
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics
Volume 1: Long Papers, pages 14930–14943

July 9-14, 2023 ©2023 Association for Computational Linguistics

Using counterfactual contrast to improve compositional generalization for
multi-step quantitative reasoning

Armineh Nourbakhsh
Language Technologies Institute,

Carnegie Mellon University
J.P. Morgan AI Research
anourbak@cs.cmu.edu

Sameena Shah
J.P. Morgan AI Research

sameena.shah@jpmorgan.com

Carolyn Rosé
Language Technologies Institute,

Carnegie Mellon University
cprose@cs.cmu.edu

Abstract

In quantitative question answering, composi-
tional generalization is one of the main chal-
lenges of state of the art models, especially
when longer sequences of reasoning steps are
required. In this paper we propose Counter-
Comp, a method that uses counterfactual sce-
narios to generate samples with compositional
contrast. Instead of a data augmentation ap-
proach, CounterComp is based on metric learn-
ing, which allows for direct sampling from the
training set and circumvents the need for ad-
ditional human labels. Our proposed auxiliary
metric learning loss improves the performance
of three state of the art models on four recently
released datasets. We also show how the ap-
proach can improve OOD performance on un-
seen domains, as well as unseen compositions.
Lastly, we demonstrate how the method can
lead to better compositional attention patterns
during training.

1 Introduction

Enterprise documents such as reports, forms, and
analytical articles often include quantitative data
in tabular form. The data in these tables can be
self-contained, but more commonly the surround-
ing text provides more context that is necessary to
understand the content. Answering questions over
these hybrid tabular/text contexts requires reason-
ing that combines verbal and quantitative seman-
tics.

Question answering over quantitative tabu-
lar/text data has gained recent traction with the
release of datasets such as FinQA (Chen et al.,
2021b), TAT-QA (Zhu et al., 2021), and HiTab
(Cheng et al., 2022). Table 2 shows an example
of a question that requires quantitative reasoning
to derive the answer. Given the question and the
tabular context, the output is a single-step program
that leads to the final answer of -20.

A major challenge that state of the art models
face is compositional generalization (Montague,

steps in
output

% wrong
operator(s)

% wrong
operands

% wrong order
of operands

1 step 39.07 53.64 7.28
2 steps 46.75 46.75 6.50
3 steps 56.47 29.41 14.12
>= 4 steps 52.00 40.00 8.00

Table 1: Share of FinQANet errors due to the selection
of wrong operators or operands when applied to the
FinQA dataset (Chen et al., 2021b), broken down by the
number of steps in the output. Note that the numbers
are based on program accuracy, which accounts for
each type of error separately, resulting in the each row
summing up to 1.

1973), especially when the number of reasoning
steps grows (Chen et al., 2021b). In the context
of quantitative QA, compositional generalization
refers to the model’s ability to generalize to new
compositions of previously seen elements. As an
example, if the model has encountered training ex-
amples that demonstrate calculations for “growth
rate” and “percent change”, we would like it to
be able to come up with a reasonable hypothesis
as to how to calculate “percent growth” or “rate
of change”. Table 1 demonstrates how this chal-
lenge becomes more difficult as the number of
reasoning steps grows. For questions that require
longer chains of reasoning, the model learns spu-
rious patterns and unsuccessfully tries to leverage
these memorized patterns to solve new problems.

The Table also shows that as the number of steps
grows, generating the wrong operator becomes a
more dominant mistake than selecting the wrong
operand. Not only is this error more dominant,
but it can also have a more destructive impact on
the chain of reasoning, as it can derail the model’s
hidden representations from that point onward. As
an example, our analysis of the FinQANet model
(Chen et al., 2021b) output showed that if the model
generates an incorrect operator, it is about 30%
more likely to commit other errors in the following

14930

Figure 1: A high-level illustration of our proposed method. The input example (anchor) is processed by cross-
attention and recurrent modules to produce the output step by step. In addition to a regular Cross-Entropy loss,
CounterComp adds an auxiliary triplet loss based on positive and negative examples. Note that the anchor and
pos/neg examples are all processed through the RNN before calculating the triplet loss, a process which we have not
illustrated due to space limitations. Also note that multiple pos/neg examples are sampled at each step.

steps compared to when the model generates an
incorrect operand.

