
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics
Volume 1: Long Papers, pages 14354–14366

July 9-14, 2023 ©2023 Association for Computational Linguistics

PAD-Net: An Efficient Framework for Dynamic Networks

Shwai He1 Liang Ding2∗ Daize Dong3 Boan Liu4 Fuqiang Yu5 Dacheng Tao2

1University of Maryland, College Park 2The University of Sydney
3University of Electronic Science and Technology of China

4Wuhan University 5Shandong University
shwaihe@umd.edu, liangding.liam@gmail.com

Abstract

Dynamic networks, e.g., Dynamic Convolu-
tion (DY-Conv) and the Mixture of Experts
(MoE), have been extensively explored as they
can considerably improve the model’s repre-
sentation power with acceptable computational
cost. The common practice in implementing
dynamic networks is to convert the given static
layers into fully dynamic ones where all pa-
rameters are dynamic (at least within a single
layer) and vary with the input. However, such
a fully dynamic setting may cause redundant
parameters and high deployment costs, limit-
ing the applicability of dynamic networks to
a broader range of tasks and models. The
main contributions of our work are challeng-
ing the basic commonsense in dynamic net-
works and proposing a partially dynamic net-
work, namely PAD-Net, to transform the re-
dundant dynamic parameters into static ones.
Also, we further design Iterative Mode Parti-
tion to partition dynamic and static parameters
efficiently. Our method is comprehensively sup-
ported by large-scale experiments with two typ-
ical advanced dynamic architectures, i.e., DY-
Conv and MoE, on both image classification
and GLUE benchmarks. Encouragingly, we
surpass the fully dynamic networks by +0.7%
top-1 acc with only 30% dynamic parameters
for ResNet-50 and +1.9% average score in lan-
guage understanding with only 50% dynamic
parameters for BERT. Code will be released at:
https://github.com/Shwai-He/PAD-Net.

1 Introduction

Deep neural networks have been continuously push-
ing the state-of-the-art performance in the tasks of
computer vision (Girshick et al., 2014; Dosovitskiy
et al., 2021) and natural language processing (Dai
and Le, 2015; Brunet et al., 2019; Zan et al., 2022;
Zhong et al., 2022b) in past years, at the cost of
increasing training cost (Shen et al., 2023). How-
ever, most prevalent architectures perform infer-

∗Corresponding author

ence statically where both the computational graph
and network parameters are fixed once after train-
ing, which limits the representation power. Dy-
namic networks (Han et al., 2021), as opposed to
static ones, adapt their parameters or architectures
to each specific input, improving the model rep-
resentation power with acceptable computational
cost, e.g., Switch Transformers (Fedus et al., 2021).
The common practice of implementing dynamic
networks is transforming static networks (or mod-
ules) with counterpart dynamic ones. For exam-
ple, Dynamic Convolution (DY-Conv) (Chen et al.,
2020b) replaces traditional convolution by adopting
k adaptive convolutional kernels; Mixture of Ex-
perts (MoE) (Shazeer et al., 2017) replaces a single
fully connected layer with multiple feed-forward
neural networks in a parallel manner.

The success of dynamic networks motivates prac-
titioners to design dynamic networks (Fedus et al.,
2021; Li et al., 2021a), which often follow a fully
dynamic approach, where all parameters are dy-
namic (at least within a single layer) and change
with the input. Previous works (Chen et al., 2020b)
show that dynamic networks often outperform their
static counterpart, and using more dynamic layers
intriguingly leads to ever-increasing performance.
For instance, dynamic convolution promotes the
performance on the ImageNet when more static
convolution layers turn into dynamic ones. How-
ever, these prior works do not explain the need for
a fully dynamic mechanism, and it remains unclear
whether to convert static parameters into dynamic
and to what extent if yes.

On the other hand, such a fully dynamic man-
ner is resource expensive and may cause redun-
dancy, limiting the applicability of dynamic net-
works. For instance, the total parameters of BERT-
Base equipped with MoE are ~506.3M (with 8
experts) compared to only ~108.9M for vanilla
BERT-Base. In addition, an MoE layer also mul-
tiplies the computation. It seems more is better

14354

https://github.com/Shwai-He/PAD-Net


when transforming static layers into dynamic ones,
but how about the dynamic parameters within a
dynamic network: Do all of them lead to the pro-
motion? This urges us to reflect whether there exist
redundant dynamic parameters, in fully dynamic
network layers? Based on the above scrutiniza-
tion, we hypothesize that less is more for dynamic
parameters in fully dynamic networks.

Motivated by this hypothesis, we propose the It-
erative Mode Partition (IMP) algorithm to progres-
sively convert less important dynamic parameters
into static ones for higher efficiency, while main-
taining performance at a competitive level. Given
a fully dynamic network initialized with all param-
eters in dynamic mode, we attempt to partition a
subset of static parameters out from them. Specif-
ically, we iteratively transform dynamic parame-
ters based on their impact on loss values. If the
transformation of the i-th element of dynamic pa-
rameters results in only a minimal loss difference,
we safely make it static. Given a desired dynamic
ratio (the proportion of dynamic parameters), we
can balance the trade-off between dynamic and
static parameters. Since static parameters are less
costly to deploy, we prune redundant parameters
after mode partition, obtaining a lightweight ar-
chitecture, namely Partially Dynamic Networks
(PAD-Net), which contains two modes of parame-
ters (dynamic parameters that vary with inputs and
static parameters that are fixed during inference).

Empirically, we extensively validate this hypoth-
esis and our proposed PAD-Net, including GLUE
benchmark (Wang et al., 2019) for MoE and visual
image classification (Deng et al., 2009) for dynamic
convolution. Experiment results reveal that we suc-
cessfully converted redundant dynamic parameters
into static ones and PAD-Net achieves the highest
performance in all tasks with lightweight architec-
tures. Given the superiority of PAD-Net in both
effectiveness and efficiency, we show that less dy-
namic is more efficient in fully dynamic networks,
successfully verifying the above hypothesis. The
inspiration of partially dynamic can be extended
to other dynamic networks and even inform future
efficient architectures designation.

In short, our contributions are threefold:

• We hypothesize that a fully dynamic network
contains partially dynamic subnetworks that
maintain or exceed the representation power
of the original network.

• Following our hypothesis, we propose the

novel PAD-Net framework to achieve a par-
tially dynamic mechanism and devise an Iter-
ative Mode Partition (IMP) algorithm to parti-
tion static and dynamic parameters.

• We empirically validate our hypothesis and
PAD-Net on both NLP and CV tasks across
two representative dynamic networks, includ-
ing MoE and dynamic convolution.

2 Related Work

Dynamic Networks. The dynamic neural net-
work is an emerging research topic in deep learn-
ing, which adapts structures or parameters to dif-
ferent inputs, leading to notable advantages in
terms of accuracy, and computational efficiency.
Han et al. (2021) classify dynamic networks into
two categories: dynamic architecture networks and
dynamic parameter networks. Dynamic architec-
ture networks adaptively adjust architectures condi-
tioned on each sample. Specifically, they adjust the
network depth (Wang et al., 2018), width (Mul-
lapudi et al., 2018), or route based on the in-
put (Huang et al., 2018). Instead of changing the
model architecture, dynamic parameter networks
boost representation power by adapting parameters
or activation functions to the input (Yang et al.,
2019; Liu et al., 2021). Existing works often trans-
form various types of static parameters into dy-
namic versions (Chen et al., 2020b). Among them,
dynamic convolution and mixture-of-experts are
the typical examples that aggregate multiple convo-
lution parameters (and experts) dynamically based
on the input, leading to significant improvement
with negligible computational cost.

