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Abstract

Despite the impressive few-shot performance
of in-context learning (ICL), it remains a com-
mon practice to randomly select examples to
serve as the context. In this paper, we advocate
self-adaptive in-context learning, a new princi-
ple for ICL, in which the self-adaption mech-
anism is introduced to help each input find
an in-context example organization (i.e., selec-
tion and permutation) that can derive the cor-
rect output, thus maximizing performance. To
validate the effectiveness of self-adaptive ICL,
we propose a general select-then-rank frame-
work and a set of novel selection and rank-
ing algorithms. Upon extensive evaluation on
eight different NLP datasets, our self-adaptive
ICL method achieves a 40% relative improve-
ment over the common practice setting. Fur-
ther analysis reveals the great potential of self-
adaptive ICL as a promising method to close
the gap between ICL and finetuning. Our code
will be released to facilitate future research.

1 Introduction

The increasing scale of pre-trained language mod-
els (PLMs) has brought emergent abilities (Wei
et al., 2022) via in-context learning (ICL), where
the PLMs learn to do downstream tasks simply by
conditioning on a prompt containing a few exam-
ples of their kinds (Brown et al., 2020a). Due to its
impressive performance, ICL has now emerged as
a popular and efficient way of using PLMs. How-
ever, ICL is inherently unstable: given different
prompts, the performance of ICL on downstream
tasks can vary from almost random to comparable
with state-of-the-art systems (Zhao et al., 2021; Lu
et al., 2022; Gao et al., 2021), depending on the
quality of the prompts.

The instability of ICL motivates researchers to
explore methods that search for high-performing
prompts. Note that a prompt within the context of
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Figure 1: Corpus-level method (red bar) is highly bi-
ased towards majority classes, given 8 in-context ex-
amples labeled as 2 5 4 4 4 1 2 3.

ICL contains two ingredients: some input-output
pairs (i.e., in-context examples) and a template that
wraps these examples into a natural language in-
struction. Extensive research has been carried out
on searching for a better template (Gao et al., 2021;
Shin et al., 2020; Sorensen et al., 2022; Deng et al.,
2022). In contrast, very few efforts have been spent
on searching for the best in-context example or-
ganization. 1 Recent work, however, has pointed
out that the organization of in-context examples
can have a significant influence on ICL’s perfor-
mance (Lu et al., 2022; Liu et al., 2022; Rubin et al.,
2022).

This paper fills this gap by proposing a frame-
work for in-context example searching and rank-
ing. While one can also trivially extend template
searching methods to conduct in-context example
searching, these methods operate at the corpus-
level. They first construct a small candidate tem-
plate set using PLMs (Gao et al., 2021; Shin et al.,
2020), data mining algorithms (Jiang et al., 2020),
or by hands (Sorensen et al., 2022). After that, each

1In this paper, we abuse the word organization to represent
both the selection and ordering of examples.
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candidate will be applied to the whole validation set
for inference. According to validation performance,
the best template will be adapted for testing. How-
ever, existing solutions have the following prob-
lems: (i) Their performance relies heavily on the
availability of a large-scale high-quality validation
set; (ii) Corpus-level methods can be sub-optimal
(see Figure 1) because finding a universal template
that suits all testing samples perfectly is unlikely.
Such majority bias (Zhao et al., 2021) will signif-
icantly hurt user experience in practice and make
corpus-level methods less robust.

To tackle these issues, we seek to construct a
good-performing in-context example organization
for each testing sample individually, without ac-
cess to a validation dataset. This problem, namely
self-adaptive in-context learning, is essentially an
NP-hard combinatorial optimization problem that
cannot be solved within polynomial time. We thus
formulate it as a search problem and propose a gen-
eral two-stage framework to cope with the issue of
massive search space.

In the first stage, we apply heuristic rules
(e.g., nearest neighbors based on semantic simi-
larity) to filter candidate examples. Given a much
smaller candidate set, we then apply algorithms
to rank different organizations and look for the
best-performing one. Our ranking algorithms are
theoretically supported by the Minimal Description
Length (MDL) principle and can shed light on why
certain permutations are better than others.

