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Abstract

Instruction tuning enables pretrained language
models to perform new tasks from inference-
time natural language descriptions. These ap-
proaches rely on vast amounts of human super-
vision in the form of crowdsourced datasets or
user interactions. In this work, we introduce
Unnatural Instructions: a large dataset of cre-
ative and diverse instructions, collected with
virtually no human labor. We collect 64,000
examples by prompting a language model with
three seed examples of instructions and elic-
iting a fourth. This set is then expanded by
prompting the model to rephrase each instruc-
tion, creating a total of approximately 240,000
examples of instructions, inputs, and outputs.
Experiments show that despite containing a
fair amount of noise, training on Unnatural In-
structions rivals the effectiveness of training
on open-source manually-curated datasets, sur-
passing the performance of models such as
T0++ and Tk-Instruct across various bench-
marks. These results demonstrate the poten-
tial of model-generated data as a cost-effective
alternative to crowdsourcing for dataset expan-
sion and diversification.

1 Introduction

Instruction tuning enables pretrained language
models to generalize to unseen tasks in a zero-shot
setting (Sanh et al., 2021; Wei et al., 2021). One
way to collect examples of instructions and their
execution is to reformulate existing NLP datasets
in an explicit instruction-input-output format via
prompt engineering (Mishra et al., 2022; Wang
et al., 2022). However, the resulting data is limited
to existing academic benchmarks, even though the
instruction paradigm can describe any text-based
task (Efrat and Levy, 2020). Alternatively, Ouyang
et al. (2022) collect user-generated prompts and
manually annotate their expected outputs, reflect-
ing a different (and arguably more desirable) dis-
tribution of the instruction space, but requiring a

live application with existing users and major in-
vestments in human annotation. Can we create a
large dataset of instructions that is diverse in tasks,
content, and phrasing, without human labor?

We introduce Unnatural Instructions, a dataset
of natural language instructions and their corre-
sponding inputs and outputs. Inspired by recent
work on utilizing language models for data genera-
tion (Schick and Schütze, 2021b; Lee et al., 2021;
Liu et al., 2022a), we collect data in a fully auto-
matic manner by prompting a pretrained language
model with three examples from the Super-Natural
Instructions1 dataset (Mishra et al., 2022; Wang
et al., 2022) and asking the model to generate a
fourth (Figure 1). We repeat this process with 5
different seeds – i.e. the entire process requires
only 15 instruction examples – to automatically pro-
duce 64,000 diverse triplets of instructions, inputs,
and outputs.2 We further diversify the dataset’s
format by generating additional natural language
paraphrases of each instruction, while preserving
the contents of any input arguments and outputs,
expanding the dataset to approximately 240,000
examples. Although the dataset contains noise,
our analysis reveals that more than 50% of gen-
erated examples are indeed correct, and that even
incorrect examples typically contain valuable in-
formation for instruction tuning. At the same time,
we find that Unnatural Instructions contains highly
creative tasks – some of which are very different
from “classic” NLP tasks – and has a more diverse
set of instructions than Super-Natural Instructions.

Experiments show that fine-tuning an 11B-
parameter T5 model (Raffel et al., 2020) on Un-
natural Instructions can outperform both T0++
(Sanh et al., 2021) and Tk-Instruct (Wang et al.,
2022) across several benchmarks, including Super-
Natural Instructions (Wang et al., 2022), BIG-

1Also known as Natural Instructions v2.
2In practice, we collected 68,478 examples, but only used

subsets of 64,000 examples for training.
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bench Hard (Suzgun et al., 2022), and LMentry
(Efrat et al., 2022). When controlling for all vari-
ables besides the data, we find that a model trained
on Unnatural Instructions performs competitively
with a baseline model trained on Super-Natural In-
structions. In particular, we observe an 18-point
gain on BIG-bench Hard (original task formula-
tion) and a 16-point gain on LMentry, suggesting
that Unnatural Instructions is particularly useful for
generalizing to instructions that deviate from the
distribution of classic NLP tasks. These improve-
ments become even more pronounced when the
cost of generating examples is amortized; in this
case, training on Unnatural Instructions substan-
tially outperforms our baseline on all benchmarks.
We observe a log-linear relationship between the
number of generated examples and downstream
task performance, suggesting that performance of
models trained on Unnatural Instructions can fur-
ther be improved simply by increasing its size.

Beyond the immediate implications on instruc-
tion tuning, this work demonstrates the viability of
automatic dataset expansion using language mod-
els as an alternative to crowdsourcing. Unnatural
Instructions highlights the ability of language mod-
els to produce creative and diverse data, a trait that
is difficult to obtain with crowd workers, who lack
the intrinsic motivation to create novel examples
and typically collapse into predictable heuristics to
form annotation artifacts (Gururangan et al., 2018).
At the same time, language models are faster and
cheaper than human labor, opening up new possi-
bilities for scaling up data annotation.

2 Data Collection

We introduce Unnatural Instructions, a dataset
of 240,670 diverse natural language instructions.
Each example contains a natural language instruc-
tion as input and its expected execution as output.
Table 2 displays examples from the dataset.

Unnatural Instructions is collected in a com-
pletely automatic process, requiring a seed of only
15 manually-constructed examples, which can be
produced in about one hour of human labor. We
first collect a core set of 68,478 examples (§2.1)
by prompting a pretrained language model M with
a seed of 3 manually-annotated examples to pro-
duce a new (fourth) example. This phase uses a
structured instruction format and filtering heuris-
tics to ensure data quality. We then expand the core
dataset by rephrasing the structured instructions in

Example 1
Instruction: You are given a science question (easy-level) and four 
answer options (associated with “A”, “B”, “C”, “D”). Your task is to find the 
correct answer based on scientific facts, knowledge, and reasoning. Do 
not generate anything else apart from one of the following characters: 
‘A’, ‘B, ‘C’, ‘D’. There is only one correct answer for each question.
Input: Which part of a bicycle BEST moves in a circle? (A) Seat (B) 
Frame (C) Foot pedal (D) Kickstand
Constraints: The output should be one of the following characters: ‘A’, 
‘B, ‘C’, ‘D’.

Example 2
Instruction: You are given a negative review and your task is to convert 
it to a positive review by one or more making minimal changes. Avoid 
changing the context of the review.
Input: we stood there in shock, because we never expected this.  
Constraints: None.

Example 3
Instruction: In this task, you are given two sentences taken from a 
conversation, and your job is to classify whether these given sentences 
are sequential or not. We will mark the given sentence pair as ’True’ if 
it’s sequential, otherwise ’False’. The two sentences are spoken by two 
different people.
Input: Noah: When and where are we meeting? :), Madison: I thought 
you were busy...? 
Constraints: None.

