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Abstract

As the representation capability of Pre-trained
Language Models (PLMs) improve, there is
growing concern that they will inherit social
biases from unprocessed corpora. Most pre-
vious debiasing techniques used Counterfac-
tual Data Augmentation (CDA) to balance the
training corpus. However, CDA slightly modi-
fies the original corpus, limiting the representa-
tion distance between different demographic
groups to a narrow range. As a result, the
debiasing model easily fits the differences be-
tween counterfactual pairs, which affects its
debiasing performance with limited text re-
sources. In this paper, we propose an adversar-
ial training-inspired two-stage debiasing model
using Contrastive learning with Continuous
Prompt Augmentation (named CCPA) to mit-
igate social biases in PLMs’ encoding. In
the first stage, we propose a data augmenta-
tion method based on continuous prompt tun-
ing to push farther the representation distance
between sample pairs along different demo-
graphic groups. In the second stage, we utilize
contrastive learning to pull closer the represen-
tation distance between the augmented sample
pairs and then fine-tune PLMs’ parameters to
get debiased encoding. Our approach guides
the model to achieve stronger debiasing perfor-
mance by adding difficulty to the training pro-
cess. Extensive experiments show that CCPA
outperforms baselines in terms of debiasing per-
formance. Meanwhile, experimental results on
the GLUE benchmark show that CCPA retains
the language modeling capability of PLMs.

1 Introduction

Pre-trained Language Models (PLMs) have demon-
strated outstanding performance in recent years and
have been widely used in natural language under-
standing tasks (Peters et al., 2018; Delobelle et al.,
2022). However, the powerful language modeling

∗Corresponding author

PLM

Unaugmented
positive sample pair

New positive 
sample pair

Contrastive 
training

PLM’

Augmented 
positive sample pair

Contrastive 
training

Figure 1: The motivation of CCPA. For the new input
samples, the PLM’s performance of the augmented sam-
ple training is stronger than that of the unaugmented
sample training.

capability enables PLMs to learn good representa-
tions from large-scale training corpora while captur-
ing human-like social biases. Recent studies have
demonstrated that the representations encoded by
PLMs learn social biases specific to demographic
groups (e.g., gender, race, religion) and can be
amplified to downstream tasks, leading to unfair
outcomes and adverse social effects (Zhao et al.,
2019; Webster et al., 2020). As a result, mitigating
social biases in PLMs’ encoding can improve the
fairness of NLP systems significantly (Bolukbasi
et al., 2016; Bender and Friedman, 2018).

Most existing debiasing techniques first need
to construct sample pairs using Counterfactual
Data Augmentation (CDA) (Zmigrod et al., 2019;
Wang et al., 2022) to balance the training cor-
pora. The general approach of CDA is to re-
place the original corpus with attribute words (e.g.,
he/she, man/woman) specific to different demo-
graphic groups. For example, RCDA (Chen et al.,
2021) uses a generator to generate a large number
of antisense sentences and then uses a discriminator
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to evaluate the quality of the original and antisense
samples jointly. FairFil (Cheng et al., 2021) ob-
tains a pair of positive sample sentences by replac-
ing the attribute words in the training corpora with
the antonyms and then uses contrastive learning
to train a filter for debiasing. Auto-Debias (Guo
et al., 2022) uses pairs of attribute words as training
corpora, amplifies the bias between sample pairs
by searching biased prompt texts in the Wikipedia
vocabulary, and then performs semantic alignment
using Jensen-Shannon divergence. These methods
aim to mitigate social biases between different de-
mographic groups by narrowing the representation
distance between sample pairs. However, CDA
slightly modifies the original corpus, limiting the
representation distance between different demo-
graphic groups to a narrow range. As a result, the
debiasing model is easy to overfit the difference be-
tween counterfactual pairs, which affects its learn-
ing ability with limited text resources. As shown
in Figure 1, it is difficult for PLMs to achieve the
ideal debiasing performance for newly input sam-
ples with greater difficulty.

In this work, we propose a two-stage debiasing
method using Contrastive learning with Continuous
Prompt Augmentation (named CCPA) to mitigate
social biases in PLMs’ encoding. Inspired by ad-
versarial training, our approach improves the debi-
asing ability of PLMs by first amplifying and then
attenuating the bias between different demographic
groups. Specifically, we first use CDA to replace
attribute words in the original training corpus to
construct counterfactual pairs corresponding to dif-
ferent demographic groups. In the first stage, we
augment the positive sample pairs with continu-
ous prompt tuning to increase the distance between
them to amplify the biases between different de-
mographic groups. In the second stage, we utilize
contrastive learning to pull the distance between
the positive sample pairs to attenuate the biases
between different demographic groups. CCPA in-
creases the difficulty of model fitting by expanding
the representation space between sample pairs. We
believe that difficult learning experiences make the
model more powerful, thus improving the debias-
ing ability of PLMs training in corpora with limited
resources. Our main contributions are as follows:

• We propose the CCPA debiasing framework
that combines prompt tuning and contrastive
learning to learn a debiased PLM representa-
tion. The PLM’s parameters are fixed in the

first stage, and a generator encoding contin-
uous prompts is trained. In the second stage,
the prompts are fixed, and the PLM’s parame-
ters are fine-tuned using contrastive learning.