Our contributions are summarized as follows:

• To the best of our knowledge, we are the first
to formally define the problem of self-adaptive
in-context learning and formulate it as a two-
stage search problem. We propose a general
framework to address this problem.

• We achieve state-of-the-art performance using
the proposed framework and outrun the previ-
ous best-performing methods by a large rela-
tive improvement. We also find that instance-
level ICL methods are generally more robust
than corpus-level counterparts. Such empir-
ical success shows a great promise of self-
adaptive ICL.

• We conduct extensive analysis for self-
adaptive ICL and make some exciting find-
ings. For instance, in Section 6.3 we reveal
that self-adaptive ICL still has much room for
improvement. With better search methods, we

might be able to close the gap between ICL
and finetuning.

• We will open-source the proposed framework
to facilitate future research. This unified
framework enables researchers to identify im-
portant design choices in previous methods
and paves the way for further improvements.

2 Related Work

Despite the surprising zero-shot performance of
PLMs, recent works show that ICL can bring the
performance to the next level. Augmenting PLMs
with ICL achieves SOTA results on a wide range of
NLP tasks, ranging from question answering (Joshi
et al., 2017), information retrieval (Tay et al., 2022),
math word problem (Cobbe et al., 2021), common-
sense reasoning (Geva et al., 2021), and fact check-
ing (Rae et al., 2021) etc. The instability of ICL,
however, has encouraged researchers to explore
methods that search for robust and high-performing
prompts. These methods can be categorized as fol-
lows based on the target of searching/optimization:

Template search focuses on searching for the
template that can guide PLM’s behavior and steer
its best performance. Great advances have been
made in template searching using various methods:
PLMs (Gao et al., 2021), heuristic rules (Jiang et al.,
2020; Shin et al., 2020; Prasad et al., 2022; Xu et al.,
2022), reinforcement learning (Deng et al., 2022),
genetic algorithms (Kumar and Talukdar, 2021),
or by hands (Sorensen et al., 2022; Zhao et al.,
2021). Nonetheless, all these methods require a
high-quality validation set to do prompt selection
or optimization. Unlike them, our framework does
not require a validation set.

When the validation set is not available, re-
searchers propose to search prompts using en-
tropy (Lu et al., 2022) or mutual informa-
tion (Sorensen et al., 2022). It’s worth mentioning
that these two works and all aforementioned meth-
ods search at the corpus-level: they pick the best-
performing template with or without a validation
set and then equally apply this template to all test
examples during inference. However, corpus-level
methods might be sub-optimal. If we consider the
No Free Lunch Theorem, finding one single tem-
plate that works well for all testing examples is
nearly impossible.

In-context example search, unlike template
search, is rarely explored in the literature despite
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that they also have a huge impact on ICL perfor-
mance (Zhao et al., 2021; Lu et al., 2022). Lu
et al. (2022) first propose a learning-free corpus-
level method for in-context example search. How-
ever, they only consider an impractical setting
with only 4 examples and their 24 permutations
(4P4 = 4! = 24). Liu et al. (2022) find examples
that are semantically similar to a test sample can
serve as a good choice for its in-context examples.
However, the reason why such a simple heuristic
works is unclear. Su et al. (2022) extend this near-
est neighbor search and further take the diversity
of examples into consideration. Inspired by these
methods, recent studies propose to learn to retrieve
in-context examples (Rubin et al., 2022).

3 Problem formulation

Given a test sample (x, y), the probability of gen-
erating the target y using a casual PLM P can be
formulated as follows:

p(y|x) = P (V(y)|c, T (x)) , (1)

where T (·) is the template used to wrap up inputs
and c = T (x1), · · · , T (xk) is the context string
concatenating k input-output examples. To deal
with classification tasks, a verbalizer V(·) is intro-
duced to map each label/class y to a word/words
in P’s vocabulary. Note that in a special scenario
when k = 0, ICL degenerates to zero-shot prompt-
ing (Ye et al., 2022; Brown et al., 2020b).