Network Pruning. Past works in network prun-
ing have explored effective techniques to find ef-
ficient subnetworks (Lee et al., 2019; Evci et al.,
2020; He et al., 2022) and zero out redundant pa-
rameters. According to the lottery ticket hypothe-
sis (LTH) pioneered by Frankle and Carbin (2019),
dense, randomly initialized, feed-forward networks
contain the subnetwork (winning tickets) that main-
tains comparable test performance of the original
network after training for the same iterations. This
hypothesis inspires a series of follow-up works in
network pruning. However, these methods always
sacrifice performance because of pruned parame-
ters. As for dynamic networks, instead of directly
pruning dynamic parameters, we considered chang-
ing them to static ones. In Section 5.4, we show

14355



our approach significantly and consistently outper-
forms fully dynamic networks in the GLUE bench-
mark (Wang et al., 2019), while the pruned model
performed worse than the original network.

3 Review of Fully Dynamic Networks

Basic Concept. Dynamic networks first adjust
computational parameters and then compute the
input using adjusted parameters, rather than di-
rectly using intrinsic parameters to compute the
input. In a fully dynamic network, all intrinsic
parameters are used as dynamic factors to gener-
ate computational parameters Θ̂, which are depen-
dent on two parts: the input x and the intrinsic
parameters Θ. Let us denote W as the dynamic
function, computational parameters is formulated
as Θ̂ = W(x,Θ). Given an input sample x, the
output of is y = F(x,Θ) for a conventional net-
work with static parameters and y = F(x, Θ̂) for
a dynamic network.

Existing dynamic networks, though using dif-
ferent dynamic functions, tend to follow a fully
dynamic manner: Networks take all intrinsic pa-
rameters to generate the computational parameters
where all elements are dynamic and vary with the
input. We call such networks fully dynamic net-
works and, in the following, introduce instantia-
tions coming from dynamic architecture networks,
i.e., Mixture of Experts, and dynamic parameter
networks, i.e., Dynamic Convolution, respectively.

Mixture of Experts. We talk about dynamic ar-
chitecture networks by taking the Mixture of Ex-
perts (MoE) (Jacobs et al., 1991; Shazeer et al.,
2017) as an instantiation. MoE prepares m par-
allel static experts with parameters Θ(i)(i =
1, 2, . . . ,m) and only selects n experts with the
highest scores (n ≤ m). Given a specific input,
we denote G(x) as the output scores of gating
and T as the indices of the selected experts. For
the i-th selected expert, we denote the combina-
tion of the score GTi(x) and parameters Θ(Ti) as
w(Ti) =

{
GTi(x),Θ

(Ti)}. The dynamic function
of MoE can be represented as:

W(x,Θ) = {w(T1), . . . , w(Tn)},
where w(Ti) = {GTi(x),Θ

(Ti)}.
(1)

Dynamic Convolution. As a typical example of
dynamic parameter networks, Dynamic Convolu-
tion (Chen et al., 2020b) prepares k parallel static
kernels Θ(i)(i = 1, 2, . . . , k) as intrinsic param-
eters and utilizes the linear combination of them

as the aggregated kernel. The linear scale is ag-
gregated dynamically via a channel-wise attention
block (Hu et al., 2018) denoted as Attention, so
the dynamic function can be written as:

W(x,Θ) =
k∑

i=1

πi(x) ·Θ(i),

where π(x) = Attention(x).

(2)

Limitation Discussions. Mainstream dynamic
networks usually replace static layers with fully
dynamic layers, where all elements of dynamic
parameters require corresponding dynamic factors
co-working with input samples. However, this situ-
ation causes redundant parameters and high deploy-
ment costs, limiting the applicability of dynamic
networks to a border range of resource-constrained
situations and large-scale models. For this fully
dynamic manner, we raise two questions: (1) Is it
necessary to pay the cost of enormous parameters
and computations to aggregate dynamic parame-
ters? (2) Is it necessary to make all computational
parameters dynamic, to maintain the performance
improvement? We propose the Partially Dynamic
Network (PAD-Net) that mixes dynamic and static
parameters to answer the above questions.

4 Methodology

4.1 PAD-Net: Partially Dynamic Network
In response to the limitation of fully dynamic net-
works, we question whether it is necessary to make
all parameters dynamic. To this end, we try to
detect the less important dynamic parameters and
transform them into input-agnostic static param-
eters. Specifically, we utilize a mask Mi(i =
1, 2, . . . ,m) to indicate whether the i-th element
of Θ̂ is dynamic or static: Mi = 1 means the i-th
element of Θ̂ is dynamic and vice versa. We use
Θ̃ ∈ Rm to denote the dynamic parameters and
Θ̄ ∈ Rm to represent the static parameters, then
computational parameters Θ̂ are reformulated as:

Θ̂i =

{
Θ̃i =Wi(x,Θ) if Mi = 1

Θ̄i otherwise
, (3)

where Θ̂i(i = 1, 2, . . . ,m) represents the i-th el-
ement of Θ̂, and Θ denotes the dynamic factors.
In our architecture, intrinsic parameters include
dynamic factors Θ and static parameters Θ̄. Note
that M partitions the computational parameters into
two non-overlapping parts, forming a network with

14356



MoE DY-Conv

Dynamic Mode Dynamic Functions

W(x,Θ)

Dynamic Factors Θ Dynamic Parameters ෩Θ MoE DY-Conv

Intrinsic Parameters {Θ,ഥΘ} Computational Parameters Θ

Static Mode

Static Parameters ഥΘ

Figure 1: The procedure of generating the computational parameters in PAD-Net, with DY-Conv and MoE as
instantiations. The intrinsic parameters include static parameters and dynamic factors. Given an input, dynamic
factors activate and aggregate into dynamic parameters, which are then integrated with static parameters.

only a part of the parameters dynamic, i.e., Partially
Dynamic Network (PAD-Net). Details of the pro-
cedure of generating the computational parameters
from intrinsic are visualized in Figure 1.

To overcome the aforementioned challenges and
limitations, we propose a novel network architec-
ture, Partially Dynamic Network (PAD-Net). We
also devise a new algorithm Iterative Mode Parti-
tion (IMP) to build this model efficiently.

In addition, we set two scale factors to describe
the relative intensity of these subnetworks sepa-
rately in terms of magnitude, namely λs and λd.
With these scale factors, we factorize our method
into a more general formulation:

Θ̂i =

{
λd · Θ̃i if Mi = 1

λs · Θ̄i otherwise
, (4)

where we constrain λs + λd = 2(λs, λd > 0), and
Equation 3 is the special situation when both λs and
λd are equal to 1. Similar to the constraint

∑k
i=1 πi

in dynamic convolution (Chen et al., 2020b), this
constraint compresses the parameters space and
significantly simplifies the joint optimization of
scale factors and the counterpart parameters.