• We propose data augmentation using contin-
uous prompts to achieve excellent debiasing
performance using small training data rather
than relying on a large external corpus. Given
that continuous prompts may cause the repre-
sentation distance between sample pairs to be
too far apart, causing the semantic space to de-
grade, we propose constraining the prompt
tuning using the Mahalanobis Distance to
keep the semantic space as stable as possible.

• We train CCPA on several real-world corpora
and mitigate bias on the most common gender
bias. The results on BERT and DistilBERT
show that CCPA is superior to state-of-the-art
models. In addition, we test the downstream
tasks on the GLUE benchmark, and show that
CCPA retains the language modeling capabil-
ity while improving the PLMs’ fairness.

2 Methodology

In this section, we propose the Contrastive learning
with Continuous Prompt Augmentation (CCPA)
framework to mitigate the social bias in the encod-
ing of PLMs specific to the most common gen-
der bias. Our proposed CCPA consists of two
stages: 1) Continuous Prompt Tuning and 2) Fine-
Tuning with Contrastive Learning. The framework
of CCPA is shown in Figure 2.

2.1 Pre-Processing based on CDA
First, we pre-process the training corpus with im-
balanced samples using Counterfactual Data Aug-
mentation (CDA). Given a list of attribute words
specific to gender bias,1 for each attribute word
(e.g., male/female), we match sentences contain-
ing an attribute word in the training corpus. The
attribute word is then replaced with the opposite
word in a different gender direction (e.g., male
is replaced by female), leaving the other words
unchanged. Then, we get the pre-processed train-
ing corpus S = {(s1, s′1), (s2, s′2), · · · , (sN , s′N )}
consists of N counterfactual pairs (si, s

′
i) along

different gender directions.
1We only consider the binary gender direction and use

the same list of gender-specific attribute words as (Bolukbasi
et al., 2016; Liang et al., 2020; Cheng et al., 2021).
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[𝑝𝑝1] [𝑝𝑝2]⋯ [𝑝𝑝𝑚𝑚] ⊕Women always get into situations.

[𝑝𝑝1] [𝑝𝑝2]⋯ [𝑝𝑝𝑚𝑚] ⊕ Men always get into situations.
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⋯
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𝐳𝐳

𝐳𝐳𝐳

𝓛𝓛𝑷𝑷𝑷𝑷 = 𝓛𝓛𝒄𝒄𝒄𝒄𝒄𝒄 + 𝜶𝜶 × 𝓛𝓛𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎

[𝑝𝑝1] [𝑝𝑝2]⋯ [𝑝𝑝𝑚𝑚] ⊕Women always get into situations.

[𝑝𝑝1] [𝑝𝑝2]⋯ [𝑝𝑝𝑚𝑚] ⊕ Men always get into situations.

Prompt Generator
G(•)

⋯

⋯

[𝐡𝐡1] [𝐡𝐡2]⋯ [𝐡𝐡𝑚𝑚]

𝐳𝐳

𝐳𝐳𝐳

𝓛𝓛𝑭𝑭𝑷𝑷 = 𝓛𝓛𝒏𝒏𝒄𝒄𝒏𝒏 + 𝜷𝜷 × 𝓛𝓛𝒎𝒎𝒎𝒎𝒎𝒎

Gradient Descent

Gradient Descent

Stage 1: Continuous Prompt Tuning

Stage 2: Fine-Tuning with Contrastive Learning

--masked token

Figure 2: The overall architecture of CCPA. In the first stage, the parameters of PLM encoder E(·) are fixed and a
prompt generator G(·) encoding the continuous prompts is trained, where the goal is to enlarge the bias of sentence
pairs. In the second stage, the parameters of the prompt generator G(·) are fixed and the parameters of PLM encoder
E(·) are fine-tuned using contrastive loss. Ultimately, we can obtain the debiased PLM encoder E(·).

2.2 Continuous Prompt Tuning

Prompt-based learning is similar to giving instruc-
tions to the model task to guide the model learning
knowledge more directly (Petroni et al., 2019). A
lot of work utilize manually constructed prompts
(Schick and Schütze, 2020, 2021) or automatically
searched discrete prompts (Shin et al., 2020) to
assist language models. However, manually con-
structed templates are heavily based on the de-
signers’ experience and automatically searched
prompts are limited by the search space (Liu et al.,
2021a). Instead of limiting the prompts to hu-
man interpretable natural language, the continuous
prompts (Li and Liang, 2021; Zhong et al., 2021)
guide directly within the embedding space of the
model. Meanwhile, continuous prompts tune their
parameters, removing the constraint of templates
being parameterized by PLMs’ parameters.

