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Abstract
The out-of-vocabulary (OOV) words are dif-
ficult to represent while critical to the perfor-
mance of embedding-based downstream mod-
els. Prior OOV word embedding learning
methods failed to model complex word forma-
tion well. In this paper, we propose a novel
graph-based relation mining method, namely
GRM, for OOV word embedding learning. We
first build a Word Relationship Graph (WRG)
based on word formation and associate OOV
words with their semantically relevant words,
which can mine the relational information in-
side word structures. Subsequently, our GRM
can infer high-quality embeddings for OOV
words through passing and aggregating se-
mantic attributes and relational information in
the WRG, regardless of contextual richness.
Extensive experiments demonstrate that our
model significantly outperforms state-of-the-
art baselines on both intrinsic and downstream
tasks when faced with OOV words.

1 Introduction

Pre-trained word embedding models, such as
Word2Vec (Mikolov et al., 2013) and BERT (De-
vlin et al., 2019), can not only boost the perfor-
mance of downstream tasks but also accelerate the
convergence of downstream models (Kuratov and
Arkhipov, 2019; Kao and Lee, 2021). However,
in real-world scenarios, the pre-trained models
trained with generic large-scaled corpora may en-
counter a lot of words never seen before in down-
stream tasks due to domain specificity. These out-
of-vocabulary (OOV) words rarely appear, result-
ing in a scarcity of their contexts, while traditional
word embedding methods require a large number
of contexts to learn high-quality word embeddings
(Herbelot and Baroni, 2017). The OOV words
may cause a dramatic performance degradation in
downstream tasks because of their poor word em-
beddings (Nayak et al., 2020; Schick and Schütze,
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2020; Won et al., 2021), which leads to the OOV
problem. Thus, it is vital to explore an effective
way of learning high-quality OOV word embed-
dings in natural language processing.

Traditional methods for tackling the OOV prob-
lem injected sub-units of words into the training
process of pre-trained word embedding models to
get the sub-unit embeddings and then calculated
the OOV word embedding as a summation of them
(Bojanowski et al., 2017; Cao et al., 2018; De-
vlin et al., 2019). These methods require training
from scratch, which are time consuming. To save
computing resources, two categories of methods
have been proposed. Methods in the first cate-
gory attempted to fully utilize limited contextual
information carried by OOV words directly with-
out modifying the training process of background
models (Garneau et al., 2018; Hu et al., 2019;
Schick and Schütze, 2019). These methods are of-
ten lightweight, but they cannot deal with some
frequently occurring situations where the OOV
words are extremely context-less. To break the
limitation of contexts, methods in the other cat-
egory learned word embeddings for OOV words
through fine-grained sub-units or morphemes to
model word formation implicitly without using
contexts (Pinter et al., 2017; Zhao et al., 2018;
Chen et al., 2022). However, the word forma-
tion can be complex and highly internally struc-
tured (Anderson, 1992), rendering simple simula-
tions cannot represent the word formation well.

In the situation of context absence, it’s mean-
ingful to utilize word formation for OOV words
since most language vocabularies are derived from
the creation of new words on the basis of old ones
(Denison, 1997; Josefsson, Gunlög, 1997). Intu-
itively, humans can guess the meaning of an OOV
word based on its complex word formation and
association with similar words, as shown in Fig-
ure 1. However, the measures of word formation
are varied, and the relationships inside word struc-
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Figure 1: Human learning pattern for a new word.

tures are sophisticated. Taking this into account,
we introduce a Word Relationship Graph (WRG)
to imitate word formation and word association
for better capturing the relational information of
word-internal structure, which logically simulates
human learning habits when facing an OOV word.

In light of these considerations, we propose a
Graph-based Relation Mining (GRM) model on
the basis of WRG to learn embeddings for OOV
words without contexts, which can help mine the
relational information about complex word for-
mation. Our method can also explore additional
semantic information by associating each OOV
word with its relevant words. To achieve these,
we transport and incorporate relational informa-
tion and semantic attributes by Graph Neural Net-
work (GNN). Noteworthy, we use the graph struc-
ture to find more reasonable positive sample pairs
for contrastive learning, forcing every node em-
bedding to be more informative. The contributions
of our work can be summarized as follows:

• We develop a WRG which is built upon the
rules of word formation. The graph structure
can mine the relational information of word-
internal structure and associate OOV words
with semantically relevant words, which is in
line with human study habits.

• We present a generic approach that incor-
porates both relational information and se-
mantic attributes by GNN in word embed-
ding learning. Furthermore, we select ra-
tional positive sample pairs for contrastive
learning by utilizing graph structure.

• Our GRM model achieves state-of-the-art
results on various evaluation metrics and
largely improves the performance of static
and contextual word embedding models on
downstream tasks.

2 Related Work

2.1 Context-based Out-of-vocabulary Word
Embedding Learning

The occurrence of OOV words is often accom-
panied by data scarcity of contexts. Traditional
methods for OOV word embedding learning in-
tegrated the word formation information into the
training process of pre-trained models and they
were trained from scratch (Bojanowski et al.,
2017; Cao et al., 2018; Devlin et al., 2019;
Boukkouri et al., 2020; Sun et al., 2021), which
consumed considerable computational resources
and time costs. To address this problem, some
methods attempted to make full use of the limited
contextual information carried by OOV words,
which is valuable for learning OOV word em-
beddings. Herbelot and Baroni (2017) and Kab-
bach et al. (2019) adopted a high-risk learning rate
strategy, while Hu et al. (2019) took a few-shot
learning pattern to fit the tiny data situation. Be-
sides, some works employed the attention mecha-
nism to emphasize important and informative con-
texts (Garneau et al., 2018; Schick and Schütze,
2019). These methods were often lightweight
since they didn’t modify the training process of
original models. However, in practice, some OOV
words tend to occur in extremely context-less sit-
uations, where these methods are hard to work.
Furthermore, the data scarcity of contexts may in-
troduce noise to the context-based models easily,
which deteriorates their performance.