Example 4
Instruction: In this task, you will be given a profile of someone and your 
job is to generate a set of interesting questions that can lead to a 
conversation with the person.
Input: Yvonne has been playing the violin since she was four years old. 
She loves all kinds of music, but her favorite composer is Bach.
Constraints: None.

Figure 1: Our data generation prompt. Blue: The meta-
prompt, which contains the number of the in-context
example, as well as the constant fields of each exam-
ple: instruction, input, and constraints. Black: The
in-context examples. We show here one of our 5 in-
context seeds. Pink: One of the model’s generations for
the given prompt.

free-form natural language (§2.2). This expansion
is performed automatically by prompting a lan-
guage model with manually-constructed examples,
scaling up the dataset more than 3-fold. Through-
out this section, we use OpenAI’s text-davinci-002
as M . See §6 for experiments with other models.

2.1 Core Dataset Generation

The core dataset consists of examples in a struc-
tured format, making it easier for the generating
model M to predict and for us to filter automati-
cally. We use stochastic decoding to generate ex-
ample inputs (to promote creativity), followed by
deterministic decoding to generate their outputs
(for accuracy). Figure 2 illustrates the process.

Format Each example in the core dataset con-
tains four fields: (1) An instruction describing the
task. The instruction can be a generic template (e.g.
“Write whether the following review is positive or
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x1 x2 x3 Instruction: …
Input: …
Constraints: …

M M
Output: …

finetune Instruction-
Tuned Model

nucleus
sampling

greedy
decoding

Figure 2: The core Unnatural Instructions generation pipeline. We use a seed of three in-context demonstrations
x1, x2, x3 to create a large dataset of NLP tasks with instructions, inputs and outputs. As a first step, we sample
instructions, inputs, and constraints from a language model M . In the next step, we use M to deterministically
generate the corresponding outputs. Finally, the data can be used for instruction tuning.

negative”) that can be instantiated by a particular in-
put argument (e.g. the review itself). (2) The input
argument that instantiates the instruction, creating a
specific example of the task. (3) Output space con-
straints, which detail the restrictions on the task’s
output space. Constraints are mainly relevant for
classification tasks; for tasks with no specific out-
put space constraints, this field is “None.” (4) A
textual output reflecting a correct execution of the
instruction given the input arguments and output
space constraints. The first three fields (instruc-
tion, input argument, constraints) are the model’s
input, and the output field acts as the reference for
training and/or evaluation. The constraints field is
meant to guide M during output generation and is
discarded after generating the outputs (see next).
In Appendix D we provide data-driven evidence
for selecting this particular format.

Input Generation We first generate examples of
instruction-input-constraints by prompting a model
with three task demonstrations x1, x2, x3, each pre-
sented in the structured format (without outputs).
These demonstrations are wrapped by a simple
meta-prompt that incentivizes the model to create
a fourth example x4, as illustrated in Figure 1.

We use 5 seeds of 3 demonstrations each to gen-
erate the core dataset; i.e., the whole process re-
quires only 15 examples. Demonstrations are taken
from the Super-Natural Instructions (Wang et al.,
2022) train set. To obtain various examples us-
ing the same prompt, decoding is done by nucleus
sampling with p = 0.99 (Holtzman et al., 2020).

Filtering We apply three automatic filters to the
generated examples to remove: (1) model gener-
ations that do not include the three input fields
(instruction, input argument, and constraints), (2)
instructions and inputs that are identical to those
demonstrated in the prompt, (3) duplicate exam-
ples, i.e. two different examples that have the same
instruction and input argument.

Output Generation Given a generated example
x, we generate the corresponding output y by con-
ditioning a pretrained language model with the in-
struction, input argument, and constraints (if not
none), followed by an “Output:” prompt. Here
we apply greedy decoding to prioritize correctness
over creativity. We ignore examples for which the
generated output is an empty string.

2.2 Template Expansion

Examples in our core dataset have a strict
instruction-input-output format. To increase the
format diversity and obtain tasks phrased in free-
form natural language (Schick and Schütze, 2021a;
Sanh et al., 2021), we collect alternative formu-
lations that preserve the content of the original
instructions. Specifically, we prompt a language
model to reformulate the core dataset tasks and col-
lect two alternative formulations for each generated
task.3 Alternative formulations are often shorter
and less formal than the original instructions. The
rephrasing prompt contains two examples of in-
structions and their alternative formulation. We do
not include inputs, constraints, and outputs in the
rephrasing prompt; instead, we utilize the already-
generated inputs and outputs to complement the
rephrased instruction. Unlike the examples in the
core dataset, the input is often embedded into the
task description. We achieve that by adding an
“{INPUT}” placeholder, which marks the position
for input insertion (Figure 3).

In some cases, the model generates two identical
reformulations, or it copies the original instruction.
Some alternative formulations may also have an
invalid format - e.g., not containing the “{INPUT}”
placeholder. When such failures occur we continue
to sample reformulations, stopping after five unsuc-
cessful attempts. Consequently, some instructions
have only one alternative formulation, while oth-
ers have none. Overall, more than 97.5% of the

3The seed reformulations in each prompt are inspired and
partially taken from PromptSource (Bach et al., 2022).
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Example 1
Instruction: In this task, you are given an article. Your task 
is to summarize the article in a sentence.    
Input: {INPUT}
Alternative formulation: My college roommate asked me 
what this article means: “{INPUT}”. So I recapped it in 
layman’s terms:

Example 2
Instruction: This task is about writing a correct answer for 
the reading comprehension task. Based on the information 
provided in a given passage…
Input: {INPUT}   
Alternative formulation: {INPUT} Based on the given 
context, the answer to the question is

Example 3
Instruction: In this task, you are asked to determine 
whether the given recipe is for a savory or sweet dish. If it 
is for a savory dish, output “SAVORY”. If the recipe is for a 
sweet dish, output “SWEET”.
Input: {INPUT}   
Alternative formulation: Given the following recipe, 
{INPUT}, is the dish savory or sweet? Your output should 
be “SAVORY” or “SWEET”

Figure 3: Our template expansion prompt. Black: Few-
shot demonstrations of instructions and alternative for-
mulations. Blue: The instruction we wish to paraphrase.
Pink: Model-generated task reformulation.

instructions have two distinct, valid reformulations.
In fact, some instructions end up with more than

two paraphrases because we generate two para-
phrases per example (i.e. instruction-input-output
pair) and the core dataset contains examples that
share the exact same instruction but not the same
input argument. Therefore, by cross-referencing
each instruction’s alternative phrasings with all of
its input arguments, we can extend the data even
further and arrive at a total of 240,670 examples
without additional cost.