Inspired by adversarial training, we believe that
increasing the difficulty of the training process can
guide the model in acquiring a stronger learning
ability. To achieve this goal, we propose a data
augmentation method based on continuous prompt
tuning to further push the differences between coun-
terfactual pairs. Data augmentation method based
on continuous prompt tuning adds difficult informa-
tion to the model by concatenating embeddings that
amplify bias across different demographic groups
over counterfactual pairs.

Given a template T = {[p1], [p2], · · · , [pm],
s}, where s denotes a sentence, [pj ] is a virtual
token represented as [PROMPT ] and m virtual
tokens form a prompt sequence P . For each coun-
terfactual pair (si, s′i) ∈ S obtained by data pre-
processing, we concatenate the same prompt se-
quence P at the head of each sentence (see Fig-
ure 2). The augmented sample pair is denoted by
(ŝi, ŝi

′) and is fed into a PLM to obtain the sentence
representation. Formally, let M denote a PLM
whose encoder E(·) encodes an input sentence ŝi
and outputs a sentence embedding zi = E(ŝi).
Similarly, z′i = E(ŝi

′). In order to obtain con-
tinuous prompt embeddings, we train a generator
G(·) to encode the prompt sequence P . Following
P-Tuning (Liu et al., 2021b), we choose a bidirec-
tional long-short-term memory network (LSTM),
which consists of a two-layer multilayer perceptron
(MLP) and a ReLU activation layer. The embed-
ding hj of each virtual token [pj ] in the prompts
sequence is encoded by G(·) as follows:

hj = G([
−→
hj :
←−
hj ])

= G([LSTM(h1:j) : LSTM(hj:m+1)]).
(1)

Afterwards, we replace the continuous prompt em-
beddings {h1,h2, · · · ,hm} to the corresponding
positions of the sentence embeddings zi to obtain
the sentence representations pairs (zi, z′i).

In this stage, our training objective is to push
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away the distance of representation (zi, z
′
i) be-

tween sample pairs (ŝi, ŝi
′). Briefly, we take the

Cosine Similarity between sentence representations
as the loss function, defined as follows:

Lcos =
z · z′
∥z∥∥z′∥ =

∑n
i=1 zi · z′i√∑n

i=1 z
2
i

√∑n
i=1 z

′2
i

, (2)

where z and z′ denote sentence representations
with different sensitive attributes within a batch of
size n, respectively. The representation distance
between the sample pairs is enlarged with the gra-
dient of similarity decreasing, thus amplifying the
bias information between different genders.

Considering that the sentence representation
with high-dimensional linear distribution is not
independently and equally distributed among the
dimensions, only relying on Euclidean distance
training may cause the sentence representation to
deviate from the original distribution and thus de-
stroy the semantic information. To constrain the
change of sentence representation within the origi-
nal distribution, Mahalanobis distance is taken as
the regularization term of the loss function:

Lmahal =
√
(z− S)⊤Σ−1(z− S), (3)

where z is the representation of a batch size of
samples with concatenated prompt embeddings, S
is the representation of the entire pre-processed
training samples without concatenated prompt em-
beddings, and Σ is the covariance matrix of S. Ma-
halanobis distance is a correction of the Euclidean
distance, which corrects the assumption that the
Euclidean distance is independent and equally dis-
tributed among all dimensions. With the constraint
of Mahalanobis distance, the augmented samples of
each batch can vary within the distribution range of
the original training data to maintain the semantics.

The overall loss function of the continuous
prompt tuning stage is defined as:

LPT = Lcos + α× Lmahal, (4)

where α is a hyperparameter that adjusts the weight
of Lmahal. In the gradient descent process of LPT ,
we only adjust the parameters of the generator G(·)
and fix the PLMs’ parameters to obtain the contin-
uous prompt embeddings that further amplifies the
bias between different sensitive attributes.

Algorithm 1: Proposed CCPA framework.
Input: Pre-processed training corpus S, PLM

encoder E(·), Initial prompt generator G(·),
Prompt template T , Hyperparameter α, β, τ .

1 while stage 1 do
2 Apply T to ∀(si, s′i) ∈ S to obtain (ŝi, ŝ

′
i);

3 Obtain (zi, z
′
i) = (E(ŝi), E(ŝ′i));

4 Replace {h1,h2, · · · ,hm} encoded by G(·) in
the corresponding position in (zi, z

′
i);

5 Calculate Lcos and Lmahal with {(zi, z′i)}ni=1;
6 Update G(·)’s parameters following Equation 4;
7 end
8 while stage 2 do
9 Mask ∀(si, s′i) randomly with a 15% probability;