In this paper, we propose CounterComp, an ap-
proach that can enhance compositional learning
in multi-step quantitative QA. We take inspiration
from the symbolic composition of arithmetic opera-
tions, and their correspondence to natural language
phrases. Building on the work on attention align-
ments from previous studies, we propose an auxil-
iary metric learning loss that is focused on specific
components of the input and output. Our sampling
strategy is based on counterfactual scenarios. This
means that the model learns proper representations
for each component based on what-if scenarios. To
the best of our knowledge, this is the first study
that successfully applies component-wise counter-
factual sampling as a metric learning strategy. We
show how, when state of the art models are aug-
mented with our auxiliary metric learning loss, they
exhibit better performance in cases where multi-
step reasoning is required. CounterComp outper-
forms current baselines on four recently released
datasets, and show stronger performance on OOD
samples.

2 Related work

The typical architecture of a quantitative QA model
is composed of a retriever and a generator (Jurafsy
and Martin, 2021). The retriever identifies the par-
ticular context where the answer might be found.
Since the context can be a mix of table cells and

Question What was the net change in
revenue from 2019 to 2020?

Tabular
context

Metric ($M) 2018 2019 2020
Operating
expenses

35 29 30

Revenue 70 80 60

Verbalized
facts

2019 revenue was $80M.
2020 revenue was $60M.

Output
program subtract(80, 60)

Answer -20

Table 2: Example of a quantitative QA problem over
tabular data.

sentences, often a tabular encoder (Herzig et al.,
2020) or verbalizer (Chen et al., 2021b) is used to
convert the cells into a natural language sequence.
The retrieved context is referred to as retrieved
facts. Next, the generator uses the question along
with the facts to generate the output in a step by
step fashion. In multi-step QA, the generator of-
ten combines a recurrent module with an attention
mechanism (Chen et al., 2021b), as illustrated in
top half of Figure 1.

The output can be assessed in terms of program
accuracy as well as execution accuracy. Our study
is focused on improving program accuracy by en-
couraging compositional generalization in the gen-
erator.

There are two common approaches to improving

14931

compositional generalization. Attention alignment
models encourage explicit alignments between nat-
ural language utterances (e.g. “rate of change”) and
corresponding symbolic math operations (e.g. sub-
traction followed by division). Methods informed
by counterfactuals use what-if scenarios to general-
ize to a wider variety of compositions and reduce
the effect of memorization.

2.1 Attention alignments
Yin et al. (2021) showed that additional supervi-
sion can be used to promote explicit alignments
between components in the input and in the output.
They added a regularization loss that encourages
the cross-attention module to adjust its attention
weights according to gold alignments. Using as
few as 16 examples, their model was able to im-
prove generalization in a semantic parsing task.
CompAQT (Nourbakhsh et al., 2022) extended this
idea to multi-step quantitative QA. Instead of us-
ing additional supervision, it used natural language
heuristics to create noisy alignment labels between
input tokens and output symbols. The additional
alignment loss improved the performance of three
baseline models on multi-step reasoning tasks for
four datasets.

2.2 Methods informed by counterfactuals
The success of alignment-based methods is limited
by the fact that by heavily discouraging memoriza-
tion, they underperform in settings where mem-
orization can be helpful (Oren et al., 2020). To
strike a balance between memorization and gener-
alization, one approach is to generate new training
examples that cover important semantic gaps in the
training data. This is reminiscent of how adver-
sarial training can help better define the semantic
contours of compositional representations (Zhang
et al., 2022). Contrastive or metric learning meth-
ods pursue a similar goal, but instead of generating
new samples, they leverage existing samples within
the training set (Jain et al., 2021).

Counterfactual data augmentation (CAD) meth-
ods strive to achieve this by generating new sam-
ples using what-if scenarios (Zmigrod et al., 2019;
Liu et al., 2021; Chen et al., 2021a). This can be
done by altering a minimally sufficient set of to-
kens in the input such that the output class changes
(Kaushik et al., 2020). There are two main chal-
lenges to creating these samples. First, it is difficult
to identify the minimal set of tokens necessary to
alter the output. Second, there is no guarantee that

a counterfactual sample exists in the training set.
To address these challenges, some studies employ
human labelers (Kaushik et al., 2020) or a third
party model (Huang et al., 2020). In domains like
semantic parsing and quantitative QA where the
output is symbolic, an alternative approach lever-
ages the structure of the output to avoid the need
for human labelers. Li et al. (2022) achieve this by
intervening on the operands. Suppose that a ques-
tion states “What was the net change in revenue
from 2019 to 2020?” and the retriever produces
two (verbalized) table cells: “2019 revenue was
$80M” and “2020 revenue was $60M”. The output
program for this question would be: subtract(80,
60). Given the numeric nature of the operands, it’s
possible to generate new scenarios such as “What
if 2019 revenue was $90?” with the updated output
subtract(90, 60). Employing this method, Li
et al. (2022) augment the TAT-QA dataset (Zhu
et al., 2021) into a new dataset named TAT-HQA.
They also enhance the verbal reasoning capacity of
their model by offering the counterfactual scenario
as a natural language prompt. Their model, named
Learning to Imagine (L2I), outperforms state of the
art models.

