA 4,957 500 500

Table 7: Statistics of CommonsenseQA (CSQA) and
OpenBookQA (OBQA).

containing one correct choice and four distracting
choices. The dataset has a total of 12,102 ques-
tions.

OpenBookQA is a QA dataset focusing on sci-
entific facts that require a combination of scientific
facts or commonsense knowledge to answer. It con-
tains 5,957 questions, each containing one correct
choice and three distracting choices. We conduct
experiments on the official split dataset.

The statistics for the datasets are shown in Table
7.

C Error types and Examples

Table 8 gives some examples of error analysis.
Each example gives a part knowledge paths and
paraphrase descriptions retrieved in multiple knowl-
edge sources.
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Error type Examples
Question What is another name for the color of the fur of a dog with light colored fur?
Choices ✓ fair | ✕ basket | ✕ dog hair | ✕game | ✕sun

Inappropriate Paths for correct answer color relatedto−−−−−→pale relatedto−−−−−→fair; color isa−−→white relatedto−−−−−→fair; ...

paraphrases Paths for predicted answer fur relateddto−−−−−−→hair; fur relatedto−−−−−→hairball relateddto−−−−−−→hair;fur
partof−−−−→dog

madeof−−−−−→hair; ...
(8/50) Correct paraphrase description fair: (used of hair or skin) pale or light colored.

Inappropriate paraphrase description fair: a competitive exhibition of farm products.
Question What animal has quills all over it?

Indistinguishable Choices ✕ feather | ✕ chicken | ✕ calligraphy | ✕porcupine | ✓ hedgehog
knowledge Paths for correct answer quill

partof−−−−→hedgehog; quill
partof−−−−→porcupine relatedto−−−−−→hedgehog; ...

paths Paths for predicted answer quill
partof−−−−→porcupine; quill

partof−−−−→hedgehog relatedto−−−−−→porcupine; ...
(17/50) Paraphrase description porcupine: relatively large rodents with sharp erectile bristles mingled with the fur.

hedgehog: relatively large rodents with sharp erectile bristles mingled with the fur. ...
Question Kramer wrote a self-referential book. What might that book be about?

Lack of Choices ✕ counter | ✓ coffee table | ✕ school room | ✕ backpack | ✕ bedside table

relevant Paths for correct answer book atlocation−−−−−−→coffee table; book isa−−→magazine relatedto−−−−−→coffee table; ...

knowledge Paths for predicted answer book
partof−−−−→backpack; book atlocation−−−−−−→satchel relatedto−−−−−→backpack; ...

(13/50) Paraphrase description coffee table: low table where magazines can be placed and coffee or cocktails are served.
backpack: a bag carried by a strap on your back or shoulder. ...

Question The pencil sharpener was broken in the classroom, where did the teacher recommend the student go?
Choices ✕ home | ✓ library | ✕ stationery store | ✕ cabinet | ✕ desk drawer

Incomprehensible Paths for correct answer pencil sharpener atlocation−−−−−−→library; pencil sharpener atlocation−−−−−−→desk atlocation−−−−−−→library;

question classroom atlocation−−−−−−→student atlocation−−−−−−→library; ...

(10/50) Paths for predicted answer classroom atlocation−−−−−−→ferret atlocation−−−−−−→home; classroom atlocation−−−−−−→door relatedto−−−−−→home;

classroom atlocation−−−−−−→poet atlocation−−−−−−→home; ...
Paraphrase description classroom: a room in a school where lessons take place.

pencil sharpener: a rotary implement for sharpening the point on pencils. ...

Table 8: Error analyse, we divide the error data into four categories

14061



ACL 2023 Responsible NLP Checklist

A For every submission:
�3 A1. Did you describe the limitations of your work?

In Section 7 Limitations

�3 A2. Did you discuss any potential risks of your work?
In Section 7 Limitations

�3 A3. Do the abstract and introduction summarize the paper’s main claims?
In Section 1

�7 A4. Have you used AI writing assistants when working on this paper?
Left blank.

B �3 Did you use or create scientific artifacts?
In Section 1 and 3

�3 B1. Did you cite the creators of artifacts you used?
In Section 1

� B2. Did you discuss the license or terms for use and / or distribution of any artifacts?
Not applicable. Left blank.

� B3. Did you discuss if your use of existing artifact(s) was consistent with their intended use, provided
that it was specified? For the artifacts you create, do you specify intended use and whether that is
compatible with the original access conditions (in particular, derivatives of data accessed for research
purposes should not be used outside of research contexts)?
Not applicable. Left blank.

� B4. Did you discuss the steps taken to check whether the data that was collected / used contains any
information that names or uniquely identifies individual people or offensive content, and the steps
taken to protect / anonymize it?
Not applicable. Left blank.

� B5. Did you provide documentation of the artifacts, e.g., coverage of domains, languages, and
linguistic phenomena, demographic groups represented, etc.?
Not applicable. Left blank.

�3 B6. Did you report relevant statistics like the number of examples, details of train / test / dev splits,
etc. for the data that you used / created? Even for commonly-used benchmark datasets, include the
number of examples in train / validation / test splits, as these provide necessary context for a reader
to understand experimental results. For example, small differences in accuracy on large test sets may
be significant, while on small test sets they may not be.
Yes, we report the details of the dataset used in Section 4.1.

C �3 Did you run computational experiments?
In Section 4

�3 C1. Did you report the number of parameters in the models used, the total computational budget
(e.g., GPU hours), and computing infrastructure used?
In Section 4.2

The Responsible NLP Checklist used at ACL 2023 is adopted from NAACL 2022, with the addition of a question on AI writing
assistance.

14062

https://2023.aclweb.org/
https://2022.naacl.org/blog/responsible-nlp-research-checklist/
https://2023.aclweb.org/blog/ACL-2023-policy/
https://2023.aclweb.org/blog/ACL-2023-policy/


�3 C2. Did you discuss the experimental setup, including hyperparameter search and best-found
hyperparameter values?
In Section 5.1

�3 C3. Did you report descriptive statistics about your results (e.g., error bars around results, summary
statistics from sets of experiments), and is it transparent whether you are reporting the max, mean,
etc. or just a single run?
In Section 4.4

� C4. If you used existing packages (e.g., for preprocessing, for normalization, or for evaluation), did
you report the implementation, model, and parameter settings used (e.g., NLTK, Spacy, ROUGE,
etc.)?
Not applicable. Left blank.

D �7 Did you use human annotators (e.g., crowdworkers) or research with human participants?
Left blank.

� D1. Did you report the full text of instructions given to participants, including e.g., screenshots,
disclaimers of any risks to participants or annotators, etc.?
No response.

� D2. Did you report information about how you recruited (e.g., crowdsourcing platform, students)
and paid participants, and discuss if such payment is adequate given the participants’ demographic
(e.g., country of residence)?
No response.

� D3. Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? For example, if you collected data via crowdsourcing, did your instructions to
crowdworkers explain how the data would be used?
No response.

� D4. Was the data collection protocol approved (or determined exempt) by an ethics review board?
No response.

� D5. Did you report the basic demographic and geographic characteristics of the annotator population
that is the source of the data?
No response.

14063