2.2 Context-free Out-of-vocabulary Word
Embedding Learning

In some cases, the contextual information of OOV
words will be extremely scarce. Context-free ap-
proaches can tackle this problem easily by learn-
ing the word embedding through the OOV word
itself. These methods focused mainly on finding
correlations between word embedding and word
formation. They represented the word form in-
formation through characters (Pinter et al., 2017),
sub-units (Zhao et al., 2018; Zhang et al., 2019;
Sasaki et al., 2019; Fukuda et al., 2020; Chen
et al., 2022), images (Chen et al., 2020a), and
so forth. Generally, word formation is complex
and cannot be simulated by simply cutting words
or imitating the glyph of words. Although these
methods try to implicitly model word formation,
partial information about the relationships inside
the word structures is usually lost.
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3 Proposed Method

Within the existing methods, Mimick (Pinter et al.,
2017) used a lightweight post-processing learn-
ing paradigm, which attempted to mimic the vec-
tor space of a background embedding model for
OOV words and can therefore be applied to dif-
ferent types of embedding models. The mimick
paradigm sought to maximize the similarity be-
tween the inferred embeddings produced by the
OOV word embedding model and the original em-
beddings derived from the background embedding
model. We follow this mimick learning paradigm
to mine the relational information about word for-
mation. Compared to other data structures, graph
structure can model complex data compositions
well. Therefore, we construct a WRG to model
word formation rules and associate other seman-
tically related words. The relational information
and relevant semantic attributes can be transported
and aggregated on WRG by GNN. Besides, we uti-
lize graph structure in the process of positive sam-
ple pairs selection for contrastive learning, which
can provide the flexibility to obtain more reason-
able positive sample words.

3.1 Word Relationship Graph Construction

To better represent word formation rules, we con-
struct a WRG around each OOV word. Firstly, we
tokenize all words into sub-units by WordPiece to-
kenizer (Wu et al., 2016), which allows a sub-unit
to retain its entire semantics in the smallest possi-
ble unit like a morpheme. We denote the sub-units
produced by WordPiece tokenizer as wordpieces
in the following. Then, we connect words with the
corresponding wordpieces. This connected edge
carries position information, which is the position
of the wordpiece in the associated word. Finally,
we construct a two-layer undirected graph around
an OOV word, with its wordpiece in the first layer
and relevant words that have the same wordpiece
in the second layer. In this way, we simulate the
lexical rules of word formation and naturally as-
sociate OOV words with the learned semantic rel-
evant words via common morphemes, which al-
lows us to better model word formation in a hu-
man learning mindset. To make full use of the
graph structure, we treat a word or a wordpiece as
a common node ni in the graph and treat the corre-
sponding node attribute hi ∈ Rd as its embedding,
where d denotes the dimension of embedding. Be-
sides, we add a self-loop to the OOV word node

OOV Words Wordpieces Relevant Words

Wo
rds
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rds

Sample 
by 

iiii

Figure 2: The construction of the WRG.

itself to include its attributes.
After constructing the WRG around each OOV

word, we keep all the nodes in the first layer to
maintain the entire wordpiece information. As for
the second layer, we only sample a fixed number
of nodes for training, because a wordpiece node
with a lot of neighbors may be noisy. For exam-
ple, the morpheme ly mainly plays a syntactic role
instead of having sufficient semantic information.
We therefore set a threshold δsec to limit the num-
ber of neighbor nodes in the second layer, which
also saves training costs and prevents over-fitting.
For simplicity, we just sample the words to leave
in the second layer randomly. We show the WRG
construction in Figure 2, where Ni denotes the set
of neighbor nodes of node ni.

3.2 Model Architecture

To exploit information contained in the WRG, we
choose GNN as the basic learning method. GNN
can transmit the attributes of neighbor nodes to
node ni via the topology structure, which can act
as a low-pass filter to emphasize the connectiv-
ity between nodes in the neighborhood field (NT
and Maehara, 2019). Following the transmission
routes, the attributes of the pre-trained wordpiece
nodes and other in-vocabulary word nodes, as well
as topological information about the relationships
inside the word structures can be fused and passed
to the OOV word nodes. It is worth noting that,
in the construction of WRG, we connect relevant
words with OOV words indirectly via the same
wordpiece nodes rather than directly. Thus, GNN
primarily uncovers and transports the relationship
of word-internal structure.

To extract the most important information and
reduce the impact of noise neighbor nodes, we
choose Graph Attention Network (GAT) (Velick-
ovic et al., 2018) as the backbone in this part,
which can assign different learning weights to dif-

14135



Initialization 

=2

GAT

GAT

Readout Block

MASK

GCN

Figure 3: The architecture of our GRM model.

ferent neighbors according to the attention mecha-
nism. The attention coefficients αij between node
ni and its neighbor nj ∈ Ni is normalized by the
softmax function and can be computed as follows:

eij = a(Whi,Whj). (1)

αij = softmaxj(eij) =
exp(eij)∑

nk∈Ni
exp(eik)

,

(2)
where eij denotes the attention coefficients, a is
a shared attentional mechanism, W is a learn-
able weight matrix of GAT. Noteworthy, the graph
structure will ignore the sequence information of
word formation. To alleviate this problem, we add
the position embeddings PEij of the position in-
formation carried by the link between ni and nj

proposed by Devlin et al. (2019) to the message
passing routes of the basic GAT, as follows:

hli = σ(
∑

nj∈Ni

αij(W
lhl−1

j + PEij)), (3)

where hli ∈ Rd means the hidden embedding of
node ni in layer l, σ(·) denotes the sigmoid ac-
tivation function at the end of each GAT layer.
Then, we can get the node-level representation
hnodei ∈ Rd of node ni by concatenating the ini-
tial input with the hidden embedding of each layer
and fusing them using a fully connected network
FCN(·), which can prevent information loss be-
tween network layers, i.e.,

hnodei = FCN(h0i ⊕ ...⊕ hKi ), (4)

where K means the total number of network lay-
ers. In our model, K = 2, which is consistent with
the number of layers in the WRG.