As mentioned in the previous section, models
that struggle with compositional generalization suf-
fer from errors in operator selection, whereas L2I
is focused on the selection of operands. In this
paper, we propose CounterComp, a method that fo-
cuses on counterfactual sampling for components
that indicate operators1. Using natural language
constraints from previous studies, we first find com-
ponents that correspond to operators versus those
that correspond to operands. Next, we use an auxil-
iary metric learning loss with positive and negative
samples chosen based on those components. This
helps us avoid the complexities associated with a
data augmentation approach, such as the need for
creation of additional human labels. The next sec-
tion lays out our problem definition in more detail.

3 Problem formulation

Let us consider the example provided by Table
3. Suppose Q is the question, represented as a
sequence of tokens q1, · · · , qN (i.e. “what”, “was”,
“the”, · · · , “2020”, “?”).

F is the evidence obtained by the retriever, made
up of a sequence of tokens f1, · · · , fM (i.e. “2019”,

1Please refer to Appendix C for a study on the use of
CounterComp for operators versus operands.

14932

“revenue”, “was”, · · · , “$60M”).
The concatenation of these two sequences, i.e.

Q||F , forms the input to the generator. The gener-
ator encodes Q||F using a neural language model
such as RoBERTa (Liu et al., 2019), resulting in an
embedding matrix U ∈ Rdenc×(N+M).

Consistent with Chen et al. (2021b), we repre-
sent the output S as a sequence of steps s1, · · · , sL.
Each step sl can be an operator (such as add
or divide), or an operand. Similar to Chen
et al. (2021b), our programs are modeled as right-
expanding binary trees with each operator having
exactly two operands. If necessary, one or more
operands are set to NONE, where NONE is a special
constant. L is pre-defined as the maximum number
of steps allowed. In the example from Table 3, S
is: subtract, 80, 60, NONE, NONE, NONE.

To generate the lth output step sl, the generator
applies a cross-attention module to U , resulting in
the attention weight matrix Al ∈ R1×(N+M) and
the attention output X l ∈ RK . A recurrent module
then generates the hidden vector hl, which is used
to produce the output step sl.

hl = RNN(hl−1,X l)

sl = NN(hl)
(1)

where NN can be any neural module that projects
hl onto the simplex sl ∈ RK , from which sl can
be sampled: sl = argmaxk sl,k. Our goal is to
encourage hl to be sensitive to the composition of
the input Q||F with regards to the current output
step sl. This means that hl needs to capture proper
alignments between important terms in the input
and the relevant operator/operand in the output.

To achieve this, we pursue a metric learning ap-
proach where positive and negative samples are
generated according to counterfactual scenarios.

3.1 Counterfactual samples

Given a training example ([Q||F](i), S(i)), we de-
fine an intervention target Q(i) as a subsequence of
the question tokens, i.e. Q(i) = {q(i)n ;n ∈ N (i)}
where N (i) ⊆ {1, 2, · · · , N}.

Suppose that changing the intervention target af-
fects a single step in the output program S(i) = s

(i)
l ,

which we name the intervention outcome. Note
that due to our focus on the generation of operators,
we limit the intervention outcome to an operator.
Since the output is composed of one operator fol-
lowed by two operands followed by another opera-
tor and so on, l is selected from a limited index set:

l ∈ {1, 4, 7, · · · , L−3}. In the example from Table
3, the possible indices will be 1 and 4, representing
the operators subtract and NONE.

Given this definition, it’s possible to mine pos-
itive and negative examples for the ith training
instance. A positive example ([Q||F]

(i)
pos, S

(i)
pos) is

an instance for which, despite a possible interven-
tion in the target, the outcome remains the same,
i.e. Q(i)

pos ̸= Q(i) and S(i)
pos = S(i). A negative ex-

ample ([Q||F]
(i)
neg, S

(i)
neg) is an instance for which an

intervention in the target leads to a change in the
outcome, i.e. Q(i)

neg ̸= Q(i) and S(i)
neg ̸= S(i).