The goal of self-adaptive ICL is then to find an
optimal organization of c ∈ C that can drive the
correct y for each input x, and maximize the task
performance. We formulate this as a combinatorial
optimization problem.

4 Method

In this section, we propose a two-stage framework
to tackle the problem of self-adaptive ICL.

4.1 Overview
In such a combinatorial optimization problem, an
exhaustive search is not tractable. So we need spe-
cialized algorithms that can quickly rule out large
parts of the search space. We present an overview
of our selection-then-rank framework here: We first
use a selection module to reduce the search space.
One straightforward choice for pre-ranking would
be to use nearest-neighbor algorithms to select ex-
amples that are semantically similar to test samples.
The results are then fed into the ranking module,

which picks the best combination and permutation
according to information-theoretic-driven criteria.

4.2 Selection

The goal of selection module is to filter out large
parts of “less useful” examples and construct a
small candidate set to reduce the search space. We
present various selection methods below.

TopK Liu et al. (2022) and Gao et al. (2021) ob-
serve that context examples that are closer to the
test sample in the embedding space consistently
give rise to stronger performance. This observation
leads to the TopK method which uses the nearest
neighbors of a given test sample as the correspond-
ing in-context examples.

VoteK Although ICL was originally proposed for
few-shot settings, they often require a large exam-
ple set to achieve good performance. VoteK (Su
et al., 2022) proposes to alleviate this problem by
selecting diverse yet representative examples. Intu-
itively, VoteK is built upon TopK, but it increases
diversity by penalizing examples similar to those
already selected.

DPP Inspired by VoteK, we also experimented
with the determinantal point process (DPP) based
method, which is proposed for set selection prob-
lems where diversity is preferred. We refer readers
to Kulesza and Taskar (2011) for details of DPP.

4.3 Ranking

With the candidates returned by the selection mod-
ule, the goal of the ranking module is to deter-
mine the best organization among candidates. Our
ranking algorithm is inspired by the compression
viewpoint of Solomonoff’s general theory of infer-
ence (Solomonoff, 1964) and Minimum Descrip-
tion Length (MDL) principle (Grünwald, 2007)
from information theory.

Both Solomonoff’s theory and the MDL formal-
ize Occam’s razor and hold that a good model of
data is a model that is good at losslessly compress-
ing the data, including the cost of describing the
model itself. These theories have led to advances in
VAE (Kingma and Welling, 2013), and information
bottleneck methods (Tishby and Zaslavsky, 2015).
Inspired by the compression viewpoint of learning,
we recast the problem of self-adaptive in-context
learning into a similar paradigm. We assume that
a good organization of in-context examples is the
organization that is good at losslessly compressing
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testing samples. This allows us to give a clear op-
timization objective when searching for the best
organization c∗:

c∗ = argmin
c∈C

Lθ(y|c,x) + L(θ), (2)

where each c represents one possible organization
of examples. Lθ(y|c,x) is the codelength required
to compress and transmit testing label y given the
organization c and testing input x. L(θ) is the code-
length required to describe the model, which can
be ignored during ranking since all organizations
use the same model without parameter updating.
The codelength required for data transmission can
be calculated using Shannon-Huffman code:

Lθ(y|c,x) = −log2 p(y|c,x). (3)

However, since we don’t have access to testing
label y when ranking, the exact computation of
p(y|c,x) is impossible. To tackle this problem, we
propose to compute the expectation of codelength
as the surrogate:

Lθ(y|c,x) ≈ −Eq(yi|Y )log2 p(yi|c,x), (4)

where q(yi|Y ) is the prior of yi among all possible
labels Y . A natural design choice of the prior is
a uniform distribution, given that most datasets
are label-balanced. However, since we focus on
instance-level selection rather than corpus level,
the likelihood p(yi|Y ) can vary significantly given
different samples. We thus model this term using
p(yi|c,x), leading to our final objective:

c∗ = argmin
c∈C

−Ep(yi|c,x)log2 p(yi|c,x). (5)

Now that we have an interpretable metric for
ranking, we can brute-force all possible permuta-
tions to obtain the optimal ranking result. Although
we have significantly reduced the search space us-
ing the selection module, enumerating all organiza-
tions is still infeasible. For instance, if we want to
search for the best organization that contains 8 ex-
amples, even a small candidate set of 10 examples
can result in 1.8 million choices (A8

10). At the cur-
rent stage, we randomly sample 10 permutations
for ranking. We leave it as an interesting future
work to investigate how to approximate the optimal
ranking better.