Initialization for OOV Nodes At the begin-
ning, we need to assign a node attribute to the
corresponding node. The node attributes of in-
vocabulary words or wordpieces are initialized as
their pre-trained embeddings. However, as for the
OOV word nodes, we cannot know their embed-
dings in advance. Assigning random initialization
or all-zero vectors to OOV words may lead to con-
fusion in the attention mechanism, and thus the
performance of the networks will deteriorate. To
avoid that, we represent an OOV word as a set of
characters and get the initial value by character-
level embeddings. Instead of a simple summation,
we use a self-attention network SA(·) (Vaswani
et al., 2017) to emphasize the important charac-
ter components. This operation not only provides
a good initialization for the OOV word nodes but
also replenishes the serialized textual information
of the OOV words. Notably, it provides sufficient
information on word formation even in extreme
cases where splitting words is unfeasible. Given
a series of n characters, {x1, x2, ..., xn}, forming
a matrix Xin = {x1, x2, ..., xn} ∈ Rn×d, the rep-
resentation of the OOV node hoov ∈ Rd can be
computed as follows:

hoov = SA(Xin). (5)

Readout Block At this stage, we can get node-
level representations of all nodes, but it is not
enough to obtain a node-level representation for
modeling word formation. The formation of a
word is composed of its sub-units and the relation-
ships between sub-units and itself. According to
the structure of WRG, the wordpiece nodes in the
first layer and the connections between wordpiece
nodes and OOV word nodes can represent the in-
ternal structure of the OOV word. The graph-level
representation can summarize and represent the
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information of the entire WRG by aggregating the
node-level representation with a readout function.
A simple one-layer Graph Convolutional Network
(GCN) (Kipf and Welling, 2017) can satisfy our
needs for representing word formation. In addi-
tion, based on the theory of Hou et al. (2022),
we mask the OOV word node embedding to force
GCN to uncover deeper relationships with neigh-
boring nodes. The operation in the readout block
can be described as follows:

hgraphi
= σ(

∑

nj∈Ni

1

cij
Wgcnhnodei)), (6)

where hgraphi
∈ Rd means a graph-level represen-

tation of node ni, Wgcn is a learnable weight ma-
trix of GCN, cij is the normalization factor, σ(·)
denotes the sigmoid activation function at the end
of the single GCN layer. Noteworthy, the mask op-
eration in the readout block will not discard all in-
formation of the node-level representation hnode,
since our graph WRG is an undirected one, which
means the information of hnode will be passed to
its neighbors, especially for the wordpiece nodes.
And then in the readout block, this information can
be “reawakened” by a layer of GCN. The complete
GRM model architecture is illustrated in Figure 3.

3.3 Loss Function
Mean square error (MSE), a traditional loss func-
tion, is fragile and prone to over-fitting (Hou et al.,
2022). To avoid this issue, we introduce a con-
trastive learning loss NT-Xent (Chen et al., 2020b)
for the final output, which focuses on two indica-
tors, alignment and uniformity (Wang and Isola,
2020). Alignment makes positive pairs more sim-
ilar, while uniformity spreads word embeddings
out in space. Except for drawing the positive pair

(x, y) closer, we treat the other 2(N − 1) pairs
in the same batch as negative examples and try to
keep a distance from them, where N is the batch
size. The loss can be calculate as follows:

l(x, y) = −log
exp(sim(x, y)/τ)

∑2N
z=1[z �=x] exp(sim(x, z)/τ)

,

(7)
where sim(·, ·) is a function that measures the
similarity between two samples. We choose the
cosine similarity function here. τ denotes a tem-
perature coefficient.

In order to make the node embeddings more se-
mantically informative, we propose a strategy to
select positive sample pair (x, y) through WRG
for contrastive learning. If we take the inferred
embedding hgraphi

of OOV word node ni gen-
erated by GRM as sample x, then sample y can
be the original embedding of the positive sam-
ple word from the background model vocabulary,
which is what we are trying to mimic. The positive
sample word can be selected from the following
three options: (1) The relevant words, namely two-
hop neighbor words of OOV words in the WRG,
since they share the same wordpiece nodes with
OOV words. (2) The synonyms of each OOV
word, which can further improve the learning abil-
ity for semantics. (3) The OOV word itself. The
proportions of these three choices are λrel, λsyn,
and λunc, respectively. We show details about the
selection strategy in Figure 4.

4 Experiments

In this section, we carry out extensive experiments
on several widely-used text datasets varying in
scale to test different methods, which can be cate-
gorized into intrinsic and extrinsic evaluators. Fur-
thermore, we plug GRM into static and contex-
tual word embedding models to show the gains
brought by GRM. Finally, we conduct qualitative
analysis and ablation study on GRM.

4.1 Datasets and Experimental Settings
Datasets We evaluate our work on two types
of intrinsic evaluators: word similarity and word
analogy. For the word similarity task, we fol-
low the setting in Chen et al. (2022) to conduct
evaluations on six benchmark datasets: RareWord
(Luong et al., 2013), SimLex (Hill et al., 2015),
MTurk (Halawi et al., 2012), MEN (Bruni et al.,
2014), Rel353 (Agirre et al., 2009), and simverb
(Agirre et al., 2009). For the word analogy task,
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Model Params
Word Similarity (Spearman’s ρ) Word Analogy (Acc)

RareWord MEN SimLex Rel353 simverb muturk AVG Google
Mimick (2017) 9M 13.29 3.84 -7.25 1.10 -1.95 -0.57 1.41 0.05

BoS (2018) 500M 40.41 48.99 14.32 39.15 15.02 40.22 33.02 39.78
KVQ-FH (2019) 12M 38.91 53.06 8.84 41.12 12.13 46.26 33.39 33.12

LOVE (2022) 9M 38.38 56.00 26.51 43.87 26.65 49.13 40.09 34.27
GRM (Ours) 1.8M 35.57 68.24 24.20 50.40 23.83 58.94 43.53 54.73

Table 1: Overall experimental results of the context-free models on the word similarity and word analogy tasks.