This allows us to define a triplet loss that en-
courages h(i)

l to remain close to h
(i)
l,pos and far from

h
(i)
l,neg with a margin of α(i):

L(i)
triplet =

max{||h(i)
l − h

(i)
l,pos||22 − ||h(i)

l − h
(i)
l,neg||22 + α(i), 0}

(2)
Figure 1 illustrates the sampling process for one

training example. Note that this metric learning
approach will only be valid if causal assumptions
with regards to the intervention target are valid,
i.e. the change in S(i)

neg is in fact the result of the
intervention in Q(i)

neg and not a change in any other
part of the input. In a data augmentation setting,
this can be achieved by keeping the input fixed and
perturbing a small segment that functions as the
intervention target similar to (Kaushik et al., 2020).
However, as discussed in Section 2.2. this requires
additional manual labor to annotate the perturbed
examples.

In the next section, we describe how we im-
pose certain constraints on the intervention target
to achieve this in a self-supervised setting2.

4 Methodology

Our goal is to identify potential positive and nega-
tive samples for the anchor ([Q||F](i), S(i)). Sup-
pose the anchor is the one shown in the top three
rows of Table 3. Bold italicized tokens are redun-
dant between the question and the fact, e.g. “rev-
enue”, “2019”, and “2020”. Those terms are often
used by the retriever to find the correct facts. They
are also used by the generator to find the correct
order of operands.

2Note that the term “self-supervised” is used in this context
to refer to the sampling strategy, i.e. no additional labeling is
needed to generate the positive and negative samples.

14933

There are also terms that are unique to the ques-
tion, i.e. “What”, “the net change to”, “from”, and
“to” (highlighted in blue). In CompAQT, the au-
thors showed that these can be used as indicators
for the operators. Lastly, there are terms that are
unique to the facts, i.e. “was $80M” and “was
$60M” (red italicized tokens). These can be used
as indicators for the operands. We use these heuris-
tics to guide our sampling strategy.

We flag all spans in the question that do not over-
lap with the facts, i.e. underlined blue segments.
Those spans serve as candidate intervention spans.
In the example from Table 3, this results in four
candidates: “What”, “the net change in”, “from”,
and “to”.

Next, we seek a positive and a negative example
within the training set. A positive example is a
sample in which, despite possible changes in the
question, the operators in the output remain consis-
tent with the operators in the anchor. Table 3 shows
one such example. Several terms have been altered
in the question. However, we would only focus on
the changes in the candidate spans. Here, “was”
has changed to “is”, “net change” has changed to
“difference”, “from” to “between” and “to” to “and”.
This results in a token-level Levenshtein distance
of 5 (four edits and one insertion) (Yujian and Bo,
2007). We ignore the change from “revenue” to
“operating expenses” and from “2019” to “2018”,
because those changes have occurred outside of our
candidate spans and only correspond to operands.

A negative example is a sample in which exactly
one output operator is altered, deleted, or added.
Table 3 shows one such example. Here, the output
includes a new operator divide. The question has
also been altered with a token-level Levenshtein
distance of 4.

The given positive and negative example can
now be plugged into Equation 2. Instead of a fixed
margin, we use the edit distances mentioned be-
fore to dynamically adjust the margin. Let NLD(i)

pos

and NLD(i)
neg be the normalized, token-level Lev-

enshtein edit distance between the anchor and the
positive example, and the negative example, respec-
tively. We set the margin to: α(i) = 1−|NLD(i)

neg −
NLD(i)

pos|
This encourages a larger margin for cases where

the anchor is equally similar to the positive and
the negative examples, and the model might have
a harder time picking up on the nuances of each
component.

Anchor

Question What was the net change in revenue
from 2019 to 2020?

Facts 2019 revenue was $80M.
2020 revenue was $60M.

Program subtract(80, 60)
NONE(NONE, NONE)

Candidate
intervention
spans

What
the net change in
from
to

Positive
sample

Question What is the difference in operating
expenses between 2018 and 2020?

Facts 2018 operating expenses were $35M.
2020 operating expenses were $30M.

Program subtract(35, 30)
NONE(NONE, NONE)

Negative
sample

Question What was the rate of change of
operating income from 2018 to 2019?

Facts 2018 income from operating activities was $65M.
2019 income from operating activities was $60M.