4.2 Iterative Mode Partition
In the above section, we present the architecture
of PAD-Net, which includes dynamic parameters
and counterpart static parameters. Next, we further
discuss our method in how to generate indicator
masks to partition dynamic and static parameters.
Let us first formulate this partition as an optimiza-
tion problem, where our goal is to minimize loss
values L. Given a dataset D = {(xi,yi)}ni=1 and

a desired dynamic ratio κ of M, we briefly formu-
late mode partition as the following constrained
optimization problem:

min
M

L(Θ̂,M;D) = min
M

1

n

n∑

i=1

ℓ(Θ̂,M; (xi,yi)),

s.t. M ∈ {0, 1}m, ∥M∥0 ≤ κ ·m,

(5)

where ℓ(·) denotes the standard loss function (e.g.,
cross-entropy loss), Θ̂ is the set of computational
parameters of the neural network, ∥ · ∥0 is the stan-
dard L0 norm, m is the total number of parame-
ters. The conventional approach to optimize the
above problem is adding sparsity enforcing penalty
term M (Carreira-Perpinán and Idelbayev, 2018),
while it often requires heavily tuned hyperparam-
eter settings and several trials. On the other hand,
LTH-based (Chen et al., 2020a; Evci et al., 2020)
methods find the mask by several iterations, but it
is prohibitively time-consuming. Also, considering
the large-scale dynamic networks, it is unnecessary
to deploy redundant parameters.

We tend to partition the two modes before train-
ing to prune redundant parameters and avoid time-
consuming training iterations. Inspired by Lee
et al. (2019)’s gradient-based pruning strategy, we
propose an algorithm to make excessive dynamic
parameters static. We resort to mini-batches of
training data Db = {(xi,yi)}bi=1 ∼ D to detect
redundant dynamic parameters. Given a dynamic
parameter Θ̂j at the j-th element of Θ̂, we com-
pute its importance of being dynamic based on the
loss difference ∆Lj caused by making Θ̂j static
(changing the value of Mj from 1 to 0):

∆Lj(M, Θ̂;Db) = L(M, Θ̂;Db)−L(M− tj , Θ̂;Db), (6)

14357



Parameter Pruning
Indicator Mask M

Mask Updating

Partition

Dynamic

Factors

Static

Parameters

Intrinsic Parameters

Dynamic Function

Sample Data

Feed-in

Dynamic

Parameters

Static

Parameters

Computational Parameters

Forward

Sample Data Loss L

Loss L Indicator Mask M 01 1 1 101

Importance Scores s 0.28 0.030.000.23 0.35 0.00 0.11

Threshold sκ 0.28 0.030.000.23 0.35 0.00 0.11

New Indicator Mask M’ 01 1 1 000

Forward Propagation Backward Updating Post-processing

Figure 2: Graphical illustration of Iterative Mode Partition (IMP). Left: An overview of IMP, including forward
propagation and backward updating. After IMP, the indicator mask prunes the redundant dynamic factors and static
parameters (post-processing). Right: Details of mask updating.

where tj is the indicator vector of j-th element
of M (i.e., zeros everywhere except at the index j
where it is one). We only consider transforming re-
dundant dynamic parameters into static ones, so the
loss difference ∆Lj is zero if Θ̂j is static. Note that
computing ∆Lj for each dynamic parameter is pro-
hibitively expensive, as it usually requires millions
of forwarding passes over the dataset, so we resort
to a simple and effective approximate alternative.
Specifically, we release binary constraints of M
and make it differentiable and utilize the derivative
of L with respect to Mj to approximate ∆Lj :

∆Lj(M, Θ̂;Db) ≈ gj(Θ̂;Db) =
∂Lj(M, Θ̂;Db)

∂M

= lim
δ→0

Lj(M, Θ̂;Db)− Lj(M− δtj , Θ̂;Db)

δ

∣∣∣∣∣
t=1

,

(7)

where gj(Θ̂;Db) denotes the j-th element in deriva-
tive g(Θ̂;Db). We accumulate the derivatives for
all j by one forward-backward pass using auto-
matic differentiation. Note that if the magnitude of
gj is high, it essentially means that making param-
eter Θ̂j static has a considerable effect on the loss,
and it has to be dynamic. In contrast, the param-
eter should be static if the magnitude of gj is low.
Therefore, We take the normalized magnitude of
the derivatives of g as the criteria:

sj =
∣∣∣gj(Θ̂;Db)

∣∣∣
/∑m

k=1

∣∣∣gk(Θ̂;Db)
∣∣∣. (8)

Given the dynamic ratio κ, we take the sκ (the κ-th
percentile of s) as the threshold and transform the
mask elements whose scores are below zero:

M = 1 [s− sκ ≥ 0] , (9)

where 1[·] is an element-wise indicator function
where the output will be 1 if the condition [·] meets

else it will be zero. Note that the indicator mask
M prunes out redundant parameters in dynamic pa-
rameters Θ̃ and static parameters Θ̄ respectively.
Also, for fewer dynamic parameters to generate,
we can also utilize the binary mask to prune redun-
dant dynamic factors. Taking MoE as an exam-
ple, M can be directly applied to parallel experts:
Θ(i) ← M⊙Θ(i),∀i ∈ {1, 2, . . . , k}. In addition,
we can decrease the computational cost of generat-
ing based on dynamic factors.

Inspired by the success of the iterative strategy
in pruning at initialization (Verdenius et al., 2020;
de Jorge et al., 2021), we start from a fully dynamic
network and adopt an iterative strategy shown in
Figure 2 to transform dynamic parameters into
static parameters iteratively, where we increase the
zero ratios of M exponentially. The effectiveness of
the mode partition and the iterative mode partition
is experimentally verified in Section 5.3.

5 Empirical Evaluation

5.1 Implementation Details
Mixture of Experts. We use Adam (Kingma and
Ba, 2015) as the optimizer with β1, β2 = 0.9, 0.98.
For regularization, we set the weight decay as 0.1
and grid-search the learning rate from {1e-5, 5e-5,
1e-4, 5e-4}, where we warm up the learning rate
in the first 10% steps (of the total training steps).
For different data scales, we grid-search training
epoch and batch size from {5, 10, 15, 20} and {8,
16, 32, 64}, respectively. The maximum length is
128 for all tasks. Following Shazeer et al. (2017),
we initialize dynamic and static parameters with
pretrained parameters.

Dynamic Convolution. We use an SGD opti-
mizer (Ruder, 2016) with 0.9 momentum, follow-

14358



Table 1: Comparison between PAD-Net and vanilla MoE applied to four widely used large-scale Pretrained
Language Models (PLMs). Averaged scores on all tasks are underlined. The shown results are the averaged score for
5 runs, followed by the deviation. The best results are bold. It shows that PAD-Net yields consistent improvements
across all tasks among different MoE-equipped PLMs.

Method BERT ALBERT

#Param. CoLA RTE MRPC STS-B Avg. #Param. CoLA RTE MRPC STS-B Avg.

Static 108.9M 54.6±0.4 66.4±0.7 84.6±0.3 85.8±0.3 72.9 11.1M 54.2±0.7 76.6±0.7 87.2±0.4 90.6±0.3 77.2
MoE 506.3M 58.0±0.9 69.3±1.2 85.0±0.4 87.1±0.2 74.9 44.2M 56.8±1.2 77.2±0.8 87.4±0.4 90.7±0.3 78.0

PAD-Net 308.0M 59.7±0.8 71.5±1.4 85.5±0.4 90.3±0.6 76.8 30.0M 57.4±1.4 77.6±0.5 88.4±0.3 90.9±0.2 78.6

Method RoBERTa ELECTRA

#Param. CoLA RTE MRPC STS-B Avg. #Param. CoLA RTE MRPC STS-B Avg.