3 Data Analysis

We first demonstrate the creativity of Unnatu-
ral Instructions, and then manually analyze 200
randomly-sampled examples from our core dataset,
focusing on correctness and diversity. We also
compare our data’s distribution to Super-Natural
Instructions, and find our inputs to be more diverse.

Creativity A major challenge when creating an
instruction dataset is task creativity. Crowd work-
ers typically collapse into predictable heuristics to
form annotation artifacts (Gururangan et al., 2018).
While the high performance of models trained on
Unnatural Instructions (see §5) suggests that it is

indeed diverse and creative, we also present in Ta-
ble 1 some cherry-picked examples, providing a
glimpse at their creativity.

Correctness When evaluating correctness, we
test whether (1) the generated instructions are logi-
cal and executable, (2) the input arguments corre-
spond to the task described in the instruction, and
(3) the outputs are correct, given the instruction and
input. Although our data filtering process is mini-
mal, 113 of the 200 analyzed examples (56.5%) are
correct. Of the 87 incorrect examples, 9 (4.5%) had
incomprehensible instructions, 35 (17.5%) had an
input that did not match the task description, and 43
(21.5%) had incorrect outputs. Table 2 shows some
correct and incorrect examples from our analysis.

While the amount of noise in the data may raise
concerns regarding its usability, many of the exam-
ples that were marked as incorrect can still be con-
sidered informative. For example, one erroneous
example had the instruction “In this task, you will
be provided with a list of countries and their corre-
sponding capital cities. You are also given a list of
clues...For each clue, determine which country it is
referring to and write down that country’s name...”
The input argument was “Clue 1: This capital city
is on two different continents.” This example is
incorrect since the input does not conform with the
format described by the instruction – a list of coun-
tries and their capitals is not provided, only a clue.
However, the output is Istanbul, Turkey, which in-
deed lies in both Europe and Asia and therefore
corresponds with the input clue. In §5 we show
that, despite being noisy, Unnatural Instructions
provides a highly informative training signal.

Diversity We manually cluster the instructions
into tasks and measure the number of unique types.
Out of the 200 examples tested, we identify 117
distinct tasks. While many tasks are classical NLP
tasks, such as sentiment analysis, question answer-
ing, and summarization, others are not quite canon-
ical, and some are very specific, such as detecting
a recipe given a list of ingredients. Table 3 shows
the most commonly generated tasks from the set
of 200 analyzed examples. Other tasks appeared 3
times or less, with 85 tasks appearing only once.

We also analyze how similar each pair of exam-
ples is, as a general proxy for diversity. Specifi-
cally, we sample 10,000 pairs of examples from
Unnatural Instructions, and compute the similar-
ity of their inputs using BERTScore (Zhang et al.,
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Instruction Category

You need to answer the question ’Is this a good experiment design?’, given an experiment
scenario. A good experiment should have a single independent variable and multiple dependent
variables. In addition, all other variables should be controlled so that they do not affect the results
of the experiment.

Experiment Verification

You are given a recipe for baking muffins that contains some errors. Your task is to correct the
errors in the instructions by replacing each underlined word with the correct one from the options
provided.

Recipe Correction

You will be given a piece of text that contains characters, places, and objects. For each character
in the text, you need to determine whether they are static or dynamic. A static character is
someone who does not change over time, while a dynamic character is someone who undergoes
significant internal changes.

Character Categorization

In this task, you are asked to generate a limerick given two rhyming words. A limerick is a
five-line poem with the following rhyme scheme: AABBA. The first, second and fifth lines must
be of three beats, while the third and fourth lines must be of two beats each. Additionally, all
poems should have the same meter (e.g., iambic pentameter)

Poem Generation

I’m not sure what this idiom means: “{INPUT}”. Could you give me an example? Idiom Explanation

{INPUT} By analyzing the writing styles of the two passages, do you think they were written by
the same author?

Author Classification

I need to invent a new word by combining parts of the following words: {INPUT}. In what order
should I put the parts together?

Word Invention

What is the punchline to the following joke? {INPUT} Humor Understanding

Table 1: Examples of eight interesting generated instructions and their corresponding category. The first four
examples are taken from the core dataset, while the last four were generated during the template expansion phase.
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Figure 4: Similarity scores distribution for Super-
Natural Instructions and for Unnatural Instructions, ob-
tained by sampling 10,000 pairs of examples from each
dataset and computing their similarity.

2020). We repeat this process for Super-Natural
Instructions, producing two empirical distributions.
Figure 4 shows that the inputs of Unnatural Instruc-
tions tend to be less similar to each other than the
inputs of Super-Natural Instructions. This result
comes as a surprise considering the fact that the en-
tire Unnatural Instructions dataset was constructed
by conditioning only on 15 original examples.

4 Experimental Setup

We describe model fine-tuning on Unnatural In-
structions and our evaluation protocol.

4.1 Fine-Tuning on Unnatural Instructions

We fine-tune T5-LM, the language-model-adapted
variant of T5-11B (Raffel et al., 2020; Lester et al.,
2021). We follow standard practice for fine-tuning,
using a batch size of 16 examples over 3 epochs.
For training on our core dataset, we use the same
template as Wang et al. (2022) for formatting in-
structions and inputs. Our full set of training hyper-
parameters is available in Appendix A. We create a
small validation set of 1,000 examples for model
selection following the methodology proposed by
Wang et al. (2022): we randomly select 10 exam-
ples from 100 random tasks of the Super-Natural
Instructions training set.

4.2 Baselines

We measure the relative utility of Unnatural Instruc-
tions by comparing it to a variety of models, all
based on T5-11B, which were fine-tuned with dif-
ferent types and quantities of manually-annotated
instruction data.

T0++ (Sanh et al., 2021) is an instruction-tuned
variant of T5-LM, trained on tasks in the Prompt-
Source (Bach et al., 2022) prompt formats.