10 Obtain {(zi, z′i)}ni=1 using E(·) and G(·);
11 Calculate Lnce and Lmlm and update E(·)’s

parameters following Equation 6.
12 end

2.3 Fine-Tuning with Contrastive Learning

We then use contrastive learning to mitigate the
social bias in PLMs’ encoding for different demo-
graphic groups. Contrastive learning (Yang et al.,
2019) is a task-agnostic self-supervision method
that learns data features by minimizing contrastive
loss to maximize the similarity of the representation
vectors of positive sample pairs (Das et al., 2022).
Specifically, we encourage as much consistency as
possible among representations of different sensi-
tive attributes by maximizing the similarity of the
augmented counterfactual pairs. Noise Contrast Es-
timation (Gutmann and Hyvärinen, 2010) is usually
used as a contrastive loss function, given an aug-
mented sample pair of a batch {(ŝi, ŝ′i)}ni=1, which
is defined as follows:

Lnce =
1

n

n∑

i=1

log
esim(zi,z

′
i)/τ

1
n

∑n
j=1 e

sim(zi,zj)/τ
, (5)

where (zi, z
′
i) = (E(ŝi), E(ŝ′i)), τ is a tempera-

ture hyperparameter and sim(·, ·) denotes the simi-
larity function usually using cosine similarity. Dur-
ing training, we only fine-tune the PLMs’ parame-
ters and fix the embedding of continuous prompts.
By maximizing Lnce, differences in the encoding
of PLM outputs specific to different demographic
groups are eliminated, resulting in representations
independent of sensitive attributes.

Considering that the attenuation of biases to-
wards encoding may affect PLMs’ language model-
ing capability, we add a Masking Language Model-
ing (MLM) loss during the fine-tuning stage to aid
PLM training (He et al., 2022). Following previ-
ous work (Devlin et al., 2019), we randomly mask
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tokens in training texts with a 15% probability.2

Our objective is to train the encoder to predict
the masked tokens through contextual semantics,
thereby preserving the language modeling capa-
bility of PLMs. The overall loss function in the
fine-tuning stage is defined as follows:

LFT = Lnce + β × Lmlm, (6)

where β is a hyperparameter that controls the
weight of Lmlm. Our overall algorithm is given
in Algorithm 1.

3 Experiments

In this section, we conduct experiments to evaluate
the performance of CCPA, in order to answer the
following three research questions.

Q1. How effective is CCPA in mitigating social
biases in PLMs’ encoding?

Q2. How does each component affect CCPA?
Q3. Will CCPA preserve the language modeling

capability of PLMs?

3.1 Experimental Setup

3.1.1 Attribute Word List & Datasets
Following (Bolukbasi et al., 2016; Liang et al.,
2020; Cheng et al., 2021; He et al., 2022), our
gender attribute word list is set to:
{MALE, FEMALE}={(man, woman), (boy, girl),
(he, she), (father, mother), (son, daughter), (guy,
gal), (male, female), (his, her), (himself, herself),
(John, Mary)}.

Following (Liang et al., 2020; Cheng et al.,
2021), we select five real-world datasets as the
initial training corpus, which are Stanford Senti-
ment Treebank (Socher et al., 2013), POM (Park
et al., 2014), WikiText-2 (Merity et al., 2017), Red-
dit (Völske et al., 2017) and MELD (Poria et al.,
2019) respectively. We set the maximum sentence
length to 100, and the pre-processed training cor-
pus contained 10,510 sentences.

3.1.2 Baselines & Implementation Details
We select seven recent task-agnostic debiasing
models as baselines. CDA (Zmigrod et al., 2019),
Dropout (Webster et al., 2020), Sent-Debias
(Liang et al., 2020), FairFil (Cheng et al., 2021),
INLP (Ravfogel et al., 2020) and MABEL (He

2In practice, the chosen masked token has an 80% chance
of being masked, a 10% chance of being replaced with another
word, and a 10% chance of remaining unchanged.

et al., 2022) apply counterfactual data augmenta-
tion to sentence-level debiasing, where FairFil and
MABEL adopt the contrastive learning framework
training model. Auto-Debias (Guo et al., 2022) di-
rectly uses the attribute word list and the stereotype
words list as the training corpus.

We perform the main experiments on BERT
(Devlin et al., 2019) and compare CCPA to all
baseline models. We also test debiasing perfor-
mance on DistilBERT (Sanh et al., 2019) and
ELEATRA (Clark et al., 2020). All checkpoints
use bert-base-uncased, distilbert-base-uncased,
and google/electra-base-generator implemented
by Huggingface Transformers library (Wolf et al.,
2020). In the continuous prompt tuning stage, the
learning rate is set to 1e−5, the batch size is set
to 64 and α = 0.005. Following P-Tuning (Liu
et al., 2021b), the virtual tokens template of con-
tinuous prompts is denoted as a triplet with the
length of each element selected on {1, 2, 3}. In the
fine-tuning stage, the learning rate is set to 1e−4.
The batch size is set to 32, β = 1 and τ = 1. We
report the average of the results of three runs over
20 epochs.

To compare the baseline models more fairly, we
apply the same attribute word lists and training
datasets to CDA and Dropout as CCPA. The imple-
mentation codes for CDA, Dropout, Sent-Debias,
and INLP are provided by (Meade et al., 2022),
and the implementation codes for FairFil and Auto-
Debias are provided by the authors. For MABEL,
we report the results from its original paper.