4.4 Interpretation of Lθ(y|c,x)
Except for the compression viewpoint, we offer
some other interpretations of our method here.

Connection to entropy When we use model con-
fidence p(yi|c,x) as the estimation of q(yi|Y ),
Eq 4 is basically calculating the entropy. Minimiz-
ing entropy is equivalent to searching for in-context
examples that will lead to a skewed probability dis-
tribution. In other words, we are searching for
in-context examples are will make PLMs very con-
fident about its answer. This motivation is exactly
opposite to the Local Entropy(LocalE) metric pro-
posed by Lu et al. (2022), where they search by
maximizing the entropy.

Connection to cross-entropy. Note that in this
paper, we focus on instance level ICL and assume
no validation set is available. However, when we
have a validation set to directly compute p(y|c,x),
Eq 3 is exactly the categorical cross-entropy loss.
Hence, trying to minimize the description length of
the outputs is equivalent to minimizing the usual
classification loss. This reveals why compression
is another viewpoint of learning.

Connection to mutual information. Previous
effort (Blier and Ollivier, 2018) has proved that
the compression is limited by the mutual informa-
tion between inputs and outputs:

H(y)−Eq[L(y | x)] ≤ H(y)−H(y | x) = I(y;x),

where we assume the inputs and outputs follow
the joint distribution q. Based on this finding, any
successful compression of the labels is, at the same
time, a direct estimation of the mutual informa-
tion between input and output. This connects our
method to Sorensen et al. (2022) that selects tem-
plates by maximizing mutual information.

Difference to previous works. Except for the
aforementioned connections and differences, our
method significantly differs from Lu et al. (2022)
and Sorensen et al. (2022) in that we perform
instance-level selection without a validation set.
Trivial extension of previous methods to our setting
is impractical: Lu et al. (2022) requires a validation
set to compute the Global Entropy, while the mu-
tual information is always zero on instance-level
setting according to Sorensen et al. (2022).

5 Experiments

5.1 Evaluation details
We perform experiments across eight different
NLP datasets. Unless otherwise stated, all experi-
ments are conducted using GPT2-XL (1.5B) (Rad-
ford et al., 2019). Our method is denoted as
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TopK+MDL, in which we first use TopK to re-
trieve 30 candidates for each sample and then ran-
domly sample 10 organizations (each with 8 ex-
amples) for ranking using MDL. All models and
datasets are loaded from HuggingFace Hub. Tem-
plates are adopted from Ye et al. (2022); Gao et al.
(2021) and detailed in Table 4. We ran all experi-
ments three times with different random seeds and
reported the average accuracies.

Datasets We consider two sentiment classifica-
tion datasets (Socher et al., 2013): SST-2 and
SST-5, three natural language inference datasets:
SNLI (Bowman et al., 2015), MNLI (Williams
et al., 2017), and QNLI (Wang et al., 2018), one
multi-choice question answering dataset: Common-
sense QA (CMS QA) (Talmor et al., 2019), two
topic classification datasets: TREC (Hovy et al.,
2001) and AgNews (Zhang et al., 2015).