Tk-Instruct Wang et al. (2022) fine-tune T5 v1.1
on Super-Natural Instructions, using a subsample
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Example

Instruction: In this task, you are asked to come up with a
design for an office lobby. The client has provided specific
instructions on what they want in the lobby, and it is your job
to create a floor plan that meets all of their requirements. (✓)
Input: Client wants a welcoming environment with space for
people to wait comfortably without feeling cramped. They
also would like some sort of area where people can do work if
they need to kill some time before their next meeting. (✓)
Output: [...] Based on these requirements, a possible floor
plan [...] The lobby would have a reception area [...] with
access to outlets, and a coffee station. (✓)

Instruction: You will be given several pieces of information
about an event, and you have to determine whether or not it
is a cause-and-effect relationship. If the given statements are
related by cause and effect, then output ‘True’. Otherwise,
output ‘False’. (✓)
Input: Statements: [‘The tornado damaged the city’, ‘Many
people were left homeless’]. (✓)
Output: True (✓)

Instruction: You are to determine if the statement is true or
false. (✓)
Input: Text: Santa Claus lives at the North Pole. (✓)
Output: False (✗)

Instruction: You are given a scientific experiment scenario
and your job is to determine which variable(s) the scientist
should control in order to test the hypothesis. (✓)
Input: The hypothesis is “If a plant receives more sunlight,
then it will grow taller.” Which variable(s) should the scientist
control? (✗)
Output: A (–)

Table 2: Examples of generated instructions, inputs and
outputs in our core dataset. For the first two examples,
the entire pair of instruction, input and output is valid.
The third example has an incorrect output; in the fourth
example, the experiment is not described in the input.

of 757 tasks with 100 examples each. Tk-Instruct
is trained with a batch size of 1,024 examples
for 1,000 steps. Since our evaluation focuses on
zero-shot instruction understanding, we use the
definition-only version of Tk-Instruct.

FLAN-T5 Chung et al. (2022) fine-tune T5 on a
collection of tasks phrased as instructions in multi-
ple prompting setups (zero-shot, few-shot, Chain-
of-Thought (Wei et al., 2022)), achieving impres-
sive zero-shot generalization capabilities.

T5-LM on Natural Instructions Our main point
of comparison is the utility of the original manually-
curated instructions in Super-Natural Instructions.
We therefore train a model which is identical to
ours in all aspects but data. Specifically, we fine-
tune the LM-adapted variant of T5-11B on a sub-
sample of 64,000 examples from Super-Natural
Instructions training set, excluding examples from

Task #Examples

Question Answering 11
Sentiment Analysis 10
Arithmetic 8
Geometry 8
Event Ordering 7
Fact Verification 5
Fill-in-the-Blank 5
General Math Puzzles 4
Identifying Overlapping Strings 4
Array Manipulations and Puzzles 4

Table 3: Top 10 tasks by #examples, out of the 200
manually-analyzed Unnatural Instructions examples.

any task that participates in the validation set. This
model differs from Tk-Instruct along three aspects:
the dataset subsample, the base model (T5-LM),
and some training hyperparameters (batch size 16
for 3 epochs).

4.3 Evaluation
We evaluate models on four different benchmarks,
measuring a range of capabilities. All evaluations
are carried out in a zero-shot setting, without few-
shot demonstrations, unless explicitly provided in
the instructions. See the full evaluation details in
Appendix B.

Natural Instructions We evaluate models on the
test set of Super-Natural Instructions (Mishra et al.,
2022; Wang et al., 2022). As in the original papers,
outputs are generated using greedy decoding, and
performance is measured using Rouge-L.

T0: Zero-Shot We evaluate models on the held-
out set of T0 (Sanh et al., 2021), using rank clas-
sification for decoding and accuracy as a metric.
For fair comparison, we remove tasks supersets of
which are present in the Tk-Instruct training set.
The final set contains six tasks: ANLI R1-R3, CB,
COPA and RTE. We refer to this evaluation set as
T0: Zero-Shot. Unlike Super-Natural Instructions,
T0: Zero-Shot tasks do not have a strict format
and are phrased in a rather free-form manner, in-
cluding inputs that can be embedded into the task
description. We therefore expect models trained on
our core dataset (without instruction paraphrases)
to perform poorly under these conditions, while
adding the task reformulation data should boost
performance on T0: Zero-Shot.

BIG-bench: Hard The “hard” subset of BIG-
bench (Suzgun et al., 2022) contains 23 challeng-
ing tasks from BIG-Bench (Srivastava et al., 2022).
We investigate two different formats for all tasks:
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their original format in BIG-bench, and the for-
mat of Suzgun et al. (2022), who reformulate each
task as question answering with manually added
instructions; for the latter, we remove all few-shot
demonstrations. For both formats, we use greedy
decoding and exact match with the reference for
evaluation.

LMentry LMentry (Efrat et al., 2022) is a bench-
mark that tests basic language abilities, designed
to complement common approaches for evaluating
large language models. Outputs are generated by
applying greedy decoding and evaluated using high-
accuracy regular expressions. The benchmark’s
metric is the LMentry score, which combines accu-
racy with multiple aspects of robustness.

5 Results

Our main results are shown in Table 4, which
reports the performance of each model on every
benchmark. Remarkably, T5-LM finetuned on
Unnatural Instructions outperforms several strong
instruction-tuned baselines such as T0++ and Tk-
Instruct; the only exception to this is BIG-bench:
Hard (Orig), where T0++ performs better. Re-
training a model on Super-Natural Instructions
using our exact setup reveals a significantly bet-
ter baseline than Tk-Instruct, using the same data.
However, even in this direct comparison, Unnatu-
ral Instructions leads to stronger or equal perfor-
mance for every dataset except Super-Natural In-
structions itself. While T5-LM finetuned on Unnat-
ural Instructions is outperformed by FLAN-T5, that
model was trained on approximately 60 times more
data. These results demonstrate that automated
data generation with pretrained LMs is a viable and
cost-effective alternative to human-curated data.

5.1 Performance with Template Expansion
We evaluate the contribution of template expansion
(§2.2) to the performance of models trained on
Unnatural Instructions. To this end, we finetune a
single model on our full dataset with paraphrases;
results are shown in the bottom row of Table 4.

Adding instruction paraphrases boosts perfor-
mance on T0: Zero-Shot (+3.3), Big-bench: Hard
in its original format (+12.1) and LMentry (+8.7).
We surmise that this improvement is largely be-
cause examples in our core dataset were generated
based on demonstrations from Super-Natural In-
structions only and therefore have their exact for-
mat and style. Accordingly, models trained on

our core dataset rely too much on this specific for-
mat and cannot generalize well to different for-
mats found in other benchmarks. Obtaining more
format diversity through template expansion suc-
cessfully addresses this issue. On the other hand,
over-reliance on the format of Super-Natural In-
structions is probably preferable when testing on
this dataset itself, which explains the performance
drop when adding paraphrases compared to the
boost in performance on other benchmarks.