3.2 Evaluation Metrics

We measure debiasing performance using the com-
mon three internal bias evaluation metrics and two
external bias evaluation metrics.

3.2.1 Internal Bias Evaluation Metrics
Sentence Encoder Association Test (SEAT) (May
et al., 2019) uses sentence templates to evaluate the
association between different sensitive attribute de-
mographic and target concepts. Given the attribute
word lists A and B, the target words lists X ,Y .
The results are presented by effect size, defined as:

d =
µ({s(x,A,B)})− µ({s(y,A,B)})

σ({s(t,X ,Y)}t∈A∪B)
, (7)

where x ∈ X and y ∈ Y , µ(·) is the mean function
and σ(·) is the standard deviation. And s(w,A,B)
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Model
Metric

SEAT-6 SEAT-6b SEAT-7 SEAT-7b SEAT-8 SEAT-8b Avg. LM SS ICAT CrowS

BERT 0.932 0.090 -0.124 0.937 0.783 0.858 0.621 84.17 60.28 66.86 57.86
+CDA 0.596 -0.103 -0.236 0.800 0.394 0.734 0.477 85.47 58.69 70.63 55.35
+Dropout 0.912 0.121 0.321 0.857 0.777 0.867 0.642 85.42 60.11 68.16 55.35
+Sent-Debias 0.336 -0.314 -0.624 0.514 0.391 0.436 0.436 85.60 59.05 70.11 42.14
+FairFil 0.683 -0.140 -0.616 0.839 0.049 -0.501 0.471 48.78 46.44 45.31 62.89
+Auto-Debias 0.373 -0.056 0.745 1.175 0.856 0.823 0.671 81.76 57.33 69.78 52.83
+INLP 0.619 -0.226 0.326 0.591 0.430 0.549 0.457 82.69 58.09 69.31 50.94
+MABEL 0.664 0.167 0.479 0.647 0.465 0.570 0.499 84.80 56.92 73.07 50.76
+CCPA (Ours) 0.181 -0.317 0.104 0.633 0.142 0.115 0.249 84.44 56.61 73.28 51.57
DistilBERT 1.380 0.446 -0.179 1.242 0.837 1.217 0.883 84.75 60.52 66.93 59.75
+CCPA (Ours) 0.409 -0.024 0.138 -0.029 -0.029 0.283 0.152 81.91 56.47 71.30 50.31
ELEATRA 0.820 0.036 1.180 1.007 0.782 0.958 0.797 85.12 58.15 71.24 52.83
+CCPA (Ours) 0.251 0.012 0.647 0.437 0.720 0.460 0.421 84.63 52.97 79.61 49.06

Table 1: Gender debiasing results of SEAT, StereoSet, and CrowSPairs on BERT, DistilBERT, and ELEATRA. The
best result is indicated in bold. We report CCPA results with a continuous prompt template (1, 1, 1). The closer the
effect size is to 0 and the closer SS is to 50%, the higher the fairness; the higher the LM and ICAT, the better.

is the bias degree defined as: s(w,A,B) =
µ(cos(w, a))− µ(cos(w, b)).

The gender-specific subsets of SEAT are 6, 6b, 7,
7b, 8, and 8b. We report the effect size of debiasing
models on each subset and the average value of the
absolute value of the six subsets, respectively.
StereoSet (Nadeem et al., 2021) uses the fill-in-the-
blank template to investigate the stereotype associa-
tion of PLM. The Language Modeling Score (LM)
is the percentage of stereotype or anti-stereotype
words selected by the model based on incomplete
contextual sentences. The Stereotype Score (SS) is
the percentage of models that choose stereotypes
over anti-stereotypes. The Idealized Context Asso-
ciation Test (ICAT) is a comprehensive evaluation
index of LM and SS.
Crowdsourced Stereotype Pairs (CrowS-Pairs)
(Nangia et al., 2020) is a dataset containing pairs
of stereotype sentences and anti-stereotype sen-
tences. We report the ratio of mask token probabil-
ities assigned to stereotype sentences rather than
anti-stereotype sentences, denoted using CrowS.

3.2.2 External Bias Evaluation Metrics
Bias-in-Bios (De-Arteaga et al., 2019) is a biogra-
phy dataset in which each sample is labeled with
gender (male or female) and occupation (28 cate-
gories). We fine-tune the debiased model on the
training set with the goal of predicting occupations.
Overall Accuracy result is used to measure task
precision, and individual Accuracy results for male
and female are used to measure gender fairness.
Furthermore, we report the gap between the true
positive rates of the male prediction results and
the female prediction results denotes as GAPTPR,

as well as the root mean square of the true posi-
tive rates difference for each category denotes as
GAPRMS . The closer their score is to 0, the better.
They are defined as follows:

GAPTPR = |TPRM − TPRF |, (8)

GAPRMS =

√
1

|C|
∑

y∈C
(GAPTPR,y)2. (9)

Bias-NLI (Dev et al., 2020) fills gender words and
occupation words with stereotypes into sentence
templates to form sentence pairs, and the training
goal is to inference whether the sentence pair is
neutral or not. It defines three metrics to reflect
the fairness of the model: 1) Net Neutral (NN),
the average probability of neutral labels across all
sentence pairs; 2) Fraction Neutral (FN), the pro-
portion of sentence pairs marked as neutral; 3)
Threshold:τ (T:τ ), The fraction of samples with
neutral probability above τ is reported.