Program subtract(65, 60)
divide(#0, 65)

Variables

Q(i)

S(i)

{q(i)1 , q
(i)
3 , q

(i)
4 , q

(i)
5 , q

(i)
6 , q

(i)
8 , q

(i)
10 }:

what the net change in from to
s
(i)
4 : NONE

Q(i)
pos

S(i)
pos

edit dist

{q(i)1 , q
(i)
2 , q

(i)
3 , q

(i)
4 , q

(i)
5 , q

(i)
8 , q

(i)
10 }:

what is the difference in between and
s
(i)
4 : NONE

5
Q(i)

neg

S(i)
neg

edit dist

{q(i)1 , q
(i)
3 , q

(i)
4 , q

(i)
5 , q

(i)
5 , q

(i)
6 , q

(i)
12 }:

what the rate of change of to
s
(i)
4 : divide

4

Table 3: Example of positive and negative sampling
using counterfactual components. Blue underlined text
indicates components that are unique to the question (
candidates for intervention). These terms often indicate
an operator. Red italicized text indicates terms that are
unique to the facts. These terms often indicate operands.
Bold italicized text indicates terms that are shared be-
tween the question and facts. These terms often indicate
metrics.

4.1 Runtime optimization

There are two runtime challenges to this proposed
approach: 1) Sampling can be costly if the entire
training set has to be scanned for each batch. This
means an online sampling strategy cannot be used.
On the other hand, an offline strategy introduces
a large overhead. A hybrid approach is needed.
2) Calculating the edit distance metric is a costly
operation with O(n2) steps.

To solve the first problem, we build two indices
prior to training. One index groups the samples by
their sequence of output operators. This index can
be used to sample positive examples.

The other index includes all training examples,
and for each example, it includes the full list of
one-step perturbations applied to its output opera-
tors. By generating all possible perturbations, we
are able to find other samples whose outputs match
the perturbed sequence (i.e. negative samples). For

14934

a sequence with n operators, all possible perturba-
tions can be generated in O(n ×K) time, where
K is the number of possible operators3.

Given the pre-generated positive and negative
pools, we can also calculate and cache edit dis-
tances ahead of time. However, in practice, we
realized that we could do so during training with
little additional cost. This is because the edit dis-
tance is applied at the token-level4, and is limited
to candidate spans, rendering it relatively fast. The
decision as to whether distances should be cached
or calculated on the fly depends on the average size
of each pool versus the number of training steps.

The algorithm outlined in Appendix B summa-
rizes our approach.

5 Experiments

5.1 Datasets

We use the hybrid CompAQT dataset, which is
composed of four previously released datasets,
namely FinQA (Chen et al., 2021b), TAT-QA
(Zhu et al., 2021), HiTab (Cheng et al., 2022), and
MULTIHIERTT (Zhao et al., 2022). The authors
filtered these four datasets down to QA pairs that
require single or multi-step quantitative reasoning.
They also processed the tables and outputs in all
four datasets to match the FinQA format.

5.2 Baselines

We apply our proposed auxiliary loss to three base-
lines: 1) FinQANet, originally developed for the
FinQA dataset (Chen et al., 2021b). 2) TAGOP,
originally developed for the TAT-QA dataset (Zhu
et al., 2021). 3) Pointer-Verbalizer Network
(PVN), originally proposed by Nourbakhsh et al.
(2022). We also apply the CompAQT loss to each
model as a secondary baseline in order to deter-
mine how CounterComp compares to an attention-
alignment strategy.

5.3 Sampling success rate

Another possible concern is that our sampling strat-
egy might be limited, in that positive and negative
samples might not always be available in the train-
ing set, or that limited availability of samples might
bias the training process. To remediate the problem
of unavailable samples, when a positive sample is

3Since we follow Chen et al. (2021b), in all of our experi-
ments K = 10.

4Since we’re using a language model that uses word-piece
tokenization, in effect the runtime is at subword level.

missing, we use the anchor as the positive sample,
and when a negative sample cannot be found, we
use a uniformly sampled instance from the batch.

Table 4 shows some statistics about the success
rate of the sampling algorithm. “% Failure” identi-
fies the share of training examples for which either
a positive or a negative example was missing. Un-
surprisingly this never happens for single-step pro-
grams, is very rare for two-step programs, and with
the exception of HiTab, happens in less than 10%
of the cases for longer programs. The Table also
shows the average number of positive and negative
examples found for each anchor. Again, HiTab has
the lowest number of available samples, making it
the most challenging dataset. In Section 6.4, we
demonstrate how, even in cases with few possible
samples, the model is able to generalize to unseen
examples.

5.4 Settings

Since we are focused on the generator, in the ex-
periments discussed in this section we will use
gold facts and encode the input using RoBERTa-
large (Liu et al., 2019)5. We run the baselines with
and without the additional Ltriplet for 50 epochs
with a learning rate of 5e−5, the Adam opti-
mizer (Kingma and Ba, 2015) with β1 = 0.9 and
β2 = 0.999. At each step, we sample (with replace-
ment) 5 positive and negative pairs per anchor, and
add the average auxiliary triplet loss to the main
model loss with a weight of λ. After a grid search
with a step-size of 0.1, we set λ to 0.4 for all ex-
periments. All experiments were conducted on 8
NVIDIA T4 GPUS with 16 GBs of memory.