Model Params
Named Entity Recognition (F1-score) POS Tagging (Acc)

CoNLL BC2GM BC4Chemd BC5CDR NCBI UD ARK Ritter
HiCE (2019) 5M 76.69 50.41 62.17 46.93 54.63 88.82 71.14 68.31
AM (2020) 52M 80.57 65.60 75.34 70.63 66.55 92.44 75.29 72.06

Mimick (2017) 9M 66.00 41.41 48.44 56.45 33.09 87.23 65.39 60.28
BoS (2018) 500M 76.72 63.59 60.61 72.84 78.39 92.03 75.22 72.76

KVQ-FH (2019) 12M 54.33 34.26 47.90 46.86 28.50 89.36 67.03 58.57
LOVE (2022) 9M 80.82 64.57 74.80 73.81 63.62 93.39 79.64 76.25
GRM (Ours) 1.8M 83.76 71.41 81.97 83.08 77.81 93.90 85.85 82.89

Table 2: Overall experimental results of GRM and baselines on NER and POS tagging tasks.

we conduct evaluations on the Google benchmark
dataset (Mikolov et al., 2013). And we evalu-
ate our work on two types of extrinsic evaluators:
Named Entity Recognition (NER), and Part-Of-
Speech (POS) tagging. For the NER task, we con-
duct evaluations on five datasets: CoNLL (Sang
and Meulder, 2003) , BC2GM (Smith et al., 2008),
BC4Chemd (Krallinger et al., 2015), BC5CDR
(Wei et al., 2016), and NCBI-DISEASE (Dogan
et al., 2014). For the POS tagging task, we conduct
evaluations on three datasets: Universal Depen-
dencies (UD) scheme version 1.4 (Marneffe et al.,
2014), Twitter POS ARK (Gimpel et al., 2011),
and Ritter POS (Ritter et al., 2011). These datasets
are all English datasets and most of them have high
OOV rates. More details about intrinsic and ex-
trinsic datasets are shown in Appendix A.

Experimental Settings Our GRM model re-
quires tokenizing words to construct the WRG,
and we choose the wordpiece vocabulary from
(Chen et al., 2022). The vocabulary is more fine-
grained than the vocabulary of BERT, which al-
lows us to discover the relationships of word-
internal structure conveniently. We choose a
Word2Vec model trained from a Wikipedia snap-
shot of 2019 as the pre-trained background word
embedding model for the quantitative evaluation
by following a previous work (Kabbach et al.,
2019). And we use synonyms from WordNet1,
which are all in the background vocabulary. For a

1https://wordnet.princeton.edu/

comprehensive and fair comparison, we select two
classes of baseline models, which are all proposed
for OOV word embedding learning. One class
of models don’t need any additional contextual
information for training, including Mimick (Pin-
ter et al., 2017), BoS (Zhao et al., 2018), KVQ-
FH (Sasaki et al., 2019), and LOVE (Chen et al.,
2022). And the other class takes contexts into con-
sideration, including HiCE (Hu et al., 2019) and
AM (Schick and Schütze, 2020). We train these
baseline models according to their published opti-
mal settings. More information about experimen-
tal settings is detailed in Appendix B.

4.2 Quantitative Evaluation
Intrinsic Evaluation Intrinsic evaluators mea-
sure the quality of word embeddings by directly
checking whether the word embedding vectors
match the semantic relationships between words.
The words in the intrinsic datasets have no con-
textual information, we only compare GRM with
the baselines trained without contexts. Table 1
shows all experimental results of intrinsic eval-
uations. The performance of Mimick was lim-
ited because it only considers the information of
characters, which is difficult to find semantic re-
lationships between words. Our model achieved
the best average score and superior results on
most tasks, which demonstrates that GRM can
model word formation better than other context-
free models. But GRM performed slightly worse
on the RareWord, SimLex, and simverb datasets.
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Model
Named Entity Recognition POS Tagging

CoNLL BC2GM BC4Chemd BC5CDR NCBI UD ARK Ritter
ALL OOV ALL OOV ALL OOV ALL OOV ALL OOV ALL OOV ALL OOV ALL OOV

Static Embedding Model
Word2Vec (2013) 61.19 61.40 66.00 70.95 72.48 58.93 77.73 61.23 67.89 63.47 88.51 58.87 70.04 35.63 69.40 33.71

+HiCE (2019) 79.05 79.53 68.67 73.97 77.09 67.56 77.53 61.39 74.68 77.72 91.95 75.65 76.68 53.40 76.08 54.13
+AM (2020) 81.85 82.16 68.50 75.38 78.05 70.08 80.12 69.50 72.61 72.13 93.27 81.20 77.70 54.90 75.99 53.01

+Mimick (2017) 71.53 71.71 69.11 74.71 74.83 64.04 80.31 68.67 70.08 69.65 92.35 76.72 76.43 53.52 76.39 55.66
+BoS (2018) 78.06 78.43 67.61 72.87 77.30 68.29 82.03 72.05 69.75 66.39 92.54 77.74 76.26 52.27 75.47 51.05

+KVQ-FH (2019) 64.50 64.72 66.29 70.41 72.97 59.98 77.80 62.40 66.85 61.36 91.15 69.92 71.55 39.15 70.19 39.16
+LOVE (2022) 81.55 81.84 69.93 75.33 78.51 69.91 81.23 69.82 71.89 71.17 94.11 84.32 81.95 68.14 78.70 61.68
+GRM (Ours) 86.10 86.29 71.48 81.86 82.53 82.02 82.30 65.44 76.48 80.68 94.64 87.25 86.74 79.96 83.59 76.36