While some of the performance gains observed
may also be attributed to the fact that adding para-
phrases simply increases the data, in §5.2 we show
that template expansion is helpful even when con-
trolling for dataset size.

5.2 Performance Scaling by Dataset Size
As all of our data is generated from the same
model using the same set of prompts, scaling up
the amount of generated examples might lead to
numerous repetitions and, as a consequence, di-
minishing returns in terms of downstream task per-
formance. To investigate whether this is an issue,
we analyze how the amount of training examples
affects the performance of our finetuned models.
To this end, we train models on subsets of both
Super-Natural Instructions and Unnatural Instruc-
tions, ranging from 250 to 64,000 examples. As
shown in Figure 5, our core and full data as well
as Super-Natural Instructions all exhibit log-linear
scaling laws, suggesting that even for subsets of
Unnatural Instructions containing thousands of ex-
amples, simply generating more examples still adds
a valuable signal to our training data.

Results for LMentry (Figure 5) show that our
template expansion process is still beneficial when
controlling for dataset size. The added value of
the paraphrases is therefore likely to be in terms of
format diversity rather than solely as a method for
increasing the amount of data.

5.3 Performance Scaling by Cost
In practical scenarios with fixed annotation budgets,
the actual cost associated with a certain level of per-
formance is even more relevant than the number of
required examples. We therefore measure model
performance as a function of the cost for obtaining
the training data. Based on OpenAI’s pricing as of
December 2022, the cost for generating an exam-
ple is estimated at $0.02 for our core dataset, and
$0.01 for the expanded dataset. Kiela et al. (2021)
estimate human annotation cost at $0.50–$1.00 per
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Model #Examples Super-Natural T0: BIG-bench: LMentryInstructions Zero-Shot Hard (Orig/QA)

Prior Work
T5-LM 0 24.3 40.2 0.0 / 0.7 20.6
T0++ 12,492,800 40.3 NHO 20.2 / 13.9 38.3
Tk-Instruct 75,417 45.6 41.4 5.8 / 11.8 35.7
FLAN-T5 14,336,000 NHO NHO 39.3 / 40.0 52.2

Direct Comparison Baseline
T5-LM on Super-Natural Instructions 64,000 54.0 44.0 10.2 / 29.7 34.6
Our Approach
T5-LM on Unnatural Instructions 64,000 51.9 45.7 16.0 / 29.5 42.0

+ Instruction Paraphrases 240,670 49.3 49.0 28.1 / 29.4 50.7

Table 4: Model performance on four benchmarks. Best results in our direct comparison setup are bold, best results
overall are underlined. NHO indicates that a benchmark’s data is not held out because it was used for training.

example, excluding indirect costs such as task de-
sign and UX development; for comparison with
our automatic data collection method, we assume
the lower-bound human annotation cost of $0.50.

As shown in Figure 5, Unnatural Instructions is
clearly more cost-efficient than manually curated
data. This is true even for the Super-Natural In-
structions test set, where a model trained on Un-
natural Instructions is weaker than a model trained
on Super-Natural Instructions for a fixed number
of examples, but better when controlling for cost,
showing that our automatic approach outperforms
crowdsourcing for a fixed annotation budget.

6 Generative Model Ablations

As a data generation model, we used text-davinci-
002, an instruction-tuned variant of GPT-3 (Brown
et al., 2020). However, our approach is not limited
to this specific model. We experiment with original
(untuned) GPT-3 model by using it as the model M
in both the input generation and output generation
phases (see §2). We train models for 1,500 steps us-
ing 2,000 examples and evaluate the Super-Natural
Instructions validation set performance as a proxy,
averaged across three different random seeds.

Table 5 shows how replacing an instruction-
tuned model with a vanilla model affects the quality
of the data. We observe that while the quality of
generated inputs does drop by 4.5 points, it is well
within the range of other prompt ablations (see Ap-
pendix D). In other words, informative and diverse
instructions can be generated by untuned language
models. However, generating outputs does seem
to require instruction tuning. A manual analysis
reveals that outputs generated by GPT-3 mainly suf-
fer from the model’s inability to stop, often starting
with the correct answer, but then degenerating into
repetitions or tangents. While this may be reme-

Model Used to Generate Super-Natural
Input Output Instructions

text-davinci-002 text-davinci-002 48.7 ± 0.3
GPT-3 text-davinci-002 44.2 ± 0.7
GPT-3 GPT-3 4.1 ± 0.1

Table 5: Performance of 11B T5-LM models trained on
2,000 examples, generated with different models, on the
Super-Natural Instructions validation set.

died through various post-processing heuristics, we
leave exploration of such methods to future work.

7 Related Work

Instruction Tuning Efrat and Levy (2020) pro-
pose the Instruction Paradigm, where models learn
new tasks from natural language instructions alone.
Mishra et al. (2022); Wang et al. (2022) construct
the first large-scale instruction benchmarks by col-
lecting crowdsourcing instructions used to create
NLP datasets and converting them into a uniform
format. Sanh et al. (2021); Wei et al. (2021) fur-
ther extend the usability of instructions by suggest-
ing instruction tuning, where a language model is
trained on many natural language instructions in the
hope that it will generalize to new, unseen instruc-
tion tasks. Chung et al. (2022) advance instruction
tuning by scaling the number of tasks, scaling the
model size, and adding chain-of-thought (Wei et al.,
2022), while Ouyang et al. (2022) propose a rein-
forcement learning approach for instruction tuning
from comparative human judgements.

Automatic Data Generation Obtaining large-
scale supervised data can be expensive and time-
consuming, making automatic data generation ap-
pealing. A common approach is to automati-
cally augment existing datasets (Anaby-Tavor et al.,
2020; Andreas, 2020; Yang et al., 2020; Kaushik
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Figure 5: Scaling experiments comparing Unnatural Instructions with Super-Natural Instructions. Top row: Model
performance when controlling for dataset size, tested on Super-Natural Instructions (left) and LMentry (right).
Bottom row: Model performance when controlling for the cost of obtaining data, tested on Super-Natural
Instructions (left) and LMentry (right).

et al., 2020; Lee et al., 2021, inter alia). Kiela
et al. (2021) suggest a human-and-model-in-the-
loop dataset creation; In the same manner, Nie et al.
(2020) apply a process to create training data for
the task of NLI (Dagan et al., 2006; Bowman et al.,
2015). Liu et al. (2022a) combine human annota-
tors and GPT-3, create challenging NLI examples.