Static 124.1M 62.8±1.0 77.6±1.6 90.0±0.5 91.0±0.3 80.4 108.9M 67.3±1.5 82.6±1.7 89.0±0.5 90.6±0.1 82.4
MoE 521.5M 63.6±1.1 78.0±1.4 90.2±0.4 91.1±0.2 80.8 506.3M 67.6±1.1 83.0±1.4 89.3±0.3 90.8±0.2 82.7

PAD-Net 323.1M 64.2±0.8 79.4±1.2 90.7±0.3 91.4±0.3 81.4 308.0M 68.2±1.3 84.1±1.5 89.5±0.4 91.2±0.2 83.3

Table 2: Comparison between PAD-Net and baselines for ResNet and MobileNetV2, including CondConv and
DY-Conv. The Top-1 accuracy is the averaged score for 5 runs, followed by the deviation. ✶ indicates the dynamic
model with the fewest parameters or the fewer FLOPs (the static model is not included), and the best results in
accuracy are bold. DY-Conv and PAD-Net contain k = 4 kernels, while CondConv contains k = 8 kernels.

Depth Model Params FLOPs Top-1(w/dev)

ResNet-10

Static 5.2M 0.89G 63.1±0.4

CondConv 36.7M 0.92G 66.9±0.2

DY-Conv 18.6M 0.91G 67.4±0.3

PAD-Net ✶6.9M ✶0.90G 68.1±0.2

ResNet-18

Static 11.1M 1.81G 70.6±0.3

CondConv 81.4M 1.89G 71.9±0.2

DY-Conv 42.7M 1.86G 72.4±0.3

PAD-Net ✶15.1M ✶1.83G 73.0±0.3

ResNet-50

Static 23.5M 3.86G 76.2±0.2

CondConv 129.9M 3.98G 76.9±0.3

DY-Conv 100.9M 3.97G 77.2±0.2

PAD-Net ✶33.8M ✶3.90G 77.9±0.2

(a) ResNet

Width Model Params FLOPs Top-1(w/dev)

×0.5
Static 2.0M 97.0M 65.7±0.3

CondConv 15.5M 113.0M 68.8±0.2

DY-Conv 4.0M 101.4M 69.6±0.1

PAD-Net ✶2.7M ✶98.3M 70.4±0.2

×0.75
Static 2.6M 209.1M 69.2±0.4

CondConv 17.5M 233.9M 72.1±0.3

DY-Conv 8.0M 220.1M 72.6±0.1

PAD-Net ✶5.2M ✶212.4M 73.5±0.2

×1.0
Static 3.5M 300.8M 72.1±0.3

CondConv 27.5M 329.0M 74.4±0.2

DY-Conv 11.1M 312.9M 74.8±0.2

PAD-Net ✶6.1M ✶304.4M 75.3±0.1

(b) MobileNetV2

ing cosine learning rate scheduling and warmup
strategy. The learning rate rises to the maximum
linearly in the first ten epochs and schedules to
arrive at zero within a single cosine cycle. We
follow Chen et al. (2020b)’s temperature anneal-
ing strategy to avoid the unstable output values of
the softmax function in the first epochs. We train
ResNet for 100 epochs with the max learning rate
of 0.1. We train the MobilenetV2 for 300 epochs
with the max learning rate of 0.05. The weight de-
cay is 1e-4 for ResNet and 4e-5 for MobilenetV2.
The training batch size is 256 for all models.

5.2 Main Results

Natural Language Understanding. We evaluate
the performance of PAD-Net for MoE on various
datasets from the General Language Understanding
Evaluation (GLUE) benchmark (Wang et al., 2019).

Like previous works (Lee et al., 2020; Dodge et al.,
2020; Zhong et al., 2022a), we fine-tune pretrained
models, e.g., BERT (Devlin et al., 2019), ALBERT
(Lan et al., 2020), RoBERTa (Liu et al., 2019),
ELECTRA (Clark et al., 2020) on the training set
and directly report results on validation set using
the last checkpoint, since the test results are only
accessible by the leaderboard with submission lim-
itation.

Following Shazeer et al. (2017); Gao et al.
(2022), we replace feed-forward layers with MoE
layers where we prepare 8 experts and select the
top-2 experts for each input. We set the dynamic ra-
tio κ = 50% because it is close to the optimal value.
Table 1 shows that PAD-Net outperforms MoE on
the GLUE benchmark with a 0.95% average in-
crease for four backbones. Specifically, PAD-Net
improves BERT by 1.9% and RoBERTa by 0.6%

14359



Table 3: Ablation study for dynamic ratio on MoE integrated with PAD-Net. Averaged scores on all tasks are
underlined. The shown results are the averaged score for 5 runs. The best results are bold. Methods under the
dashline are our proposed PAD-Net, where κ denotes the dynamic ratio.

Method #Param. CoLA SST-2 MRPC STS-B QQP MNLI QNLI RTE Avg.

BERT 108.9M 54.6 91.4 84.6 85.8 90.6 83.7 90.4 66.4 81.2
w/ MoE 506.3M 58.0 91.7 85.0 87.1 90.8 83.8 90.8 69.3 82.1
κ = 70% 387.3M 58.5 92.4 85.5 89.6 90.9 83.9 90.9 70.6 82.8
κ = 50% 308.0M 59.7 92.2 85.4 90.3 90.9 84.2 91.0 71.5 83.2
κ = 30% 228.6M 59.0 92.0 85.3 89.4 91.0 84.0 90.9 71.2 82.9
κ = 10% 149.3M 57.5 91.1 85.4 88.3 90.4 83.6 90.6 70.2 82.1

RoBERTa 124.1M 62.1 94.0 89.6 90.6 91.0 86.9 91.8 77.4 85.4
w/ MoE 521.5M 63.6 94.8 90.2 91.1 91.7 87.7 92.9 78.0 86.3
κ = 70% 402.5M 64.6 95.0 91.0 91.0 91.8 87.7 92.9 78.2 86.5
κ = 50% 323.1M 64.4 95.2 90.7 91.4 91.9 88.0 93.0 79.4 86.8
κ = 30% 243.8M 63.4 94.6 90.5 91.2 91.4 87.8 93.2 78.8 86.4
κ = 10% 164.5M 63.9 94.4 90.4 90.8 90.9 87.4 92.6 78.2 86.1

Figure 3: Normalized performance of ResNet with
different dynamic ratios, which is evaluated by x−x̄

x̄
where x̄ is the mean accuracy across experiments.

10 20 30 40 50
Dynamic Ratio (%)

0.002

0.001

0.000

0.001

0.002

0.003

0.004

N
or

m
al

iz
ed

 P
er

fo
rm

an
ce

ResNet10
ResNet18
ResNet50

on average. Equipped with PAD-Net, MoE reduces
both parameters and computation significantly, and
we provide a theoretical analysis of the reduced
computation in Section 5.4.

Visual Image Classification. We also report the
superiority of PAD-Net in visual image classifi-
cation. In Table 2, we compare PAD-Net with
static convolution (Krizhevsky et al., 2012), Cond-
Conv (Yang et al., 2019) and Dynamic Convolu-
tion (Chen et al., 2020b) on ImageNet (Deng et al.,
2009) classification for ResNet (He et al., 2016)
and MobileNetV2 (Sandler et al., 2018) in the same
experimental setting with previous works, by ad-
justing all convolution layers except the first layer.
Before training, we first partition two modes of
parameters with a given dynamic ratio κ using ten
batches of examples.