Contextual Embedding Model
BERT (2019) 91.18 92.17 87.95 90.20 91.95 92.74 92.23 93.07 91.22 91.77 96.14 74.68 77.84 60.91 71.00 38.20
+HiCE (2019) 88.15 87.82 75.57 79.03 79.94 79.53 75.76 75.72 78.46 79.17 93.92 31.08 58.27 7.69 62.41 5.36
+AM (2020) 93.23 95.95 88.63 92.66 93.06 94.63 92.38 94.44 92.35 94.75 94.92 67.26 71.83 56.59 69.42 29.31

+Mimick (2017) 91.43 93.82 87.63 91.88 91.57 93.38 92.58 94.20 90.25 93.25 94.20 66.36 74.58 51.71 69.73 28.42
+BoS (2018) 92.55 94.94 87.40 91.57 91.29 92.81 92.29 94.19 91.20 93.34 93.37 61.09 69.07 41.46 67.53 28.72

+KVQ-FH (2019) 91.51 93.85 86.46 90.72 90.38 92.02 89.28 91.72 89.08 92.54 92.44 61.15 66.90 37.75 66.65 25.18
+LOVE (2022) 91.87 93.99 87.71 91.77 91.94 93.66 91.55 93.38 90.88 93.31 95.06 70.33 76.68 57.50 71.57 31.54
+GRM (Ours) 93.29 96.00 88.71 92.76 92.84 94.49 93.19 95.04 92.19 94.33 95.34 72.46 78.17 62.12 72.86 35.38

Table 3: The experimental results of extending Word2Vec and BERT to NER and POS tagging tasks. We measure
the performance by F1-score, except reporting accuracy in the background of Word2Vec model.

These datasets provide some superficially unre-
lated but semantically similar word pairs, espe-
cially for the RareWord dataset. Our GRM model
is sensitive to word formation, which leads to
overfitting in these datasets. Notably, our model
outperformed on word analogy tasks due to the
superiority of graph structure, which means GRM
can uncover the semantic relationship information
of word formation.

Extrinsic Evaluation Extrinsic evaluators mea-
sure word embeddings by their performance on the
downstream tasks. Table 2 shows all experimental
results of extrinsic evaluations. The performance
of baseline models was degraded with varying de-
grees in these datasets, because it is hard to under-
stand the meaning of OOV words by contexts for
downstream models in the datasets with high OOV
rates. In contrast, GRM generally performed the
best among these models, even in tasks with high
OOV rates. This verifies the superior quality of
the word embeddings inferred by our model. Be-
sides, our model achieved excellent results even
when compared to models that use context, which
demonstrates that word formation is indeed valid
for learning OOV word embeddings. It’s worth
noting that our model requires the fewest parame-
ters among these models. More details about the
efficiency analysis are described in Appendix E.

4.3 Model Adaptability

To investigate the effectiveness our model brings
to static and contextual models in downstream
tasks, we plug our model into Word2Vec and

BERT respectively. In order to explore the im-
provement of our model on the OOV problem, we
add metrics on OOV words when conducting ex-
periments on NER and POS tagging tasks. It is
easy to extend static word embedding models by
directly adding new words and embeddings into
the background models. We choose the Word2Vec
model mentioned before as the static pre-trained
embedding models. And for the contextual pre-
trained embedding models, we choose the uncased
BERT-base model (Wolf et al., 2020) as the back-
ground model. Note that the word embeddings
in contextual word embedding models are diverse
because of their contextual training method. In-
spired by Chen et al. (2022), we use the whole
words in BERT pre-trained embedding for model
training, and infer reasonable embeddings for the
words which were tokenized into pieces. Besides,
the AM model introduces an one-token approx-
imation (OTA) component to support its appli-
cation in BERT, which represents a sequence of
piece embeddings as an one-token embedding ac-
cording to contexts (Schick and Schütze, 2020).
Obviously, the reason why BERT cannot cope
with the OOV problem is that BERT fails to assign
a reasonable semantic meaning for those words
that are over-divided by general embeddings of
wordpieces (Chen et al., 2022). To prevent the
phenomenon of over-division, we infer embed-
dings for the words that should be segmented and
fed the embeddings into BERT.

Table 3 shows the experimental results of plug-
ging different baseline models. Our GRM model
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Figure 5: Visualization results of word embeddings generated by BoS, LOVE, and GRM on the word analogy task,
where “�” denotes the female word and “©” denotes the male word in the word pair.

brought the most significant improvement over the
tasks with Word2Vec as the background model,
not only in the evaluation of OOV words but also
in the overall metric. This demonstrates the ra-
tionale for learning high-quality OOV word em-
beddings through modeling word formation. Fur-
thermore, the mimic learning paradigm allows us
to augment the Word2Vec model. The perfor-
mance of GRM and AM were comparable on the
NER tasks with BERT as the background model.
However, AM requires initialisation via OTA first,
which consumes additional 6 days of GPU time on
all these datasets. Besides, plugging BERT with
any baseline models led to performance dips on
the POS tagging tasks. GRM improved the perfor-
mance of BERT on some POS tagging tasks, but
slipped on the UD dataset, which has a low OOV
rate. We conjecture this is because if contextual
information is adequate and correct enough, it is
easy to tag POS labels over the OOV words. In
addition, the word division process in BERT will
highlight the syntactic part of words, which also
makes tagging OOV words easier.

4.4 Qualitative Analysis

To better illustrate the quality of word embeddings
inferred by GRM, we select six pairs of words
from the family part of the Google dataset for
the word analogy task and visualize the results
by reducing dimension through t-SNE (van der
Maaten and Hinton, 2008). Due to space limita-
tions, we only show the top three models that work
best on the word analogy task, the rest model re-
sults are represented in Appendix D.1. Figure 5
shows the visualization result of different mod-
els. The results of BoS and LOVE were incon-
sistent with the semantics of the words. Although
they try to model word formation implicitly, they
ignore relational information inside word struc-

tures. Our GRM model achieved the best visual
result, where the word pairs are almost parallel
and uniformly distributed in their linear concate-
nations, with only two word pairs having oppo-
site gender positions. This shows that GRM can
preserve semantic relational information through
graphs, which is consistent with human cognition.
Furthermore, selecting positive sample pairs by
WRG for contrastive learning makes the word em-
beddings more reasonable.