Other work suggested creating datasets entirely
automatically, without the need for labeled data.
Schick and Schütze (2021b) and Ye et al. (2022)
propose to leverage pretrained language models to
generate entire labeled datasets from scratch, for
a given, predefined task. Agrawal et al. (2022)
use pretrained language models to automatically
construct multilingual QA data using only five ex-
amples per language.

8 Conclusion

We introduce Unnatural Instructions, an automat-
ically generated dataset of natural language in-
structions and their corresponding inputs and out-

puts. To the best of our knowledge, this is the first
general-purpose NLP dataset that was automati-
cally generated. Our experiments show that models
trained on Unnatural Instructions outperforms mod-
els trained on manually annotated datasets across
several benchmarks. Unnatural Instructions is not
only cost-effective, we also provide evidence of
enhanced diversity in the instructions produced and
a high level of creativity in the tasks devised, a trait
difficult to obtain with crowd workers. Ablations
show that even weaker models without instruc-
tion tuning can generate useful instructions, though
they may struggle with producing the correspond-
ing outputs. However, coming up with interesting
tasks and writing diverse instructions is arguably
the main challenge of the data collection process,
whereas given instructions and inputs, outputs are
often far easier to annotate through crowdsourc-
ing. Our findings incentivize utilizing models for
general-purpose data generation, which we view as
an intriguing direction for future research.
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9 Limitations

We point at some directions for future improve-
ments in automatic instruction generation.

First, as shown in §3, Unnatural Instructions
contains noisy examples, in which either the in-
struction, input, or output are invalid. Future work
may focus on developing better filters for such ex-
amples - e.g., by annotating a subset of examples
as either valid or not and training a classifier for
determining the correctness of generated instances
(West et al., 2022; Liu et al., 2022a).

Second, future work may employ a human-in-
the-loop approach, where humans should recognize
challenging patterns, encouraging models to gener-
ate more complex examples (Liu et al., 2022a).
In another human-in-the-loop scenario, models
trained on Unnatural Instructions can be queried
by humans to find examples on which these mod-
els fail, thus collecting harder examples (Nie et al.,
2020).

Finally, language models are known to some-
times reflect undesirable biases present in their
training data. Automatically generated data may
therefore contain such content. We note that during
our manual analysis, we did not notice any harmful
examples. Still, future work may consider applying
a filtering mechanism to reduce the risk of having
biased content.
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A Fine-Tuning Hyperparameters

We use the same set of hyperparameters for fine-
tuning experiments with T5-LM (Raffel et al.,
2020; Lester et al., 2021). All models are trained
for up to max(3 epochs, 3000 steps) and the final
model is chosen based on Rouge-L on our valida-
tion set, where we evaluate every 100 steps. We
use a batch size of 16, a maximum learning rate of
1 · 10−5 with warm-up for the first 10% of training
and a weight decay of 0.01. We truncate inputs at
1,024 tokens and outputs at 128 tokens. All mod-
els are trained using DeepSpeed’s ZeRO-3 (Rasley
et al., 2020). Training on up to 64,000 examples is
performed on 32 NVIDIA Tesla V100 16GB Volta
GPUs using FP32; for bigger training datasets, we
used 8 NVIDIA A100 40GB GPUs with BF16. For
computing Rouge-L and exact match scores, we
use the implementation of Wang et al. (2022).

B Evaluation Details

For evaluating model performance on Super-
Natural Instructions, T0: Zero-Shot and LMEntry,
we use their official evaluation scripts. For evalua-
tion on BIG-bench: Hard, we lowercase outputs, re-
move punctuation characters and trim extra whites-
pace before computing exact match scores. The
only exception to this is the task dyck_languages,
where the target output consists entirely of punctu-
ation characters.

C Data Generation Prompts

Table 6 presents the in-context demonstrations we
used, taken from Wang et al. (2022).
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In-Context Demonstrations

Seed 1

Example 1
Instruction: In this task, you’re given passages that contain mentions of names of people, places, or things. Some of these
mentions refer to the same person, place, or thing. Your job is to write questions that evaluate one’s understanding of such
references. Good questions are expected to link pronouns (she, her, him, his, their, etc.) or other mentions to people, places, or
things to which they may refer. Do not ask questions that can be answered correctly without understanding the paragraph or
having multiple answers. Avoid questions that do not link phrases referring to the same entity. For each of your questions, the
answer should be one or more phrases in the paragraph, and it should be unambiguous.
Input: Passage: Nearing London, Oliver encounters Jack Dawkins, a pickpocket more commonly known by the nickname
the "Artful Dodger", and his sidekick, a boy of a humorous nature named Charley Bates, but Oliver’s innocent and trusting
nature fails to see any dishonesty in their actions. The Dodger provides Oliver with a free meal and tells him of a gentleman
in London who will "give him lodgings for nothing, and never ask for change". Grateful for the unexpected assistance, Oliver
follows the Dodger to the "old gentleman’s" residence. In this way Oliver unwittingly falls in with an infamous Jewish criminal
known as Fagin, the gentleman of whom the Artful Dodger spoke. Ensnared, Oliver lives with Fagin and his gang of juvenile
pickpockets in their lair at Saffron Hill for some time, unaware of their criminal occupations. He believes they make wallets and
handkerchiefs.
Constraints: None.

Example 2
Instruction: You will be given a piece of text either about an everyday event, or a general statement. If the event seems a plausible
event to you, or the general statement makes sense matches your commonsense, output ’True’, otherwise output ’False’.
Input: Text: The glass fell of a three-story building, so it broke into pieces.
Constraints: The output should be one of the two: ‘True’ or ‘False’.

Example 3
Instruction: You need to answer the question ’Are the given steps in order?’, given a set of steps describing a process. Your
answer must be either Yes or No. If the answer is No, that means the steps are out of order and do not make sense in the order
they are in. If the answer is Yes, that means the steps are in order and make sense in the order that they are in. A set of steps are
not in order if the steps reference information that is introduced in a later step.
Input: Steps: [‘The seeds are dispersed by wind, animals, etc’, ‘The seeds reach the ground’, ‘Grow into new trees’, ‘The process
repeats itself over and over’, ‘A tree produces seeds’,‘These new trees produce seeds’]
Constraints: The output should be one of the two: ‘Yes’ or ‘No’.