Baselines We compare our framework with three
groups of baselines: prompting, corpus-level meth-
ods, and instance-level methods. Prompting is a
special case of ICL without in-context examples.
For corpus-level methods, we consider two meth-
ods that require a validation set: GlobalIE (Lu
et al., 2022) and Random & Validation, which
picks 10 random organizations for each dataset and
selects the best one according to the validation per-
formance. We also consider validation-free base-
lines: Mutual Information (MI) (Sorensen et al.,
2022) and a Random baseline that randomly initi-
ates one organization for each dataset. For instance-
level methods, we consider TopK+LocalE (Lu
et al., 2022), TopK (Liu et al., 2022) and a Ran-
dom baseline that randomly selects 8 examples for
each testing sample. We further add a Majority
vote baseline that directly performs majority voting
based on 8 examples retrieved by TopK.

Evaluation Strategy Due to the restricted test
set access of some datasets (MNLI, QNLI, and
CMS QA), we hold out a small subset (i.e., 10%)
of the training set for validation for corpus-level
methods, and report results on the validation set.
For PROMPTING and instance-level methods, we
directly evaluate them on the original validation set
when the test set is not available.

5.2 Main Results

From Table 1, we first observe that ICL methods
outperform prompting in most cases. However, we
also note that bad in-context organizations (e.g.,

the random baseline) can hurt performance and
make ICL performs even less well than prompt-
ing on SST-5. These results stress the importance
of correct selection and permutation of in-context
examples.

We first compare our methods with corpus-level
methods. As shown in Table 1, our method shows
consistent and clear superiority over corpus-level
baselines. This result also validates our conjec-
ture that corpus-level methods can be sub-optimal
and self-adaptive in-context examples can signifi-
cantly improve ICL performance. Remarkably, our
method demonstrates a 40% relative improvement
against the common practice in ICL (i.e., the Ran-
dom baseline). Such improvement is encouraging
as it shows that despite the surprising performance
of ICL in many tasks, there is still a large room for
improvement with advanced in-context example
searching techniques.

Our method still registers decent improvements
on most evaluated datasets even when compared
with instance-level baselines. Compared with
TopK+LocalE, our method makes a 17% relative
improvement, this demonstrates the effectiveness
of MDL as a ranking method.

However, we also notice that TopK is a very
competitive baseline to our method. Using seman-
tic search to retrieve examples will result in in-
context examples whose input distribution and la-
bel are quite similar, or even identical, to the testing
sample. This phenomenon leads to our hypothesis
about the surprising effectiveness of TopK. First, as
pointed out by Xie et al. (2021), ICL can be cast as
an implicit Bayesian inference process, where the
PLMs implicitly infer a concept when making the
prediction. Based on this theoretic finding, we de-
duce that semantically similar in-context examples
improve prediction by providing more evidence for
Bayesian inference, especially for topic classifica-
tion tasks like TREC and AgNews. Second, we
conjecture that providing a series of examples with
the same label as the testing sample introduces a
“learning shortcut” for PLMs and biases the results.
We further examine this hypothesis below.

5.3 Impact of label in ICL

To investigate the impact labels have on ICL, we
calculate bias rate. Given a testing sample (x, y)
and its in-context examples, the bias rate represents
the percentage of in-context examples whose label
is identical to y. As shown in Figure 2(a), the bias
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SST-2 SST-5 SNLI MNLI QNLI Trec AgNews CMS QA AVG

Prompting 71.38 29.41 41.23 39.19 50.44 13.8 29.75 39.39 39.32 (52.99%↑)
Corpus-level

Random 73.68 23.88 43.35 39.43 53.19 19.66 36.92 52.66 42.78 (40.41%↑)
Random & Validation 87.86 40.10 49.27 43.26 51.12 32.67 52.01 53.75 51.25 (17.38%↑)
MI (Sorensen et al., 2022) 52.86 35.35 46.02 41.32 50.62 16.00 47.29 52.78 42.85 (40.63%↑)
GlobalE (Lu et al., 2022) 87.27 33.21 46.99 40.46 57.27 28.53 52.01 22.42 49.75 (20.92%↑)