4.5 Ablation Study

In this section, we conduct ablation experiment of
each component in our GRM model to validate
their effectiveness. GRM w/o Readout refers to
the GRM model without the readout block. GRM
w/o mask denotes the GRM model without mask
operations in the readout block. GRM w/o rel-
evant refers to the GRM model having no rele-
vant words in the second layer of the WRG, which
means δsec is set as 0. GRM w/o SA refers to
the GRM model without the initialization part for
OOV nodes. GRM w/o PE denotes that removing
the position embeddings to the message passing
route in the GAT part. GRM w/o data aug means
the GRM model only take the OOV words them-
selves as the option in positive samples selection,
in other words, the value of λunc is set as 1 under
the condition of λsim = λsyn = 0.

Figure 6 shows ablation experimental results in
different tasks, as we can see, the absence of any
component will affect the performance of GRM.
The effect of GRM w/o Readout slipped dramati-
cally on all tasks, which validates the importance
of obtaining a graph-level representation instead
of a node-level one. But it is worth to men-
tion that the quality of the node-level represen-
tation is also convincing, since GRM w/o Read-
out achieved a quite competitive result when com-
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Figure 6: The experimental results of ablation study.

pared to baselines on the NER task. In addi-
tion, the mask operations brought some gains on
word analogy, which illustrates the mask opera-
tion can force GRM model to uncover deeper rela-
tionships inside word structures. The GRM model
without relevant words had a slight dip in per-
formance, which indicates that associating related
words can compensate for some semantic infor-
mation. More results about the threshold δsec set-
tings are presented in Appendix C.1. The perfor-
mance of GRM w/o SA and GRM w/o PE were
slightly lower than the GRM model because the
SA component provides a reasonable initialization
for GRM, while PE makes up some sequential in-
formation lost by graph structure. Besides, the
GRM w/o data aug also caused a drop in perfor-
mance in all tasks, which illustrates the strategy of
utilizing graph structure for positive pairs selec-
tion makes the embeddings more semantically.

5 Model Feasibility for Other Languages

In this section, we discuss the feasibility of our
GRM model to other languages. In the forego-
ing section, we introduced our GRM model that
splits OOV words into wordpieces, then constructs
WRG around OOV words, which can associate
relevant words through wordpieces. Due to the
design of the model, our GRM matches with the
properties of an agglutinative language, such as
Japanese or Korean, which forms words by string-
ing morphemes together directly. Fusional lan-
guage is more difficult to process than agglutina-
tive one because the morphemes are usually linked
together. The language explored in our paper, En-
glish, is a fusional language with some agglutina-
tive properties. It can be observed that GRM per-
forms quite well on the fusional language by rea-
sonable segmentation of words, which indicates

that the application effectiveness of GRM to other
languages depends on the rationality of word de-
composition only. Theoretically, the graph struc-
ture of WRG in GRM can cope with various com-
plex word formations, thus GRM can infer high-
quality embeddings for OOV words though cap-
turing the relational information inside the word
structures and associating other relevant words.

6 Conclusion

In this paper, we present a graph-based method
named GRM for OOV word embedding learning.
We creatively propose to model word formation
through using WRG which can help to mine re-
lationships inside word structures and associate
relevant words. We demonstrate our superior-
ity over baseline models through word similarity,
word analogy, NER, and POS tagging tasks. Be-
sides, our GRM model can be easily incorporated
into static and contextual pre-trained embedding
models, and help them alleviate the OOV problem
effectively. Furthermore, on the qualitative analy-
sis, we observe that GRM can discover the seman-
tic relational information between words, which
validates the ability of GRM to recover relation-
ship information between words. Our code and
supplementary materials are available in public at:
https://github.com/liangzrtvjivo/GRM.

Limitation

The GRM model still has some limitations. Even
though our model brings some performance im-
provement to the contextual word embedding
model (i.e., BERT), this improvement is relatively
small compared to the static model. In some cases,
GRM may hurt the performance of BERT slightly,
because the primary objective of context-based
word embedding models is to infer word mean-
ing from contexts. The approach set forward in
our study enhances their initial input word em-
beddings through word formation, and the bene-
fits brought by this method are modest. How to
efficiently improve the performance of contextual
word embedding models when faced with OOV
words remains to be explored.
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A Dataset Statistics

In this section, we illustrate specific informa-
tion about the intrinsic and extrinsic datasets used
in our experiments. Table A1 shows the num-
ber of word pairs in intrinsic datasets and Ta-
ble A2 shows a summary of extrinsic datasets,
including the size of texts and the rate of OOV
words, in which, the calculation of OOV rates
is based on the Word2Vec model with 397,585
words. For the extrinsic datasets, the CoNLL and
UD datasets are normal and widely-used datasets,
which have some OOV words, while the other
datasets have high OOV rates. The BC2GM,
BC4Chemd, BC5CDR, and NCBI datasets are
biomedical datasets that contain many domain-
special words in the biological field. The ARK
and Ritter datasets are Twitter datasets, for which,
people tend to coin many new words in the Twitter
application.

Datasets RareWord MEN SimLex Rel353 simverb muturk Google
#Word Pairs 2,034 3,000 999 252 3,500 771 19,544

Table A1: Statistics of intrinsic datasets.

B Experimental Settings

In this section, we present more detailed experi-
mental settings about downstream models, word-
piece embeddings, and training details.