6 Results and analysis

Table 5 shows the program accuracy of base-
lines (top row of each cell) compared the addi-
tion of CounterComp loss (bottom row of each-
cell). Among the baseline models, TAGOP is not
designed to generate multi-step programs. There-
fore we only apply it to the TAT-QA dataset, which
has a set of pre-determined operations (e.g. change
ratio). We also apply the PVN model to the com-
bined dataset, but since FinQANet outperforms it
on all benchmarks, we will continue to use Fin-
QANet as the reference baseline model for the re-
maining experiments in this section.

As Table 5 shows, CounterComp consistently

5Please refer to Appendix A for results using retrieved
facts.

14935

Dataset 1 step 2 steps 3+ steps

% Failure Avg. # pos
samples

Avg. # neg
samples % Failure Avg. # pos

samples
Avg. # neg

samples % Failure Avg. # pos
samples

Avg. # neg
samples

FinQA 0 1457 3254 0.2 913 630 8.2 41 190
TAT-QA 0 1808 638 0 295 958 1.3 1055 66
HiTab 0 221 554 2.5 30 29 29.8 4 24
MULTIHIERTT 0 189 533 0.2 326 335 7.8 92 190

Table 4: The failure rate of sampling from each dataset (when no positive or no negative sample can be found for a
given anchor), as well as the average number of positive and negative samples found for each anchor.

outperforms the baselines and the margin is often
higher for longer programs. One notable excep-
tion is the TAT-QA dataset. As mentioned before,
the dataset is not designed for open-ended multi-
step reasoning and includes a limited set of possi-
ble operations. Therefore methods that encourage
memorization might achieve higher performance
on TAT-QA. HiTab is another challenging dataset,
but despite low performance on longer sequences,
CounterComp offers an improvement over the base-
line.

Model Dataset Program accuracy
1 step 2 steps 3+ steps Overall

TAGOP

TAT-QA
45.01 39.56 42.73 43.25

+CompAQT 46.07 40.28 43.73 43.88
+CounterComp 46.12 41.51 45.67* 45.38
PVN

Combined
68.14 61.33 13.54 56.64

+CompAQT 70.78 63.45 16.63 59.21
+CounterComp 71.58* 64.31* 18.44* 61.20*
FinQANet

FinQA
75.63 65.87 30.36 68.44

+CompAQT 78.68 75.12 35.85 73.74
+CounterComp 79.13* 75.45* 36.86* 74.49*
FinQANet

TAT-QA
73.33 63.76 64.88 70.71

+CompAQT 70.00 63.76 66.26 69.97
+CounterComp 70.56 63.80 66.90 70.01
FinQANet

HiTab
34.70 25.14 15.91 30.12

+CompAQT 34.73 29.94 17.35 32.23
+CounterComp 34.94 30.00* 17.39 32.61*
FinQANet

MULTIHIERTT

38.99 40.07 15.01 38.94
+CompAQT 38.87 42.35 16.77 40.82
+CounterComp 39.25* 42.51* 16.86 40.85*
FinQANet

Combined

65.11 62.00 30.76 58.60
+CompAQT 66.60 65.14 34.16 60.88
+CounterComp 67.91* 66.00* 36.91* 61.82*
(Fixed margin) 66.19 64.89 34.06 59.58

Table 5: Program accuracy for program generation using
baseline models v.s. using CompAQT loss, v.s. using
CounterComp loss. * indicates that a gain/loss is sig-
nificant at p < 0.005 compared to the baseline, using
the paired-bootstrap test proposed by Berg-Kirkpatrick
et al. (2012) for b = 103.

6.1 Auxiliary triplet loss versus auxiliary
attention alignment loss

The middle row of each cell in Table 5 shows the
program accuracy when CompAQT loss is added
instead of CounterComp loss. As previously de-
scribed, CompAQT imposes an auxiliary attention
alignment loss such that tokens related to opera-

tors receive more attention during the generation
of operators. Even though this leads to improve-
ments over the baselines, CounterComp outper-
forms CompAQT in all experiments. This might be
due to the fact that the regularizing effect of Com-
pAQT loss is not as strong as the representation
learning impact of CounterComp.