PAD-Net improves accuracy with significantly

Table 4: Ablation study of scale factors, where “Op-
tion” refers to the setting of scale factors.

Model Option RTE STS-B

BERT-base

– 69.6 87.4
λs 70.7 88.1
λd 70.9 89.6

λs, λd 71.3 89.8
λs + λd = 2 71.5 90.3

Model Option CIFAR-10 ImageNet

ResNet-50

– 93.9 77.1
λs 94.3 77.2
λd 94.5 77.4

λs, λd 96.0 77.6
λs + λd = 2 96.6 77.8

lighter architecture and fewer FLOPs (Floating
Point Operations). For instance, PAD-Net out-
performs DY-Conv by 0.7% top-1 accuracy with
33.9% parameters and 0.1G fewer FLOPs in
ResNet-50.

5.3 Ablation Study

Effect of Dynamic Ratio. Inspired by Wettig
et al. (2022), we investigate the impact of different
dynamic ratios κ, and the results are shown in Ta-
ble 3 For MoE and Figure 3 for DY-Conv. Because
PAD-Net with low dynamic ratios significantly out-
performs fully dynamic networks, we only consider
ratios of less than 70%, allowing for more sparsity
and efficiency. We empirically find that κ = 50%
is nearly the optimal ratio for MoE to achieve the
highest performance, while the best performance
of DY-Conv is achieved when κ = 30%. We be-
lieve that different dynamic functions contribute

14360



Figure 4: Comparison of different partition methods,
including random partition “Random”, mode partition
“MP”, and iterative mode partition “IMP”. We also re-
port dynamic convolution “Dynmiac” as a baseline.

ResNet
10

ResNet
18

ResNet
50

MobileNetV2
0.5

MobileNetV2
0.75

MobileNetV2
1.0

66.0

68.0

70.0

72.0

74.0

76.0

78.0

Ac
cu

ra
cy

 (%
)

Random
Dynamic

MP
IMP

to different optimal dynamic ratios, and an effi-
cient way, e.g., hyper-parameter optimization or
meta-learning, to search them will be necessarily
explored in the future.

Effect of Scale Factors. We also conduct an abla-
tion study on the proposed scale factors and verify
their necessity. Table 4 summarizes the impact of
scale factors on different architectures. We initially
tried to gain scale factors from a SENet structure
(Hu et al., 2018), while it did not contribute to
the improvement of performance. So we just set
scale factors as trainable parameters to avoid re-
dundant parameters and operations. Besides the
setting “λs+λd = 2” in Equation 4, we consider
other situations: only using one factor (“λs” and
“λd”) , and no scale factors used (“–”). We con-
duct experiments on CIFAR-10 (Krizhevsky, 2009)
and ImageNet for ResNet-50, RTE, and STS-B
for BERT. λs and λd enhance performance sub-
stantially, and their coexistence leads to further
improvement. To explore the impact of the summa-
tion constraint, we release it and denote this setting
as “λs, λd”. Clearly, without summation constraint,
the performance of ResNet-50 and BERT decreases
significantly, i.e., -0.4% and -0.35% on average.

Effectiveness of Iterative Mode Partition. We
compare different partition strategies in Figure 4.
Compared to fully dynamic networks, accuracy
degrades when we partition two modes randomly,
which means this naive partition method mistakes
some important dynamic parameters. In contrast,
mode partition contributes to a better combination
of dynamic and static parameters, improving the
accuracy. IMP shows its effectiveness by achieving
the best performance.

Figure 5: Visualization description of the computa-
tion cost for PAD-Net on MoE. Given a specific input
X , we denote the computation cost for selected experts
and static parameters.

Output Y

nκc+(1-κ)c

κc (n-2)κc κc (1-κ)c

Expert 1 Expert m -1
Static

Parameter

m Select n

Input X

5.4 Detailed Analysis

Reduced Computation. We show the computa-
tion cost of PAD-Net in Figure 5. Compared to
vanilla MoE, PAD-Net reduces the computation be-
tween selected experts and the input, yTi = ETi(x),
where ETi denotes the i-th selected experts. Be-
cause the two methods share the same gating mech-
anism, we temporally ignore its computation for
simplicity. We denote the computation of the i-th
expert as CTi where CT1 = · · · = CTn = c, and
the total computation of multi-experts is nc if we
select n experts within m ones. In PAD-Net, given
the dynamic ratio κ, it is reduced to nκc. Together
with the computation (1− κ)c, the computation of
a PAD-Net layer is nκc+(1−κ)c. Integrated with
PAD-Net, an MoE layer can reduce the computa-
tion by (n − 1)(1 − κ)c. When κ is low enough,
the computation of PAD-Net can be close to static
networks. For DY-Conv, the reduced computation
lies in the linear combination of parallel kernels∑k

i=1 πi(x) ·Θ(i), which is sparse in PAD-Net. In
short, the degree of reduced computation depends
on the specific dynamic function.

Difference with Model Pruning. Mode parti-
tion maintains important dynamic parameters while
making redundant ones static, which may be sim-
ilar to network pruning. In Table 5, we com-
pare mode partition with network pruning (Lee
et al., 2019) on the GLUE benchmark for BERT-
base and reveal their difference empirically. PAD-
Net achieves the best performance among all
tasks listed, with 1.2% average improvements over
vanilla MoE. In contrast, we discover that network
pruning lowers the performance of MoE signifi-
cantly by 1.1% on average. Considering maintain-

14361



Table 5: Empirical comparison between our PAD-Net and model pruning on the GLUE benchmark. PAD-Net
is set with κ = 50%, and MoE-P is an MoE architecture pruned by SNIP (Lee et al., 2019). We make the parameters
of PAD-Net and MoE-P consistent for a fair comparison.

Method #Param. CoLA SST-2 MRPC STS-B QQP MNLI QNLI RTE Avg.

Static 108.9M 54.6 91.4 84.6 85.8 90.6 83.7 90.4 66.4 81.2
MoE 506.3M 58.0 91.7 85.0 87.1 90.8 83.8 90.4 69.3 82.0
MoE-P 308.0M 55.6 91.6 84.7 85.8 90.8 82.4 90.2 65.7 80.9
PAD-Net 59.7 92.2 85.4 90.3 90.9 84.2 91.0 71.5 83.2

Figure 6: Dynamic property calculation. We plot
layer-wise curves of parameter variance and output vari-
ance for ResNet-50.

0 10 20 30 40 50
Layers

0.0

0.2

0.4

0.6

0.8

1.0

Sc
al

ed
 V

ar
ia

nc
e

Dynamic PAD-Net Static

(a) Parameter Variance

0 10 20 30 40 50
Layers

0.0

0.2

0.4

0.6

0.8

1.0

Sc
al

ed
 V

ar
ia

nc
e

Dynamic PAD-Net Static

(b) Output Variance

ing the performance of a fully dynamic network, it
is preferable to convert unimportant dynamic pa-
rameters into static ones than to prune them.

Dynamic Property. Dynamic property refers to
variant numerical characteristics of a dynamic net-
work caused by different input samples. The ideal
dynamic network maintains two capacities: assign-
ing specific parameters for the input and making
counterpart output discriminative. Inspired by Li
et al. (2021b), we take two levels of variance as
metrics (parameter variance and output variance) to
measure the dynamic property and show the result
in Figure 6. Static convolution, dynamic convo-
lution, and PAD-Net (κ = 30%) show different
properties given the same samples from ImageNet.
We see that dynamic convolution retains a high de-
gree of parameter variance while it has the lowest
output variance. Static convolution performs the
opposite. The outputs of PAD-Net are discrimi-
native, which may contribute to its superiority in
performance.