B.1 Downstream Models
We use the gensim (Řehůřek and Sojka, 2010)
package for intrinsic tasks. In the situation where
static word embedding models are employed as
background model, we use a convolutional neural
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Datasets #Train #Val #Test
OOV%

word type
CoNLL 14,986 3,466 3,684 32.09% 57.99%
BC2GM 12,574 2,519 5,038 15.68% 55.85%

BC4Chemd 30,682 30,639 26,364 15.03% 63.07%
BC5CDR 4,560 4,581 4,797 12.97% 39.35%

NBCI 5,432 923 940 15.99% 38.25%
UD 12,543 2,002 2,077 17.13% 43.22%

ARK 1,000 327 500 38.95% 53.69%
Ritter 551 118 118 30.51% 62.12%

Table A2: Statistics of extrinsic datasets. The num-
ber associated with each dataset is the number of sen-
tences used for training, validation, or testing. The
word OOV% represents the OOV word rate in each
dataset. The type OOV% represents the OOV word rate
in vocabulary of each dataset.

network (Zhang and Wallace, 2017) for text clas-
sification tasks, a BiLSTM model with one CRF
layer on top (Huang et al., 2015) for NER tasks,
and a two-layer LSTM model (Pinter et al., 2017)
for POS tagging tasks. And in the situation where
contextual word embedding models are employed
as background model, we use BERT (Wolf et al.,
2020) with a CRF layer2 on top for the NER eval-
uation tasks and BERT with a token classification
layer on top (Wolf et al., 2020) for POS tagging
evaluation tasks.

B.2 Pre-training Wordpiece Embeddings

To obtain the pre-trained embeddings of word-
piece nodes, we tokenized the corpus of back-
ground model using WordPiece (Wu et al., 2016)
and put the processed corpus into the skipgram
model (Mikolov et al., 2013) in the case where the
background word embedding model is Word2Vec.
We trained the skipgram model with gensim (ver-
sion 4.1.2) (Řehůřek and Sojka, 2010). The exper-
imental setting of the skipgram model is the same
as the background Word2Vec model. And for
the case where the background word embedding
model is BERT, we directly used the pre-trained
token embedding of BERT as our pre-trained em-
beddings of wordpieces. For the lack of tokens, we
generated them by summing the sub-token embed-
dings to represent their composition.

B.3 Training Details

We use the same background model and synonyms
as our GRM model to train the context-free base-
lines. However, the context-based baselines need
an extra training corpus. HiCE is trained with

2https://pypi.org/project/TorchCRF/

Figure A1: The different results of various δsec in word
analogy and NER tasks.

WikiText-103 (Merity et al., 2017), which is used
in their published experimental setting, while AM
was trained with the Wikipedia snapshot of 2019,
which is the original corpus of Word2Vec. The
embedding dimension of our model depends on
the word embedding dimension of the background
model. Particularly, the embedding dimension of
the Word2Vec background model is 400, and that
of the BERT background model is 768. We con-
duct extensive experiments on several widely-used
text datasets varying in scale to evaluate our work.
All results are reported with a fixed seed.

C Parameter Settings of GRM

In this section, we discuss the influence of param-
eter settings and the selection of parameters.

C.1 Impact of Parameter δsec

We finetune the value of threshold δsec in the sec-
ond layer of WRG to check the influence of word
association. As shown in Figure A1, we can find
that the performance of our GRM model on the
Google dataset and CoNLL dataset gradually en-
hances as the value of δsec increases, and it reaches
the peak when the threshold δsec = 10. That
means, the semantically related words in the sec-
ond layer do provide information for OOV words.
The method utilizing lexical rules to associate rel-
evant words complements the semantic informa-
tion of OOV words. Then the performance de-
creases when the threshold δsec is greater than
10, especially for the CoNLL dataset. This phe-
nomenon proves that with the increase of thresh-
old, some wordpiece nodes that contain less se-
mantic information will include some irrelevant
words, which introduce noise to our GRM model
and have a negative impact on extrinsic evalu-
ations. Notably, the noise introduced by word
nodes in the second layer does not significantly af-
fect the overall performance since GAT can reduce
the influence of noise to some extent.
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Figure A2: Visualization results of word embeddings generated by Mimick and KVQ-FH on the word analogy
task, where “�” denotes the female word and “©” denotes the male word in the word pair.

C.2 Hyper-parameters of GRM

We train the GRM model for 5 epochs in total.
For the other hyper-parameters of GRM, we use
grid search to determine the best value, the result
is shown in Table A3. In the tasks with Word2Vec
as the background model, we train GRM with five
learning rates {5e−3, 3e−3, 1e−3, 8e−4, 5e−4}
and select the best one to report results. And in
the tasks with BERT as the background model, we
train GRM with five learning rates {1e − 3, 8e −
4, 5e−4, 3e−4, 1e−4} and select the best results
to report.

Hyper- Word2Vec-based BERT-based NER BERT-based POS
parameter Range Value Range Value Range Value

|B| [64,128,256] 256 [64,128,256] 128 [64,128,256] 64
λsyn [0.1,0.2,0.3] 0.2 [0.1,0.2,0.3] 0.2 [0.1,0.2,0.3] 0.2
λunc [0.1,0.2,0.3] 0.2 [0.1,0.2,0.3] 0.2 [0.1,0.2,0.3] 0.2

Table A3: Grid search results of all hyper-
parameters in GRM on different background models,
i.e., Word2Vec and BERT. |B| is the batch size of the
GRM model. We fix the values of λrel as 0.7, and ad-
just the values of λsyn and λunc to find the best choice
of positive samples proportions.

D Additional Results

D.1 Qualitative Analysis

Due to the limited space, we provide qualitative
analysis on the rest of baselines (i.e., Mimick and
KVQ-FH) in this section. As shown in Figure A2,
the result of the Mimick model seems to be over-
lapping, but two parallel pairs have opposite dis-
tributions. For example, the gender positions of
“aunt-uncle” and “groom-bride” are opposite. The
result of the KVQ-FH model is apparently incon-
sistent with the word semantics. This demon-
strates that modelling word formation by charac-
ters or sub-units cannot achieve good results in the
word analogy task, because of the lost relationship

information inside word structures.