3.3 Debiasing Performance Analysis
3.3.1 Internal Debiasing Results
Table 1 shows the experimental results of three bias
evaluation metrics for CCPA and baseline models
on BERT, DistilBERT, and ELEATRA. We also
report results for biased BERT, DistilBERT, and
ELEATRA as references. The results show that
CCPA achieves a better balance between PLMs’
fairness and language modeling capability than the
baseline models.

For BERT, CCPA reduces the average effect size
from 0.621 to 0.249, increases ICAT from 66.86 to
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Figure 3: T-SNE plots of sentence level representations
encoded by BERT and CCPA. We use target words and
their sentence templates in SEAT.

73.28, and reduces CrowS from 57.86 to 51.57. Our
method has achieved optimal results in the three
test subsets of SEAT 6, 7, 8b and the average ef-
fect size, and has also been greatly improved in the
other test subsets. The results on StereoSet show
that CCPA does not weaken BERT’s language mod-
eling ability but slightly improves it. Although LM
and SS do not achieve optimal results, our com-
prehensive index ICAT is better than other models.
Both FairFil and MABEL are biased by contrastive
learning, but their overall performance is not ideal.
Although FairFil is outstanding in terms of SS per-
formance, it seriously damages BERT’s language
modeling ability, possibly because it only considers
sentence-level representation and does not retain
token-level encoding ability. MABEL achieves
promising results on StereoSet and CrowS-Pairs,
but its SEAT results must be improved. Regarding
overall performance, CCPA outperforms other con-
trastive learning frameworks, demonstrating that
our adversarial training inspired approach can im-
prove the model’s learning ability by increasing the
complex information in the model.

For DistilBERT, CCPA decreases the average
effect size from 0.883 to 0.152 and improves ICAT
from 66.93 to 71.30. Our model gets excellent ex-
perimental results on most test subsets of SEAT and
reaches an almost ideal 50.31% result on CrowS-
Pairs. LM score decreases, and we analyze that the
semantic information of the original representation
is affected by too much debiasing.

For ELEATRA, which does not belong to the
bert-series PLM, the debiasing effect of CCPA is
equally significant, and the experimental results
are fairer than the original ELEATRA on all three
intrinsic metrics. In detail, CCPA reduced the av-
erage effect size from 0.797 to 0.421, increases
ICAT by 8.37% without significantly decreasing
LM score, and reduces CrowS score by 1.89%.

We also perform a small qualitative study by vi-

Model
Acc. Acc. Acc. GAP GAP
(All) (M) (F) TPR RMS

BERT 84.14 84.69 83.50 1.189 0.144
+INLP 70.50 - - - 0.067
+Sent-Debias 83.56 84.10 82.92 1.180 0.144
+FairFil 83.18 83.52 82.78 0.746 0.142
+MABEL 84.85 84.92 84.34 0.599 0.132
+CCPA (Ours) 85.65 85.41 85.95 0.544 0.121

Table 2: Results on Bias-in-Bios. The best result is
indicated in bold. The sub-optimal result is indicated in
underline. ’-’ means not reported.

Model NN FN T:0.5 T:0.7
BERT 0.799 0.879 0.874 0.798
+Sent-Debias 0.793 0.911 0.897 0.788
+FairFil 0.829 0.883 0.846 0.845
+MABEL 0.900 0.977 0.974 0.935
+CCPA (Ours) 0.883 0.932 0.929 0.878

Table 3: Results on Bias-NLI. The best result is indi-
cated in bold. The sub-optimal result is indicated in
underline.

sualizing t-SNE plots of sentence embedding. As
can be seen from Figure 3, in BERT, male attribute
words are more inclined to target words in the tech-
nical field (such as career or science) in the embed-
ded space, while female attribute words are more
inclined to target words in the humanities (such as
family or poetry). After using CCPA to debias, it
is observed that gender-attribute words are pulled
closer together and away from neutral words in the
representational space.

3.3.2 External Debiasing Results

We fine-tune the debiased BERT on two down-
stream tasks Bias-in-Bios and Bias-NLI to verify
the effect of CCPA on external debiasing, and the
results are shown in Tables 2 and 3. All our exper-
imental setups are consistent with MABEL, and
all the results reported in the table for the baseline
models are from MABEL.

On the Bias-in-Bios task as shown in Table 2,
CCPA not only achieves the optimal results on task
accuracy, but also performs the best on all gender
fairness metrics except GAPRMS . Although INLP
obtains the best score on the GAPRMS metric, its
task accuracy is clearly impaired from the reported
results. Compared to all baselines, CCPA achieves
the best overall debiasing performance while pre-
serving the model’s prediction performance on
downstream tasks.