6 Conclusion and Future Work

In this work, we first reveal parameter redundancy
and high deployment costs of fully dynamic net-
works. To resolve these problems, we proposed
the partially dynamic network (PAD-Net) to ad-
vance both performance and efficiency. PAD-Net

demonstrated its superiority on MoE and DY-Conv
frameworks. Extensive experiments on both NLP
and CV tasks empirically show its effectiveness
and efficiency against fully dynamic networks, sig-
nificantly improving performance with much fewer
dynamic parameters and less computation. Our
proposed method could be extensively integrated
with other mainstream architectures and inspire fu-
ture work in efficient neural network designation
and other fields.

Acknowledgements

We are grateful to the anonymous ACL reviewers
and the area chair for their insightful comments
and suggestions.

7 Limitations

Despite the progress we made, there still exist limi-
tations in our work. On the one hand, we only inves-
tigated some classic dynamic networks and found
that the proposed method contribute to the best
performance in selected criteria. However, other
advanced partition methods that further improve
the performance and efficiency may exist, which
deserve exploration in future work. On the other
hand, since we only consider MoE and DY-Conv
in limited tasks, it would be valuable to consider
other architectures (e.g., Switch Transformer (Fe-
dus et al., 2021)), machine learning methods (e.g.,
reinforcement learning (Li et al., 2022)) and tasks
(e.g., machine translation (Ding et al., 2020, 2021)).

Ethics Statement

We take ethical considerations seriously and strictly
adhere to the ACL Ethics Policy. This paper fo-
cuses on the higher efficiency of dynamic networks,
e.g., the mixture of experts. Both the datasets and
models used in this paper are publicly available and
have been widely adopted by researchers. We en-
sure that the findings and conclusions of this paper
are reported accurately and objectively.

14362



References
Marc-Etienne Brunet, Colleen Alkalay-Houlihan, Ash-

ton Anderson, and Richard Zemel. 2019. Under-
standing the origins of bias in word embeddings. In
ICML.

Miguel A Carreira-Perpinán and Yerlan Idelbayev. 2018.
“learning-compression” algorithms for neural net
pruning. In CVPR.

Tianlong Chen, Jonathan Frankle, Shiyu Chang, Sijia
Liu, Yang Zhang, Zhangyang Wang, and Michael
Carbin. 2020a. The lottery ticket hypothesis for pre-
trained bert networks. In NeurIPS.

Yinpeng Chen, Xiyang Dai, Mengchen Liu, Dongdong
Chen, Lu Yuan, and Zicheng Liu. 2020b. Dynamic
convolution: Attention over convolution kernels. In
CVPR.

Kevin Clark, Minh-Thang Luong, Quoc V Le, and
Christopher D Manning. 2020. Electra: Pre-training
text encoders as discriminators rather than generators.
In ICLR.

Andrew M Dai and Quoc V Le. 2015. Semi-supervised
sequence learning. In NeurIPS.

Pau de Jorge, Amartya Sanyal, Harkirat S Behl,
Philip HS Torr, Gregory Rogez, and Puneet K Doka-
nia. 2021. Progressive skeletonization: Trimming
more fat from a network at initialization. ICLR.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai
Li, and Li Fei-Fei. 2009. Imagenet: A large-scale
hierarchical image database. In CVPR.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. In NAACL.

Liang Ding, Longyue Wang, and Dacheng Tao. 2020.
Self-attention with cross-lingual position representa-
tion. In Proceedings of the 58th Annual Meeting of
the Association for Computational Linguistics, pages
1679–1685, Online. Association for Computational
Linguistics.

Liang Ding, Di Wu, and Dacheng Tao. 2021. Improving
neural machine translation by bidirectional training.
EMNLP.

Jesse Dodge, Gabriel Ilharco, Roy Schwartz, Ali
Farhadi, Hannaneh Hajishirzi, and Noah Smith. 2020.
Fine-tuning pretrained language models: Weight ini-
tializations, data orders, and early stopping. arXiv.

Alexey Dosovitskiy, Lucas Beyer, Alexander
Kolesnikov, Dirk Weissenborn, Xiaohua Zhai,
Thomas Unterthiner, Mostafa Dehghani, Matthias
Minderer, Georg Heigold, Sylvain Gelly, et al. 2021.
An image is worth 16x16 words: Transformers for
image recognition at scale. In ICLR.

Utku Evci, Trevor Gale, Jacob Menick, Pablo Samuel
Castro, and Erich Elsen. 2020. Rigging the lottery:
Making all tickets winners. In ICML.

William Fedus, Barret Zoph, and Noam Shazeer. 2021.
Switch transformers: Scaling to trillion parameter
models with simple and efficient sparsity. arXiv.

Jonathan Frankle and Michael Carbin. 2019. The lottery
ticket hypothesis: Finding sparse, trainable neural
networks. ICLR.

Ze-Feng Gao, Peiyu Liu, Wayne Xin Zhao, Zhong-
Yi Lu, and Ji-Rong Wen. 2022. Parameter-efficient
mixture-of-experts architecture for pre-trained lan-
guage models. In Proceedings of the 29th Inter-
national Conference on Computational Linguistics,
pages 3263–3273, Gyeongju, Republic of Korea. In-
ternational Committee on Computational Linguistics.

Ross Girshick, Jeff Donahue, Trevor Darrell, and Jiten-
dra Malik. 2014. Rich feature hierarchies for accu-
rate object detection and semantic segmentation. In
CVPR.

Yizeng Han, Gao Huang, Shiji Song, Le Yang, Honghui
Wang, and Yulin Wang. 2021. Dynamic neural net-
works: A survey. IEEE Transactions on Pattern
Analysis and Machine Intelligence.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. 2016. Deep residual learning for image recogni-
tion. In CVPR.

Shwai He, Liang Ding, Daize Dong, Miao Zhang, and
Dacheng Tao. 2022. Sparseadapter: An easy ap-
proach for improving the parameter-efficiency of
adapters. In EMNLP.

Jie Hu, Li Shen, and Gang Sun. 2018. Squeeze-and-
excitation networks. In CVPR.

Gao Huang, Shichen Liu, Laurens Van der Maaten, and
Kilian Q Weinberger. 2018. Condensenet: An effi-
cient densenet using learned group convolutions. In
CVPR.

Robert A. Jacobs, Michael I. Jordan, Steven J. Nowlan,
and Geoffrey E. Hinton. 1991. Adaptive mixtures of
local experts. Neural Computation.

Diederik P Kingma and Jimmy Ba. 2015. Adam: A
method for stochastic optimization. In ICLR.

Alex Krizhevsky. 2009. Learning multiple layers of
features from tiny images. Technical report.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hin-
ton. 2012. Imagenet classification with deep convo-
lutional neural networks. In NeurIPS.

Zhenzhong Lan, Mingda Chen, Sebastian Goodman,
Kevin Gimpel, Piyush Sharma, and Radu Soricut.
2020. Albert: A lite bert for self-supervised learning
of language representations. In ICLR.

