@inproceedings{liscio-etal-2023-text,
title = "What does a Text Classifier Learn about Morality? An Explainable Method for Cross-Domain Comparison of Moral Rhetoric",
author = "Liscio, Enrico and
Araque, Oscar and
Gatti, Lorenzo and
Constantinescu, Ionut and
Jonker, Catholijn and
Kalimeri, Kyriaki and
Murukannaiah, Pradeep Kumar",
editor = "Rogers, Anna and
Boyd-Graber, Jordan and
Okazaki, Naoaki",
booktitle = "Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)",
month = jul,
year = "2023",
address = "Toronto, Canada",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2023.acl-long.789",
doi = "10.18653/v1/2023.acl-long.789",
pages = "14113--14132",
abstract = "Moral rhetoric influences our judgement. Although social scientists recognize moral expression as domain specific, there are no systematic methods for analyzing whether a text classifier learns the domain-specific expression of moral language or not. We propose Tomea, a method to compare a supervised classifier{'}s representation of moral rhetoric across domains. Tomea enables quantitative and qualitative comparisons of moral rhetoric via an interpretable exploration of similarities and differences across moral concepts and domains. We apply Tomea on moral narratives in thirty-five thousand tweets from seven domains. We extensively evaluate the method via a crowd study, a series of cross-domain moral classification comparisons, and a qualitative analysis of cross-domain moral expression.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="liscio-etal-2023-text">
<titleInfo>
<title>What does a Text Classifier Learn about Morality? An Explainable Method for Cross-Domain Comparison of Moral Rhetoric</title>
</titleInfo>
<name type="personal">
<namePart type="given">Enrico</namePart>
<namePart type="family">Liscio</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Oscar</namePart>
<namePart type="family">Araque</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Lorenzo</namePart>
<namePart type="family">Gatti</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ionut</namePart>
<namePart type="family">Constantinescu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Catholijn</namePart>
<namePart type="family">Jonker</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Kyriaki</namePart>
<namePart type="family">Kalimeri</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Pradeep</namePart>
<namePart type="given">Kumar</namePart>
<namePart type="family">Murukannaiah</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2023-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Anna</namePart>
<namePart type="family">Rogers</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jordan</namePart>
<namePart type="family">Boyd-Graber</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Naoaki</namePart>
<namePart type="family">Okazaki</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Toronto, Canada</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Moral rhetoric influences our judgement. Although social scientists recognize moral expression as domain specific, there are no systematic methods for analyzing whether a text classifier learns the domain-specific expression of moral language or not. We propose Tomea, a method to compare a supervised classifier’s representation of moral rhetoric across domains. Tomea enables quantitative and qualitative comparisons of moral rhetoric via an interpretable exploration of similarities and differences across moral concepts and domains. We apply Tomea on moral narratives in thirty-five thousand tweets from seven domains. We extensively evaluate the method via a crowd study, a series of cross-domain moral classification comparisons, and a qualitative analysis of cross-domain moral expression.</abstract>
<identifier type="citekey">liscio-etal-2023-text</identifier>
<identifier type="doi">10.18653/v1/2023.acl-long.789</identifier>
<location>
<url>https://aclanthology.org/2023.acl-long.789</url>
</location>
<part>
<date>2023-07</date>
<extent unit="page">
<start>14113</start>
<end>14132</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T What does a Text Classifier Learn about Morality? An Explainable Method for Cross-Domain Comparison of Moral Rhetoric
%A Liscio, Enrico
%A Araque, Oscar
%A Gatti, Lorenzo
%A Constantinescu, Ionut
%A Jonker, Catholijn
%A Kalimeri, Kyriaki
%A Murukannaiah, Pradeep Kumar
%Y Rogers, Anna
%Y Boyd-Graber, Jordan
%Y Okazaki, Naoaki
%S Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
%D 2023
%8 July
%I Association for Computational Linguistics
%C Toronto, Canada
%F liscio-etal-2023-text
%X Moral rhetoric influences our judgement. Although social scientists recognize moral expression as domain specific, there are no systematic methods for analyzing whether a text classifier learns the domain-specific expression of moral language or not. We propose Tomea, a method to compare a supervised classifier’s representation of moral rhetoric across domains. Tomea enables quantitative and qualitative comparisons of moral rhetoric via an interpretable exploration of similarities and differences across moral concepts and domains. We apply Tomea on moral narratives in thirty-five thousand tweets from seven domains. We extensively evaluate the method via a crowd study, a series of cross-domain moral classification comparisons, and a qualitative analysis of cross-domain moral expression.
%R 10.18653/v1/2023.acl-long.789
%U https://aclanthology.org/2023.acl-long.789
%U https://doi.org/10.18653/v1/2023.acl-long.789
%P 14113-14132
Markdown (Informal)
[What does a Text Classifier Learn about Morality? An Explainable Method for Cross-Domain Comparison of Moral Rhetoric](https://aclanthology.org/2023.acl-long.789) (Liscio et al., ACL 2023)
ACL