Despite the fact that CounterComp was not de-
signed as an attention alignment model, it does
have an impact on how attention patterns evolve
during training. Table 6 shows the top-attended
input tokens during the generation of a divide
operator in various contexts. For a singular divi-
sion operation, FinQANet attends to tokens such
as “year” whereas CounterComp encourages the
model to attend to more relevant tokens such as
“net” and “change”. A subtraction followed by a
division often indicates a percentage calculation,
as captured by both models. An addition followed
by a division often indicates an average calculation.
Again, CounterComp is able to capture relevant
tokens but the FinQANet baseline seems to attend
to some memorized tokens such as “annual”.

Top attended tokens during
the generation of divide

Model divide
subtract
divide

add
divide

FinQANet share, year ratio, percent annual, per
+CounterComp net, change share, percent average, per

Table 6: Top attended tokens during the generation of
the division operator in various sequences. The dataset
used for this experiment is FinQA.

6.2 Fixed versus adaptive margin

The last row of Table 5 shows the performance
of the FinQANet model on the combined dataset
using the CounterComp loss with a fixed margin
of 1. The performance suffers, especially as the
number of steps grows. This further demonstrates
the importance of the adaptive margin α(i) that
takes the edit distance into account.

14936

Question Evidence Gold program FinQANet FinQANet + CounterComp
What was the gross margin decline in
fiscal 2004 from 2003?

1) the gross margin pct of 2004 is 27.3%
2) the gross margin pct of 2003 is 27.5%

subtract(27.5, 27.3)
subtract(27.5, 27.3),
divide(#0, 27.5)

subtract(27.5, 27.3)

What percentage of amounts expensed
in 2009 came from discretionary
company contributions?

1) amounts expensed for 2009 was $35.1
2) expense includes a discretionary
company contribution of $3.8

divide(3.8, 35.1),
multiply(#0, const_100)

divide(3.8, 35.1)
divide(3.8, 35.1),
multiply(#0, const_100)

Did the share of securities rated aaa/aaa
increase between 2008 and 2009?

1) the aaa/aaa share of 2009 is 14%
2) the aaa/aaa share of 2008 is 19%

greater(14, 19)
subtract(14, 19),
subtract(14, #0)

greater(14, 19)

What is the amount of credit lines that
has been drawn in millions as of
year-end 2016?

1) We have other committed and
uncommitted credit lines of $746 million
2) $554 million of these credit lines were
available for use as of year-end 2016

subtract(746, 554) multiply(554, const_1000000) multiply(746, 554)

Table 7: Four examples from the FinQA dataset, showing CounterComp’s success and failure in capturing composi-
tional expressions. Note that some numbers have been truncated to save space.

Model Program accuracy on test dataset

TAT-QA HiTab MULTIHIERTT
FinQA

(unseen programs)
FinQANet 41.64 22.80 35.33 65.74
+CompAQT 39.88 22.71 35.28 70.32
+CounterComp 42.00 22.97 36.94 73.53

Table 8: OOD performance of FinQANet variations
when trained on the FinQA dataset and tested on other
datasets, or tested on unseen operator compositions in
the FinQA dev set.

6.3 Qualitative examples

Table 7 shows four qualitative examples from the
FinQA dataset. The first two rows show how Coun-
terComp enables the FinQANet model to represent
concepts such as “decline” and “percentage” more
accurately. The third example shows how Counter-
Comp is able to determine the difference between
a calculation question and a yes/no question. The
last row shows a failure example that was also re-
ported in Chen et al. (2021b). Here, CounterComp
does not improve the performance of FinQANet.
This particular example requires domain expertise
to address, which goes beyond a direct mapping be-
tween components in the question and the evidence.
This highlights the need for methods that allow do-
main expertise to be represented more effectively
(Chen et al., 2021b).

6.4 Compositional v.s. OOD generalization

In a recent study Joshi and He (2022) showed that
current approaches to counterfactual data augmen-
tation do not necessarily lead to better general-
ization to out-of-distribution (OOD) samples. To
test whether this holds for CounterComp, we con-
duct two studies. First, we train FinQNet with and
without CounterComp loss on the FinQA dataset,
then test it on the other three datasets. Note that
the four datasets are based on different domains.
FinQA and TAT-QA are both based on financial
reports, but while FinQA was derived from US fil-
ings, TAT-QA is based on international filings and

therefore covers a wider variety of metrics. HiTab
and MULTIHIERTT are both based on other types
of corporate reports with highly complex tabular
structures.

The first three columns of Table 8 show a slight
improvement when CounterComp is used in this
setting. In contrast, using CompAQT loss slightly
hurts the performance, demonstrating Counter-
Comp’s higher OOD generalization potential.