On the Bias-NLI task as shown in Table 3, CCPA
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BERT+ SEAT-6 SEAT-6b SEAT-7 SEAT-7b SEAT-8 SEAT-8b Avg. LM SS ICAT CrowS

T(1,1,1)

CCPA 0.181 -0.317 0.104 0.633 0.142 0.115 0.249 84.44 56.61 73.28 51.57
CCPA− -0.198 -0.100 -0.162 -0.309 0.535 0.243 0.258 79.34 57.31 67.75 47.17
CCPA∗ 0.044 -0.295 -0.340 0.425 -0.400 0.091 0.266 78.94 56.13 69.26 50.31

T(2,2,2)

CCPA 0.126 -0.135 -0.379 0.144 0.416 0.056 0.209 82.40 55.36 73.56 51.57
CCPA− 0.264 0.065 -0.372 0.127 0.150 0.481 0.243 79.23 57.44 67.44 48.43
CCPA∗ 0.0918 -0.178 0.509 0.311 0.144 0.271 0.251 79.84 54.94 71.95 50.94

T(3,3,3)

CCPA 0.034 -0.006 0.193 0.278 -0.189 0.346 0.174 82.62 54.80 74.68 49.06
CCPA− 0.149 0.037 -0.826 -0.106 -0.124 -0.303 0.258 79.18 59.63 63.92 43.40
CCPA∗ 0.119 -0.131 -0.334 0.225 -0.098 -0.365 0.212 79.95 56.93 68.87 50.94

NOprompt 0.325 0.186 0.342 0.535 0.144 0.553 0.347 81.32 54.82 73.48 60.38
NOprompt+mask 0.730 -0.012 -0.185 -0.530 0.927 -0.158 0.424 61.85 53.98 56.92 34.59

Table 4: Gender debiasing results of SEAT, StereoSet and CrowSPairs on BERT. The best result is indicated in bold.
The closer the effect size is to 0 and the closer SS is to 50%, the better; the higher the LM and ICAT, the better.

achieves sub-optimal results on all the metrics. It is
worth stating that MABEL is a debiasing method
trained on the NLI task, which we analyze as the
main reason for its most outstanding performance.
Even so, the strong debiasing effect shown by
CCPA on task Bias-NLI is heartening.

The results of the internal debiasing experi-
ment and the external debiasing experiment show
that our proposed CCPA has outstanding perfor-
mance in mitigating gender bias in PLMs’ encod-
ing. CCPA has an efficient debiasing performance,
which answers the first question (Q1) proposed at
the beginning of this section.

3.4 Ablation Analysis

We conduct ablation experiments on BERT to in-
vestigate how each component affects CCPA per-
formance. The results are shown in Table 4.
T(1,1,1) indicates that the continuous prompt tem-

plate is a triplet with one virtual token for each ele-
ment, i.e., the length of prompts is 3. By analogy,
T(2,2,2) and T(3,3,3) represent prompt templates of
lengths 6 and 9. The purpose of this setting is to
make it easier to observe the effect of the prompts’
length on the model. In the experimental group of
each template, we compare three versions of CCPA:
the original CCPA, the version without Lmlm repre-
sented as CCPA− and the version without Lmahal

represented as CCPA∗. In addition, we have ex-
perimented with both CCPA without prompts and
CCPA without prompts and Lmlm.

It is observed from the experimental results that
the debiasing ability of CCPA increases with the
rise of the template’s length. This indicates that
longer continuous prompt embeddings bring more
difficult information to the model, thus increasing
the debiasing effort. However, more extended tem-
plates can cause the original sentence semantics to

be broken and thus weaken PLM’s language mod-
eling capability. In each experimental group, both
CCPA− and CCPA∗ show a decrease in the results
of the three evaluation metrics compared to CCPA.
This phenomenon verifies that both MLM-assisted
loss and Mahalanobis distance constraint benefit
CCPA. Overall, MLM has a greater influence, es-
pecially on SS and CrowS, which may be because
random mask tokens train encoders to retain token-
level semantic information.

In addition, the results of NOprompt verify
that continuous prompts play an essential role in
CCPA. NOprompt+mask tests the effect of fine-
tuning PLMs based solely on contrastive learn-
ing. Unsurprisingly, the performance on all in-
dexes could be better. The results of NOprompt and
NOprompt+mask again reflect our method’s effec-
tiveness. The ablation studies answer our second
question (Q2) by exploring the role played by each
component of the CCPA.

3.5 Language Modeling Capability Analysis

We perform experiments on nine natural language
understanding tasks of the GLUE benchmark to
verify the language modeling capability of CCPA
on downstream tasks. In task-specific fine-tuning,
we set the learning rate to 2e− 5 and the batch size
to 32 for all models.