Instance-level

Random 77.17 25.65 43.41 41.17 53.09 18.33 32.71 52.93 43.06 (39.72%↑)
TopK (Liu et al., 2022) 83.91 37.01 57.54 45.72 59.72 40.80 88.89 51.51 58.14 (3.48%↑)
Majority vote 85.34 41.58 52.06 34.38 58.02 51.60 60.91 19.57 50.43 (19.29%↑)
TopK+LocalE (Lu et al., 2022) 67.12 31.65 46.78 41.51 52.66 36.20 81.88 53.07 51.36 (17.17%↑)
Ours (TopK+MDL) 91.51 40.27 58.77 46.56 61.43 42.47 87.94 53.15 60.16

Table 1: Evaluation results. Numbers in bold indicate the highest accuracy among all methods (except Majority
vote). Numbers in the parenthesis represent the relative improvements our method achieved over baselines.
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Figure 2: (a) Impact of the label in ICL. The bias rate reflects the percentage of in-context examples whose label
is identical to the testing sample. (b) Few-shot results on SST2. (c) Few-shot results on SNLI.

rate positively correlates with the performance. We
conduct a more fine-grained exploration by cor-
rupting the label space and breaking the input-label
alignment. We corrupt the labels by exchanging
label words between classes, e.g., exchanging la-
bel words between positive and negative classes
in sentiment classification. As in Figure 2(a), we
observe a clear performance drop with corrupted
labels, which negatively correlates with the bias
rate. These results suggest that in-context exam-
ples’ labels could significantly impact ICL perfor-
mance. Recent debates (Min et al., 2022; Kim
et al., 2022) on the effect of label distribution focus
on corpus-level ICL, and our findings complement
their studies.

6 Analysis

The observed benefits of our method raise the natu-
ral question of why and how it helps and whether
the same performance improvements can be trans-
ferred to other PLMs or prompts. In this section,
we conduct comprehensive experiments and analy-

ses to understand the strength and weaknesses of
our method.

6.1 When a large set of annotated examples
is not available

Despite the surprising performance of ICL, a large-
scale training set is not always available for re-
trieval in practice. To address this concern, we con-
duct experiments under the few-shot setting. We
randomly sample 16, 32, 64, 128, 256, 512, and
1024 examples as the candidates for searching. We
select two representative tasks (SST2 and SNLI)
for evaluation and run each experiment three times
with different random seeds.

As shown in Figure 2(b) and 2(c), our method
consistently outperforms the strong baseline TopK
as in the full-data setting. This demonstrated the
general applicability of our method in both full-data
and few-shot scenarios. We also observe that the
performance steadily increases with the growing
number of annotated examples.
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Figure 3: (a) impact of different selection methods. (b) the accuracy of our ranking method. (c) impact of window
size(number of permutations to be ranked). (d) impact of the number of in-context examples. (e,f) impact of model
scales on Commonsense QA and SST2.

6.2 Impact of selection methods

We conduct most experiments using the popu-
lar TopK method for candidate example selection.
Here we evaluate three other alternatives: random,
DPP and VoteK. Figure 3(a) shows that using TopK
for example selection outperforms all other alterna-
tives on average. However, we also observe that the
superiority of TopK is mainly in simple classifica-
tion tasks with limited label space. On multi-choice
tasks like Commonsense QA, all three alternatives
outperform TopK (right side of Figure 3(a)). Note
that although multi-choice tasks are also classifica-
tion tasks, they have a huge label space like NLG
tasks. The frustration of TopK on multi-choice
tasks suggests that the popular TopK method does
not work well for tasks with large label space and
searching for better selection methods holds im-
mense prospects, and therefore remains an interest-
ing field of further research.

6.3 Accuracy of ranking method

In our ranking module, we randomly select 10 dif-
ferent organizations for each testing sample and
use MDL to select the best-performing one in an
unsupervised manner. Despite the superior perfor-
mance of MDL, the accuracy of using MDL for
in-context example ranking has not been discussed.