14363

http://proceedings.mlr.press/v97/brunet19a/brunet19a.pdf
http://proceedings.mlr.press/v97/brunet19a/brunet19a.pdf
https://openaccess.thecvf.com/content_cvpr_2018/papers/Carreira-Perpinan_Learning-Compression_Algorithms_for_CVPR_2018_paper.pdf
https://openaccess.thecvf.com/content_cvpr_2018/papers/Carreira-Perpinan_Learning-Compression_Algorithms_for_CVPR_2018_paper.pdf
https://proceedings.neurips.cc/paper/2020/file/b6af2c9703f203a2794be03d443af2e3-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/b6af2c9703f203a2794be03d443af2e3-Paper.pdf
https://openaccess.thecvf.com/content_CVPR_2020/papers/Chen_Dynamic_Convolution_Attention_Over_Convolution_Kernels_CVPR_2020_paper.pdf
https://openaccess.thecvf.com/content_CVPR_2020/papers/Chen_Dynamic_Convolution_Attention_Over_Convolution_Kernels_CVPR_2020_paper.pdf
https://openreview.net/pdf?id=r1xMH1BtvB
https://openreview.net/pdf?id=r1xMH1BtvB
https://proceedings.neurips.cc/paper/2015/file/7137debd45ae4d0ab9aa953017286b20-Paper.pdf
https://proceedings.neurips.cc/paper/2015/file/7137debd45ae4d0ab9aa953017286b20-Paper.pdf
https://openreview.net/pdf?id=9GsFOUyUPi
https://openreview.net/pdf?id=9GsFOUyUPi
https://ieeexplore.ieee.org/document/5206848
https://ieeexplore.ieee.org/document/5206848
https://aclanthology.org/N19-1423.pdf
https://aclanthology.org/N19-1423.pdf
https://aclanthology.org/N19-1423.pdf
https://doi.org/10.18653/v1/2020.acl-main.153
https://doi.org/10.18653/v1/2020.acl-main.153
https://aclanthology.org/2021.emnlp-main.263/
https://aclanthology.org/2021.emnlp-main.263/
https://arxiv.org/pdf/2002.06305.pdf
https://arxiv.org/pdf/2002.06305.pdf
https://openreview.net/pdf?id=YicbFdNTTy
https://openreview.net/pdf?id=YicbFdNTTy
http://proceedings.mlr.press/v119/evci20a/evci20a.pdf
http://proceedings.mlr.press/v119/evci20a/evci20a.pdf
https://arxiv.org/pdf/2101.03961.pdf
https://arxiv.org/pdf/2101.03961.pdf
https://openreview.net/pdf?id=rJl-b3RcF7
https://openreview.net/pdf?id=rJl-b3RcF7
https://openreview.net/pdf?id=rJl-b3RcF7
https://aclanthology.org/2022.coling-1.288
https://aclanthology.org/2022.coling-1.288
https://aclanthology.org/2022.coling-1.288
https://ieeexplore.ieee.org/document/6909475
https://ieeexplore.ieee.org/document/6909475
https://ieeexplore.ieee.org/document/9560049
https://ieeexplore.ieee.org/document/9560049
https://ieeexplore.ieee.org/document/7780459
https://ieeexplore.ieee.org/document/7780459
https://arxiv.org/abs/2210.04284
https://arxiv.org/abs/2210.04284
https://arxiv.org/abs/2210.04284
https://openaccess.thecvf.com/content_cvpr_2018/papers/Hu_Squeeze-and-Excitation_Networks_CVPR_2018_paper.pdf
https://openaccess.thecvf.com/content_cvpr_2018/papers/Hu_Squeeze-and-Excitation_Networks_CVPR_2018_paper.pdf
https://openaccess.thecvf.com/content_cvpr_2018/papers/Huang_CondenseNet_An_Efficient_CVPR_2018_paper.pdf
https://openaccess.thecvf.com/content_cvpr_2018/papers/Huang_CondenseNet_An_Efficient_CVPR_2018_paper.pdf
https://doi.org/10.1162/neco.1991.3.1.79
https://doi.org/10.1162/neco.1991.3.1.79
https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/1412.6980
https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf
https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf
https://dl.acm.org/doi/pdf/10.1145/3065386
https://dl.acm.org/doi/pdf/10.1145/3065386
https://openreview.net/pdf?id=H1eA7AEtvS
https://openreview.net/pdf?id=H1eA7AEtvS


Cheolhyoung Lee, Kyunghyun Cho, and Wanmo Kang.
2020. Mixout: Effective regularization to finetune
large-scale pretrained language models. ICLR.

Namhoon Lee, Thalaiyasingam Ajanthan, and Philip HS
Torr. 2019. Snip: Single-shot network pruning based
on connection sensitivity. In ICLR.

Chao Li, Aojun Zhou, and Anbang Yao. 2021a. Omni-
dimensional dynamic convolution. In ICLR.

Qian Li, Hao Peng, Jianxin Li, Jia Wu, Yuanxing Ning,
Lihong Wang, Philip S. Yu, and Zheng Wang. 2022.
Reinforcement learning-based dialogue guided event
extraction to exploit argument relations. IEEE ACM
Trans. Audio Speech Lang. Process.

Yunsheng Li, Yinpeng Chen, Xiyang Dai, Mengchen
Liu, Dongdong Chen, Ye Yu, Lu Yuan, Zicheng Liu,
and Others. 2021b. Revisiting dynamic convolution
via matrix decomposition. In ICLR.

Chuan Liu, Yi Gao, and Jiancheng Lv. 2021. Dynamic
normalization. arXiv.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Others. 2019. Roberta: A
robustly optimized bert pretraining approach. arXiv.

Ravi Teja Mullapudi, William R Mark, Noam Shazeer,
and Kayvon Fatahalian. 2018. Hydranets: Special-
ized dynamic architectures for efficient inference. In
CVPR.

Sebastian Ruder. 2016. An overview of gradient descent
optimization algorithms. arXiv.

Mark Sandler, Andrew Howard, Menglong Zhu, An-
drey Zhmoginov, and Liang-Chieh Chen. 2018. Mo-
bilenetv2: Inverted residuals and linear bottlenecks.
In CVPR.

Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz,
Andy Davis, Quoc V. Le, Geoffrey E. Hinton, and
Jeff Dean. 2017. Outrageously large neural net-
works: The sparsely-gated mixture-of-experts layer.
In ICLR.

Li Shen, Yan Sun, Zhiyuan Yu, Liang Ding, Xinmei
Tian, and Dacheng Tao. 2023. On efficient training of
large-scale deep learning models: A literature review.
arXiv.

Stijn Verdenius, Maarten Stol, and Patrick Forré. 2020.
Pruning via iterative ranking of sensitivity statistics.
arXiv.

Alex Wang, Amanpreet Singh, Julian Michael, Felix
Hill, Omer Levy, and Samuel R Bowman. 2019.
Glue: A multi-task benchmark and analysis platform
for natural language understanding. In ICLR.

Xin Wang, Fisher Yu, Zi-Yi Dou, Trevor Darrell, and
Joseph E Gonzalez. 2018. Skipnet: Learning dy-
namic routing in convolutional networks. In ECCV.

Alexander Wettig, Tianyu Gao, Zexuan Zhong, and
Danqi Chen. 2022. Should you mask 15% in masked
language modeling? arXiv.

Brandon Yang, Gabriel Bender, Quoc V. Le, and Jiquan
Ngiam. 2019. Condconv: Conditionally parameter-
ized convolutions for efficient inference. In NeurIPS.