As in Table 5, CCPA’s performance in 9 tasks is
comparable to that of the original BERT, and the
average results are almost equivalent to BERT’s.
CCPA also shows similar performance on Distil-
BERT, indicating that our model is effective on
other models besides BERT. Combined with the
LM score in Table 1, the experiment shows that
CCPA can debias without damaging the language
modeling capability of PLMs, thus answering the
third research question (Q3).
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Model CoLA MNLI MRPC QNLI QQP RTE SST STS-B WNLI Average
BERT 56.78 84.76 89.54 91.51 88.06 64.62 93.35 88.24 56.34 79.24
+CDA 2.07 84.84 81.22 84.84 87.85 47.29 92.32 40.83 43.66 62.77
+Dropout 2.07 84.78 81.22 91.49 88.02 47.29 92.09 40.87 43.66 63.50
+Sent-Debias 55.72 84.94 88.81 91.54 87.88 63.90 93.12 88.23 56.34 78.94
+FairFil 55.72 84.85 88.33 91.84 87.43 64.98 93.12 88.55 50.7 78.39
+Auto-Debias 57.01 84.91 88.54 91.65 87.92 64.62 92.89 88.43 40.85 77.42
+INLP 56.50 84.78 89.23 91.38 87.94 65.34 92.66 88.73 54.93 79.05
+MABEL 57.80 84.50 85.00 91.60 88.10 64.30 92.20 89.20 - 81.59
+CCPA 55.91 84.73 88.65 91.42 87.98 64.93 93.09 88.44 55.66 78.98
DistilBERT 47.93 82.01 88.47 88.61 86 68 58.84 90.71 86.26 56.34 76.21
+CCPA 46.73 82.53 86.99 87.76 86.85 56.26 90.83 85.89 55.93 75.53

Table 5: Experimental results of GLUE tasks on BERT and DistilBERT. We report Matthew’s correlation for CoLA,
the Spearman correlation for STS-B, and the F1 score for MRPC and QQP. Other tasks are reported for the accuracy.
The best result is indicated in bold. ’-’ means not reported in MABEL.

4 Related Work

We divide debiasing methods into two categories
based on the debiasing strategy: task-specific meth-
ods and task-agnostic methods.

4.1 Task-Specific Methods

Task-specific methods adopt the strategy of debi-
asing in the fine-tuning stage of the downstream
task, of which the downstream task is known (Han
et al., 2021; Chi et al., 2022). One representative
work is INLP (Ravfogel et al., 2020, 2022), which
repeatedly trains a linear classifier that predicts the
target concept, and then projects the representation
into the null space of the classifier’s weight ma-
trix to remove the representation bias. Contrastive
learning is proposed to mitigate bias in classifier
training (Shen et al., 2021). It encourages instances
sharing the same class labels to have similar repre-
sentations while ensuring that protected attributes
have different distributions. These methods use
attribute words to label training data without CDA.
However, they are biased towards specific down-
stream tasks and cannot be applied to other tasks in
general. When training data change, task-specific
methods are difficult to transfer to new tasks.

4.2 Task-Agnostic Methods

Task-agnostic methods adopt the strategy of de-
biasing representation or processing unbalanced
data before the downstream task, and they can be
applied to any downstream task (Dev et al., 2020,
2021). Most of these methods apply counterfactual
data augmentation to augment the unbalanced cor-
pus and then debias the augmented text information.
Counterfactual data augmentation (Lu et al., 2020)
is a general approach to augment corpora through

causal intervention and has since been widely used
to mitigate social biases. Different variants of coun-
terfactual data augmentation have been proposed,
such as Sent-Debias (Liang et al., 2020), FairFil
(Cheng et al., 2021), MABEL (He et al., 2022), to
name a few examples.

Task-agnostic methods primarily use the CDA to
balance the training corpus by constructing coun-
terfactual pairs specific to different demographic
groups. However, simply applying CDA to the orig-
inal corpus makes minor changes, constraining the
representation space to a narrow range. This makes
the model easily fit the differences between coun-
terfactual pairs, weakening the debiasing ability.
Unlike existing CDA methods, we train a generator
that encodes continuous prompts before fine-tuning
PLM. The goal is to widen the representation dis-
tance between different groups to increase the diffi-
culty of the model-learning process.

5 Conclusions

Inspired by adversarial training, we propose CCPA,
a two-stage debiasing model that combines con-
trastive learning with continuous prompts. In the
continuous prompt tuning stage, we train a gener-
ator encoding continuous prompt embeddings to
increase the representative distance between coun-
terfactual pairs. In the fine-tuning stage, we use
contrastive learning to reduce the representation
distance between the augmented sample pairs. By
increasing the difficulty of the training process,
CCPA enables PLMs to learn a stronger debias-
ing ability. Extensive experiments on BERT and
DistilBERT show that CCPA effectively reduces
social bias in PLM representation while retaining
language modeling capability.
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Limitations

In this work, we focus on debiasing the gender bias
for PLMs. In the future, we will try to mitigate
social biases other than gender, such as race and
religion. In addition, we also plan to extend our
debiasing method to more language models, such
as Natural Language Generation (NLG) models.
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