D.2 Visualization of GAT Weights
As mentioned before, the GAT can emphasis the
most important information and reduce the impact
of noise wordpiece nodes for OOV words. To
illustrate the action of two-layer GAT, we show
an OOV example insulinomimetic chosen from
the BC2GM dataset and visualize the attention
weights on each layer. As shown in Figure A3,
we can find that the insulin wordpiece which con-
tains the most important semantic information is
not assigned a high weight in the first layer, while
the proportion of insulin increased by more than
half in the second layer. Understandably, the OOV
word node insulinomimetic didn’t have a reason-
able embedding yet in the first layer, even though
we provide a better initialization for it using a
self-attention block. It is worth noting that, the
##ic wordpiece accounts for the least part overall,
which means our model can reduce noise caused
by syntactic wordpieces.

insulin ##omi ##met ##ic insulinomimetic

First layer Second layer

Figure A3: A case study of attention weights in differ-
ent layers of GAT.

E Efficiency Analysis

In this section, we demonstrate the running time of
GRM. We train the GRM model for 5 epochs in to-
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tal when the Word2Vec model is taken as the back-
ground word embedding model. The word vo-
cabulary size of the background Word2Vec model
is 397,585. Each epoch consumes 1.8 hours on
a workstation equipped with an Intel(R) Xeon(R)
Silver 4214R CPU @ 2.40GHz and an Nvidia
RTX 1080-Ti GPU. Besides, almost half of the
time is spent on sampling the second layer of
nodes in WRG, which consumes CPU time instead
of GPU time.

14147



ACL 2023 Responsible NLP Checklist

A For every submission:
�3 A1. Did you describe the limitations of your work?

We discuss the limitations of our work in the Limitation section.

�3 A2. Did you discuss any potential risks of your work?
We treat the potential risks as limitations and discuss them in the Limitation section.

�3 A3. Do the abstract and introduction summarize the paper’s main claims?
We summarize the main claims of our work in the Abstract and Introduction sections.

�7 A4. Have you used AI writing assistants when working on this paper?
Left blank.

B �3 Did you use or create scientific artifacts?
We novelly propose a new scientific artifact described in Section 3. And we use some scientific artifacts

in experiments, which are discussed and cited in Section 4.

�3 B1. Did you cite the creators of artifacts you used?
We cite the creators of the used artifacts in Section 4.1.

�7 B2. Did you discuss the license or terms for use and / or distribution of any artifacts?
We will discuss the license or terms of the artifacts in the ReadME file of our code, which will be
released upon publication.

�7 B3. Did you discuss if your use of existing artifact(s) was consistent with their intended use, provided
that it was specified? For the artifacts you create, do you specify intended use and whether that is
compatible with the original access conditions (in particular, derivatives of data accessed for research
purposes should not be used outside of research contexts)?
We will discuss the intended use of the artifacts in the ReadME file of our code, which will be released
upon publication.

�7 B4. Did you discuss the steps taken to check whether the data that was collected / used contains any
information that names or uniquely identifies individual people or offensive content, and the steps
taken to protect / anonymize it?
The datasets we use are all public datasets and there are no relevant sensitive information issues,
thus we didn’t discuss this problem in our work.

�3 B5. Did you provide documentation of the artifacts, e.g., coverage of domains, languages, and
linguistic phenomena, demographic groups represented, etc.?
We report the language and basic information about the artifacts in Section 4, Appendix A, and
Appendix B.1.

�3 B6. Did you report relevant statistics like the number of examples, details of train / test / dev splits,
etc. for the data that you used / created? Even for commonly-used benchmark datasets, include the
number of examples in train / validation / test splits, as these provide necessary context for a reader
to understand experimental results. For example, small differences in accuracy on large test sets may
be significant, while on small test sets they may not be.
We report relevant statistics in detail in Appendix A.

The Responsible NLP Checklist used at ACL 2023 is adopted from NAACL 2022, with the addition of a question on AI writing
assistance.

14148

https://2023.aclweb.org/
https://2022.naacl.org/blog/responsible-nlp-research-checklist/
https://2023.aclweb.org/blog/ACL-2023-policy/
https://2023.aclweb.org/blog/ACL-2023-policy/


C �3 Did you run computational experiments?
We report the setting and results of computational experiments in Section 4, Appendix B, Appendix C,

and Appendix D.

�3 C1. Did you report the number of parameters in the models used, the total computational budget
(e.g., GPU hours), and computing infrastructure used?
We report the number of parameters in the models used in Section 4.2. And we report the details
about the total computational time and the computing infrastructure in Appendix E.

�3 C2. Did you discuss the experimental setup, including hyperparameter search and best-found
hyperparameter values?
We discuss the experiment settings in Section 4.1 and Appendix B. And we discuss the parameter
settings including hyperparameters in Appendix C.

�3 C3. Did you report descriptive statistics about your results (e.g., error bars around results, summary
statistics from sets of experiments), and is it transparent whether you are reporting the max, mean,
etc. or just a single run?
We report summary statistics from sets of experiments in Section 4 and report experimental settings
in Appendix B, which is about the details of reporting results.

�3 C4. If you used existing packages (e.g., for preprocessing, for normalization, or for evaluation), did
you report the implementation, model, and parameter settings used (e.g., NLTK, Spacy, ROUGE,
etc.)?
We report the used existing packages for preprocessing and evaluation in Section 4.1 and Appendix
B.

D �7 Did you use human annotators (e.g., crowdworkers) or research with human participants?
Left blank.

� D1. Did you report the full text of instructions given to participants, including e.g., screenshots,
disclaimers of any risks to participants or annotators, etc.?
No response.

� D2. Did you report information about how you recruited (e.g., crowdsourcing platform, students)
and paid participants, and discuss if such payment is adequate given the participants’ demographic
(e.g., country of residence)?
No response.

� D3. Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? For example, if you collected data via crowdsourcing, did your instructions to
crowdworkers explain how the data would be used?
No response.

� D4. Was the data collection protocol approved (or determined exempt) by an ethics review board?
No response.

� D5. Did you report the basic demographic and geographic characteristics of the annotator population
that is the source of the data?
No response.

14149