Changtong Zan, Keqin Peng, Liang Ding, Baopu Qiu,
Boan Liu, Shwai He, Qingyu Lu, Zheng Zhang,
Chuang Liu, Weifeng Liu, Yibing Zhan, and Dacheng
Tao. 2022. Vega-MT: The JD explore academy ma-
chine translation system for WMT22. In WMT.

Qihuang Zhong, Liang Ding, Li Shen, Peng Mi, Juhua
Liu, Bo Du, and Dacheng Tao. 2022a. Improv-
ing sharpness-aware minimization with fisher mask
for better generalization on language models. In
EMNLP.

Qihuang Zhong, Liang Ding, Yibing Zhan, Yu Qiao,
Yonggang Wen, Li Shen, Juhua Liu, Baosheng Yu,
Bo Du, Yixin Chen, et al. 2022b. Toward efficient
language model pretraining and downstream adapta-
tion via self-evolution: A case study on superglue.
arXiv.

14364

https://openreview.net/pdf?id=HkgaETNtDB
https://openreview.net/pdf?id=HkgaETNtDB
https://openreview.net/pdf?id=B1VZqjAcYX
https://openreview.net/pdf?id=B1VZqjAcYX
https://openreview.net/pdf?id=DmpCfq6Mg39
https://openreview.net/pdf?id=DmpCfq6Mg39
https://doi.org/10.1109/TASLP.2021.3138670
https://doi.org/10.1109/TASLP.2021.3138670
https://openreview.net/pdf?id=YwpZmcAehZ
https://openreview.net/pdf?id=YwpZmcAehZ
https://arxiv.org/pdf/2101.06073.pdf
https://arxiv.org/pdf/2101.06073.pdf
https://arxiv.org/pdf/1907.11692.pdf
https://arxiv.org/pdf/1907.11692.pdf
https://openaccess.thecvf.com/content_cvpr_2018/papers/Mullapudi_HydraNets_Specialized_Dynamic_CVPR_2018_paper.pdf
https://openaccess.thecvf.com/content_cvpr_2018/papers/Mullapudi_HydraNets_Specialized_Dynamic_CVPR_2018_paper.pdf
https://arxiv.org/pdf/1609.04747.pdf
https://arxiv.org/pdf/1609.04747.pdf
https://openaccess.thecvf.com/content_cvpr_2018/papers/Sandler_MobileNetV2_Inverted_Residuals_CVPR_2018_paper.pdf
https://openaccess.thecvf.com/content_cvpr_2018/papers/Sandler_MobileNetV2_Inverted_Residuals_CVPR_2018_paper.pdf
https://openreview.net/forum?id=B1ckMDqlg
https://openreview.net/forum?id=B1ckMDqlg
https://arxiv.org/abs/2304.03589
https://arxiv.org/abs/2304.03589
https://arxiv.org/pdf/2006.00896.pdf
https://openreview.net/pdf?id=rJ4km2R5t7
https://openreview.net/pdf?id=rJ4km2R5t7
https://link.springer.com/content/pdf/10.1007/978-3-030-01261-8_25.pdf
https://link.springer.com/content/pdf/10.1007/978-3-030-01261-8_25.pdf
https://arxiv.org/pdf/2202.08005.pdf
https://arxiv.org/pdf/2202.08005.pdf
https://proceedings.neurips.cc/paper/2019/file/f2201f5191c4e92cc5af043eebfd0946-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/f2201f5191c4e92cc5af043eebfd0946-Paper.pdf
https://aclanthology.org/2022.wmt-1.37
https://aclanthology.org/2022.wmt-1.37
https://aclanthology.org/2022.findings-emnlp.300/
https://aclanthology.org/2022.findings-emnlp.300/
https://aclanthology.org/2022.findings-emnlp.300/
https://arxiv.org/abs/2212.01853
https://arxiv.org/abs/2212.01853
https://arxiv.org/abs/2212.01853


ACL 2023 Responsible NLP Checklist

A For every submission:
�3 A1. Did you describe the limitations of your work?

7

�7 A2. Did you discuss any potential risks of your work?
Both the methods we cite and the improvement we make involve no potential risk.

�3 A3. Do the abstract and introduction summarize the paper’s main claims?
1

�7 A4. Have you used AI writing assistants when working on this paper?
Left blank.

B �7 Did you use or create scientific artifacts?
Left blank.

�7 B1. Did you cite the creators of artifacts you used?
Left blank.

�7 B2. Did you discuss the license or terms for use and / or distribution of any artifacts?
Left blank.

�7 B3. Did you discuss if your use of existing artifact(s) was consistent with their intended use, provided
that it was specified? For the artifacts you create, do you specify intended use and whether that is
compatible with the original access conditions (in particular, derivatives of data accessed for research
purposes should not be used outside of research contexts)?
Left blank.

�7 B4. Did you discuss the steps taken to check whether the data that was collected / used contains any
information that names or uniquely identifies individual people or offensive content, and the steps
taken to protect / anonymize it?
Left blank.

�7 B5. Did you provide documentation of the artifacts, e.g., coverage of domains, languages, and
linguistic phenomena, demographic groups represented, etc.?
Left blank.

�7 B6. Did you report relevant statistics like the number of examples, details of train / test / dev splits,
etc. for the data that you used / created? Even for commonly-used benchmark datasets, include the
number of examples in train / validation / test splits, as these provide necessary context for a reader
to understand experimental results. For example, small differences in accuracy on large test sets may
be significant, while on small test sets they may not be.
Left blank.

C �3 Did you run computational experiments?
5.1 5.2

�3 C1. Did you report the number of parameters in the models used, the total computational budget
(e.g., GPU hours), and computing infrastructure used?
5.1 5.2

The Responsible NLP Checklist used at ACL 2023 is adopted from NAACL 2022, with the addition of a question on AI writing
assistance.

14365

https://2023.aclweb.org/
https://2022.naacl.org/blog/responsible-nlp-research-checklist/
https://2023.aclweb.org/blog/ACL-2023-policy/
https://2023.aclweb.org/blog/ACL-2023-policy/


�3 C2. Did you discuss the experimental setup, including hyperparameter search and best-found
hyperparameter values?
Appendix A

�3 C3. Did you report descriptive statistics about your results (e.g., error bars around results, summary
statistics from sets of experiments), and is it transparent whether you are reporting the max, mean,
etc. or just a single run?
Left blank.

�7 C4. If you used existing packages (e.g., for preprocessing, for normalization, or for evaluation), did
you report the implementation, model, and parameter settings used (e.g., NLTK, Spacy, ROUGE,
etc.)?
Left blank.

D �7 Did you use human annotators (e.g., crowdworkers) or research with human participants?
Left blank.

�7 D1. Did you report the full text of instructions given to participants, including e.g., screenshots,
disclaimers of any risks to participants or annotators, etc.?
Left blank.

�7 D2. Did you report information about how you recruited (e.g., crowdsourcing platform, students)
and paid participants, and discuss if such payment is adequate given the participants’ demographic
(e.g., country of residence)?
Left blank.

�7 D3. Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? For example, if you collected data via crowdsourcing, did your instructions to
crowdworkers explain how the data would be used?
Left blank.

�7 D4. Was the data collection protocol approved (or determined exempt) by an ethics review board?
Left blank.

�7 D5. Did you report the basic demographic and geographic characteristics of the annotator population
that is the source of the data?
Left blank.

14366