Dataset TopK TopK+MDL TopK+LocalE Random

SST-2 0.6861(83.91) 0.6810(91.51) 0.6928(67.12) 0.6918(77.17)
SNLI 1.0981(57.54) 1.0929(58.77) 1.0983(46.78) 1.0974(43.41)
CMS QA 4.9883(51.51) 4.9371(53.15) 4.9692(53.07) 4.9629(52.93)
Trec 5.5618(40.80) 5.4496(42.47) 5.7434(36.20) 5.7859(18.33)

Table 2: Average MDL of each method.

To understand the ranking accuracy of MDL, we
assume a perfect ranking method oracle, which can
always select the organization that leads to correct
prediction if there is any. In the implementation,
we first obtain predictions for all 10 organizations.
If at least one prediction matches the ground truth,
we consider this testing example solvable by ora-
cle. As shown in Figure 3(b), there are significant
performance gaps between oracle and TopK+MDL.
Although such oracle performance only exists theo-
retically, it’s still encouraging to see the enormous
promise of ICL: with better selection and ranking
methods (e.g., supervised methods (Rubin et al.,
2022)), we might be able to bridge the performance
gap between ICL and finetuning.

We investigate the correlation between MDL and
accuracy by selecting four representative datasets
and reporting the MDL of each method. As shown
in Table 2, a smaller MDL generally indicates a
higher accuracy (in the brackets). This validates

1429



the effectiveness of MDL as the criterion for in-
context example searching. It’s also interesting to
see that tasks with lower MDL are generally easier
to learn (as explained in § 4.3), thus ICL has a
better performance.

6.4 Impact of hyperparameter

In this subsection, we investigate how different
hyperparameters affect our performance.

Increasing the window size of our method can
steadily boost performance, by trading effi-
ciency for better performance. We vary win-
dow size (i.e., number of organizations to be ranked
per sample) from 2 to 50, and report the average ac-
curacy. As shown in Figure 3(c), the performance
steadily increases with the window size. We even
observe gains when the window size is two. In par-
ticular, on tasks with short input lengths like SST2,
using a window size of 2 already shows a clear gain
(+3.19 in accuracy) over TopK. However, the im-
provement is achieved by sacrificing efficiency, i.e.,
window size hits 50 means performing forward
passing for the test set 50 times. Together with
findings above, we conclude that we must keep im-
proving the accuracy of ranking methods to achieve
a better efficiency-effectiveness trade-off.

Increasing the number of in-context examples
boosts accuracy for most tasks. We gradually
increase the number of in-context examples (de-
noted as N ) from 0 (prompting) to 32. From Fig-
ure 3(d), we see that increasing N consistently im-
proves the performance on average. We also note
that the random baseline reaches the performance
plateau from N = 8. Such contradictions suggest
that when analyzing the impact of N , the organi-
zation of examples is critical. Sometimes we find
increasing N not helpful because we are not using
the “right” organization. Our results raise an inter-
esting question for future research: can we achieve
finetuning-level performance by using thousands
or even more examples as context?

Larger model size does not guarantee better
performance, but our method can bring consis-
tent improvements over strong baselines. We
use OPT and vary the model size from 350M to
175B. We have a mixed observation that blindly
applying huge models does not always result in the
best performance. For simple tasks like SST2 (see
Figure 3(f)), we reach the performance plateau after
1.3B. And for SNLI, a 30B OPT even outperforms

GPT2-XL (1.5B) BLOOM (1.7B) GPT NEO (1.3B) OPT (1.3B)
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Figure 4: The average performance of TopK and our
method on different PLMs.

the 175B counterpart. Large models are powerful
when dealing with complex tasks like Common-
sense QA. From Figure 3(e), we can see steady
and significant improvement whenever we scale
up the model size. In addition, our method brings
consistent improvements over baselines regardless
of model sizes on all tasks evaluated.

6.5 Robustness

Generability across different PLMs. We ex-
plore how our method generalizes between differ-
ent PLMs. We average our results across datasets
and present the results in Figure 4. On four dif-
ferent PLMs tested, our method consistently and
significantly outperforms the strong TopK baseline.
Overall, we have observed that our method is ro-
bust across various datasets and PLMs.