Example 4

Seed 2

Example 1
Instruction: In this task, you are given two phrases: Head and Tail, separated with <sep>. The Head and the Tail events are
short phrases possibly involving participants. The names of specific people have been replaced by generic words (e.g., PersonX,
PersonY, PersonZ). PersonX is always the subject of the event. You have to determine whether the Head is used for the Tail or
not. The usage describes everyday affordances or uses of objects and includes both typical and atypical uses. For example, a
popcorn bucket can typically be used to hold popcorn, but it could also serve as a hat in atypical situations. Classify your answers
into “Yes” and “No”. The phrase may also contain “-”, a placeholder that can be an object, a person, and/or an action.
Input: Head: floor mats<sep>Tail: wipe off one’s boots
Constraints: The output should be ‘Yes’ or ‘No’.

Example 2
Instruction: In this task, you’re given a short story of five sentences written in natural language. However, the order of the given
story is not correct. Your job is to return the correct order for the given five sentences to create a coherent short story with the
new order that has the correct flow. Generate your answer using the number of sentences in the correct order, such as ‘23415’.
Input: Sentence1: He is happy now. Sentence2: Rick grew up in a troubled household. Sentence3: It wasn’t long before Rick got
shot in a robbery. Sentence4: The incident caused him to turn a new leaf. Sentence5: He never found good support in family, and
turned to gangs.
Constraints: The output must consist of the numbers representing the sentences.

Example 3
Instruction: In this task, you are given Yelp reviews. The task is to classify a review as “POSITIVE” if the overall sentiment of
the review is positive or as “NEGATIVE” if the overall sentiment of the review is negative.
Input: This is my go to place to get the best chicken Pad Thai! Also the price is super good, considering most places have high
prices and poor quality. Love this place, its definitely a top 5 fav for take out.
Constraints: The output should be ‘POSITIVE’ or ‘NEGATIVE’.

Example 4
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Seed 3

Example 1
Instruction: You are given a question title. You need to classify it into one of the 10 topics: 0 - ‘Society & Culture’, 1 - ‘Science
& Mathematics’, 2 - ‘Health’, 3 - ‘Education & Reference’, 4 - ‘Computers & Internet’, 5 - ‘Sports’, 6 - ‘Business & Finance’, 7
- ‘Entertainment & Music’, 8 - ‘Family & Relationships’, 9 - ’Politics & Government’.
Input :What’s the best way to clean a keyboard?
Constraints: The output should be a number between 0 and 9.

Example 2
Instruction: You are given a target person and two sentences. Your task is to determine whether the second sentence conveys
either a stereotype, anti-stereotype, or is unrelated with respect to the first sentence and the target. A stereotype is a widely held
but oversimplified notion of a group of people. An anti-stereotype is an idea that goes against the widely held but oversimplified
notion of a group of people. Sentences and targets are unrelated if there is no relevance between them.
Input: Target: mother. The mother walked into her kitchen. She pulled a beer out of the fridge and leaned against the doorway,
sipping it slowly.
Constraints: The output should be one of the three: ‘stereotype’, ‘anti-stereotype’ or ‘unrelated’.

Example 3
Instruction: In this task, you are given an article. Your task is to summarize the article in a sentence.
Input: Ms Bourne, who became Sussex’s first PCC in 2012, was declared winner after the vote went to a second count. Three
candidates were eliminated in the first count, leaving only Ms Bourne and Labour’s Michael Jones. In the first count, Ms Bourne
had 114,570 votes and Mr Jones had 61,017. The second count brought their totals to 139,335 and 86,392 respectively. She said:
“I’m absolutely honoured and very privileged to be elected.” She said she needed to “find extra savings because budgets are still
reducing” and “to invest in frontline policing because I know that is really important to people in Sussex”. Voter turnout was
22.5% compared with 15.3% in 2012. The three eliminated in the first count were Green Party candidate James Doyle, UKIP’s
Patrick Lowe and James Walsh from the Liberal Democrats. Results listed alphabetically by surname are as follows. BBC News
App users: tap here to see the results.
Constraints: None.

Example 4

Seed 4

Example 1
Instruction: In this task, you are given Wikipedia articles on a range of topics as passages and a question from the passage. We
ask you to answer the question by classifying the answer as 0 (False) or 1 (True).
Input: Passage: Property tax – Property tax or ‘house tax’ is a local tax on buildings, along with appurtenant land. It is and
imposed on the Possessor (not the custodian of property as per 1978, 44th amendment of constitution). It resembles the US-type
wealth tax and differs from the excise-type UK rate. The tax power is vested in the states and is delegated to local bodies,
specifying the valuation method, rate band, and collection procedures. The tax base is the annual rental value (ARV) or area-based
rating. Owner-occupied and other properties not producing rent are assessed on cost and then converted into ARV by applying a
percentage of cost, usually four percent. Vacant land is generally exempt. Central government properties are exempt. Instead a
‘service charge’ is permissible under executive order. Properties of foreign missions also enjoy tax exemption without requiring
reciprocity. The tax is usually accompanied by service taxes, e.g., water tax, drainage tax, conservancy (sanitation) tax, lighting
tax, all using the same tax base. The rate structure is flat on rural (panchayat) properties, but in the urban (municipal) areas it is
mildly progressive with about 80% of assessments falling in the first two brackets. Question: is house tax and property tax are
same.
Constraints: The output should be 0 or 1.

Example 2
Instruction: Rewrite each original sentence in order to make it easier to understand by non-native speakers of English. You can do
so by replacing complex words with simpler synonyms (i.e. paraphrasing), deleting unimportant information (i.e. compression),
and/or splitting a long complex sentence into several simpler ones. The final simplified sentences need to be grammatical, fluent,
and retain the main ideas of their original counterparts without altering their meanings.
Input: From its inception, it was designated a duty-free port and vied with the neighboring Sultanate of Pattani for trade.
Constraints: None.

Example 3
Instruction: You are provided with an arithmetic question. Your task is to compute the solution using the given arithmetic
operations. The only arithmetic operators needed to answer the questions are’+’(addition) and’-’(subtraction). The answer
should be correct to one decimal place.
Input: Joan found 70 seashells on the beach. She gave Sam some of her seashells, after which she has 27 seashell left. How
many seashells did she give to Sam?
Constraints: None.

Example 4
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Seed 5

Example 1
Instruction: You are given a science question (easy-level) and four answer options (associated with “A”, “B”, “C”, “D”). Your
task is to find the correct answer based on scientific facts, knowledge, and reasoning. Do not generate anything else apart from
one of the following characters: ‘A’, ‘B, ‘C’, ‘D’. There is only one correct answer for each question.
Input: Which part of a bicycle BEST moves in a circle? (A) Seat (B) Frame (C) Foot pedal (D) Kickstand
Constraints: The output should be one of the following characters: ‘A’, ‘B, ‘C’, ‘D’.