Generability across different prompts. As sen-
sitivity to prompt engineering is a key weakness
of ICL, we evaluate the robustness of our method
given different templates. We select two repre-
sentative tasks (i.e., SST2 and SNLI) to conduct
experiments, each with three different templates.
As shown in Figure 5, our method is robust given
different prompting templates. But still, the differ-
ences in prompting templates cause large variances
in performance. The findings here motivate a line
of research that simultaneously searches for the
best template and in-context organization, which is
rarely explored in the literature.

7 Conclusion

This paper proposes a new paradigm for ICL: self-
adaptive ICL. Unlike existing efforts that univer-
sally use one single example organization on all
testing samples, we propose a general two-stage
select-then-rank framework to search in-context ex-
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amples at the instance-level. We instantiate this
framework with an information-theory-driven rank-
ing algorithm. Empirical results suggest that self-
adaptive in-context learning can significantly out-
perform the common practice in ICL by a large mar-
gin. We reveal the great potential of self-adaptive
in-context learning and point out several interesting
research problems in method analysis.

8 Limitation

Despite the demonstrated effectiveness of self-
adaptive ICL, this new paradigm suffers from the
following limitations. (I) As we discussed in § 6.4,
due to the large search space, we need to trade
efficiency for effectiveness. So how to balance
the efficiency-effectiveness trade-off is an impor-
tant decision choice to make when deploying self-
adaptive ICL methods. (II) As shown in § 6.1, the
gains of our method shrink when the size of the re-
trieval set gets smaller. To maximize performance,
we require a high-quality retrieval set, which might
not always be available when dealing with unseen
tasks in practice. We also note that both limitations
can be alleviated with better selection and ranking
algorithms.

The remarkable performance of our method
should partially attribute to the powerful TopK se-
lection method, so we also discuss the limitation
of TopK here. Despite its popularity, our analysis
(§ 6.2) reveals that TopK’s effectiveness is limited
to simple NLU tasks with limited label space, and
it does not work well with tasks with large or even
infinite label space (QA, multi-choice, and NLG).
This limitation signals a new direction for ICL re-
search: we need better selection methods to adapt
ICL methods to more tasks.
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A Datasets

Dataset information is detailed in Table 3.

B Impact of hyperparameters

The results of adjusting the number of in-context
examples and window size are shown in Figure 6
and 7, respectively.

C Templates

The templates used in this paper are detailed in
Table 4.
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Figure 5: Results of TopK and our method on SST2
and SNLI, using different prompts.
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Figure 6: Impact of number of in-context examples.
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Figure 7: Evaluation results with different window
sizes (number of permutations to be ranked).
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Task Prompt Class

SST-2
Positive Movie Review: "<X>" Positive
Negative Movie Review: "<X>" Negative

SST-5

"<X>" It is terrible. Very Negative
"<X>" It is bad. Negative
"<X>" It is OK. Neutral
"<X>" It is good. Positive
"<X>" It is great. Very Positive

SNLI & MNLI
<X1>? Yes, <X2> Entailment
<X1>? Maybe, <X2> Neutral
<X1>? No, <X2> Contradiction

QNLI
<C> Can we know <X>? Yes. Entailment
<C> Can we know <X>? No. Contradiction

TREC

"<X>" It is about abbreviation. ABBR
"<X>" It is about entity. ENTY
"<X>" It is about description and abstract concept. DESC
"<X>" It is about human being. HUM
"<X>" It is about location. LOC
"<X>" It is about numeric value. NUM

AgNews

"<X>" It is about world. World
"<X>" It is about sports. Sports
"<X>" It is about business. Business
"<X>" It is about science and technology. Sci/Tech

Commonsense QA

Answer the following question: <X> Answer: <A>. A
Answer the following question: <X> Answer: <B>. B
Answer the following question: <X> Answer: <C>. C
Answer the following question: <X> Answer: <D>. D
Answer the following question: <X> Answer: <E>. E

Table 4: Templates of tasks. Placeholders (e.g., <X> and <A>) will be replaced by real inputs or answers (in
Commonsense QA).
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