Example 2
Instruction: You are given a negative review and your task is to convert it to a positive review by one or more making minimal
changes. Avoid changing the context of the review.
Input: we stood there in shock, because we never expected this.
Constraints: None.

Example 3
Instruction: In this task, you are given two sentences taken from a conversation, and your job is to classify whether these given
sentences are sequential or not. We will mark the given sentence pair as ‘True’ if it’s sequential, otherwise ‘False’. The two
sentences are spoken by two different people.
Input: Noah: When and where are we meeting? :), Madison: I thought you were busy...?
Constraints: The output should be ‘True’ or ‘False’.

Example 4

Table 6: The in-context demonstrations used in our experiments.
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Example 1
Instruction: …
Input: …
Constraints: …

Example 2
Instruction: …
Input: …
Constraints: …

Example 3
Instruction: …
Input: …
Constraints: …

Example 4

Instruction: …
Input: …
Constraints: …

Instruction: …
Input: …
Constraints: …

Instruction: …
Input: …
Constraints: …

Instruction: …

Below are examples of 
instructions describing a 
diverse set of textual 
tasks and their inputs.

Instruction: …
Input: …
Constraints: …

Instruction: …
Input: …
Constraints: …

Instruction: …
Input: …
Constraints: …

Write instructions and 
inputs for other textual 
tasks.

Minimal Enumeration Verbose

Figure 6: The meta-prompts used in our ablations.

D Structural Prompt Ablations

We explore the effect of the different components
of our data collection pipeline by conducting struc-
tural prompt ablations. Throughout this section,
we train models for 1,500 steps using 2,000 exam-
ples and evaluate the Super-Natural Instructions
validation set performance, averaged across three
different random seeds.

D.1 Meta-Prompts

Language models are known to be sensitive to the
meta-prompt – i.e., the text wrapping the in-context
demonstrations, which can include task description
or additional guidance regarding the desired output.
We therefore experiment with three different meta-
prompt styles: minimal, enumeration, and verbose
(Figure 6).

Table 7 presents the results obtained from fine-
tuning on datasets generated with different meta-
prompts. We observe that the simple enumeration
approach elicits more informative examples than
either the minimalistic or verbose approaches. Per-
haps surprisingly, the verbose meta-prompt per-
forms worse than the minimalistic one, possibly
because the last line (the command) interrupts the
pattern, and does not align well with patterns in the
pretraining corpus.4

4While our core dataset was created using the enumera-
tion meta-prompt, the remaining ablation experiments in this
section were run using the verbose meta-prompt.

Meta-Prompt Super-Natural Instructions

Minimal 47.5 ± 0.6
Enumeration 48.7 ± 0.3
Verbose 46.9 ± 0.3

Table 7: Performance of 11B T5-LM models trained on
2,000 examples, generated with each meta-prompt, on
the Super-Natural Instructions validation set.

Seed Demonstrations Super-Natural Instructions

1 46.9 ± 0.3
2 46.1 ± 0.3
3 46.8 ± 0.4
4 41.9 ± 1.0
5 46.0 ± 0.2

Mix 46.1 ± 0.3

Table 8: Performance of 11B T5-LM models trained
on 2,000 examples, generated with various sets of three
in-context demonstrations (seeds), on the Super-Natural
Instructions validation set. Mix samples 400 examples
from each of the five single-seed datasets.

D.2 In-Context Examples
Models such as GPT-3 are known to be sensitive
to slight variations in prompt content, resulting
in performance differences when provided with
different demonstrations sampled from the same
dataset (Liu et al., 2022b) and when permuting the
in-context demonstrations (Kumar and Talukdar,
2021; Lu et al., 2022). To account for the effect
of the provided demonstrations on the quality of
the generated data, we experiment with each of our
five demonstration sets separately.5 Table 8 shows
that the data generation pipeline is largely robust
to variations in the in-context demonstrations, with
one outlier (seed 4). Inspecting the differences
between these groups, we find that seed 4 led to
less constrained instructions: 1,376 out of 2,000
examples do not have constraints, whereas that
number is between 28 and 880 for all other sets.
Indeed, in seed 4, only one out of three prompt
demonstrations had constraints, while in other sets,
at least two demonstrations had constraints.

D.3 Constraints
As mentioned in §2, each instruction-input demon-
stration is accompanied by an additional con-
straints field, which details the task’s output space
restrictions (e.g., “entailment”, “contradiction” or
“neutral” for NLI). We note that, in all demonstra-
tions, the instruction itself lists the output space

5See Appendix C for all demonstration sets.
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Use “Constraints:” for Super-Natural
Input Gen Output Gen Instructions

✓ ✓ 46.9 ± 0.3
✓ 43.9 ± 0.7

41.7 ± 0.2

Table 9: Performance of 11B T5-LM models trained on
2,000 examples, generated with and without the con-
straints field, on the Super-Natural Instructions valida-
tion set.

constraints. We hypothesize that adding the con-
straints field may emphasize these restrictions, ul-
timately steering the output generation model to
produce outputs in the correct format. We verify
our hypothesis by conducting two ablation exper-
iments. First, we keep the constraints field when
generating the instructions and inputs, but only use
instructions and input arguments for the output gen-
eration step (i.e., without concatenating generated
constraints). Second, we completely remove the
constraints field from the data generation pipeline,
leaving the instruction field as the only source of
information for output space constraints. Table 9
shows that the constraints field has a positive ef-
fect both on the quality of the generated outputs
and inputs. Removing constraints from the output
generation step reduces performance by 3 points,
and removing the field from the instructions-inputs
generation phase decreases performance by an ad-
ditional 2.2 points.

D.4 Two-Step Process
An alternative to our two-step pipeline is to gen-
erate instruction-input-output triplets in one pass.
To test this approach, we provide the model with
the same prompt used for the instruction-input-
constraints generation, only with an additional out-
put field, added after the constraints field. As Ta-
ble 9 shows, one-step generation obtains a score
that is lower by 1.7 than the default two-step pro-
cess. We suspect that this gap is a result of using
stochastic decoding in the unified input-output gen-
eration phase, which is critical for obtaining diverse
inputs. In contrast, when generating outputs in a
separate phase, we can use deterministic decoding
algorithms to maximize accuracy.

Data Generation Process Super-Natural Instructions

Separate I/O Steps 46.9 ± 0.3
Unified I/O Step 45.2 ± 0.6

Table 10: Performance of 11B T5-LM models trained
on 2,000 examples, generated either using separate input
and output steps or a single unified step, on the Super-
Natural Instructions validation set.
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