Next, we select a subset of samples from the
FinQA dev set that have unseen compositions com-
pared to the training set. This means that the par-
ticular combination of operations were never seen
during training. As the last column of the table
shows, CounterComp outperforms the baseline by
more than 7 points. This further demonstrates how
improving representation learning at the compo-
nent level can enhance generalization to unseen
contexts.

7 Conclusion

In this paper, we presented CounterComp, a
method that leverages counterfactual contrast to
enable metric learning for quantitative QA. We
show how using the auxiliary CounterComp loss
can improve compositional generalization in multi-
step reasoning tasks, especially as the number of
steps grows.

Due to runtime challenges, we proposed a hy-
brid offline/online sampling strategy that uses pre-
defined indices for easier lookup operations. This
allows us to capture samples that have a contrast
of one operator with the anchor. In future studies,
we hope to capture contrastive samples with longer
perturbation chains. We also hope to examine the
effectiveness of counterfactual compositional con-
trast in other domains such as semantic parsing and
question answering over multimodal input.

Lastly, we hope to extend the use of Counter-
Comp to enhance the performance of the retriever,
using the heuristics introduced in Section 4 (i.e. by

14937

focusing on components in the question that over-
lap with the facts). This can result in a quantitative
QA pipeline that is powered by compositional con-
trast in an end-to-end fashion.

8 Limitations

As previously mentioned, our study is focused on
the generator component of a QA pipeline and ig-
nores the retrieval task. In the experiments pre-
sented in the paper, we have used gold facts to
report the results. For certain datasets such as
HiTab and MULTIHIERTT which were designed for
complex tabular structures, this might simplify the
end-to-end challenge. In future studies, we hope
to explore whether CounterComp can enhance the
performance of retrievers.

The datasets used in our experiments were cu-
rated using enterprise documents such as financial
reports or other corporate disclosures. Quantitative
QA over these reports often involves multi-step
reasoning that is limited to linear arithmetic opera-
tions such as addition, division, averaging, etc. A
completely open-domain QA engine might need to
cover more complex operators.

Lastly, we designed CounterComp to lever-
age existing data by sampling from the training
set. Nevertheless, combining CounterComp with
augmentation-focused methods such as CAD might
lead to more robust models.

References
Taylor Berg-Kirkpatrick, David Burkett, and Dan Klein.

2012. An empirical investigation of statistical sig-
nificance in NLP. In Proceedings of the 2012 Joint
Conference on Empirical Methods in Natural Lan-
guage Processing and Computational Natural Lan-
guage Learning, pages 995–1005, Jeju Island, Korea.
Association for Computational Linguistics.

Hao Chen, Rui Xia, and Jianfei Yu. 2021a. Reinforced
counterfactual data augmentation for dual sentiment
classification. In Proceedings of the 2021 Confer-
ence on Empirical Methods in Natural Language
Processing, pages 269–278, Online and Punta Cana,
Dominican Republic. Association for Computational
Linguistics.

Zhiyu Chen, Wenhu Chen, Charese Smiley, Sameena
Shah, Iana Borova, Dylan Langdon, Reema Moussa,
Matt Beane, Ting-Hao Huang, Bryan Routledge, and
William Yang Wang. 2021b. Finqa: A dataset of
numerical reasoning over financial data. Proceedings
of EMNLP 2021.

Zhoujun Cheng, Haoyu Dong, Zhiruo Wang, Ran Jia,
Jiaqi Guo, Yan Gao, Shi Han, Jian-Guang Lou, and

Dongmei Zhang. 2022. HiTab: A hierarchical table
dataset for question answering and natural language
generation. In Proceedings of the 60th Annual Meet-
ing of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 1094–1110, Dublin,
Ireland. Association for Computational Linguistics.

Jonathan Herzig, Pawel Krzysztof Nowak, Thomas
Müller, Francesco Piccinno, and Julian Eisenschlos.
2020. TaPas: Weakly supervised table parsing via
pre-training. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics,
pages 4320–4333, Online. Association for Computa-
tional Linguistics.

Po-Sen Huang, Huan Zhang, Ray Jiang, Robert Stan-
forth, Johannes Welbl, Jack Rae, Vishal Maini, Dani
Yogatama, and Pushmeet Kohli. 2020. Reducing sen-
timent bias in language models via counterfactual
evaluation. In Findings of the Association for Com-
putational Linguistics: EMNLP 2020, pages 65–83,
Online. Association for Computational Linguistics.

Paras Jain, Ajay Jain, Tianjun Zhang, Pieter Abbeel,
Joseph Gonzalez, and Ion Stoica. 2021. Contrastive
code representation learning. In Proceedings of the
2021 Conference on Empirical Methods in Natural
Language Processing, pages 5954–5971, Online and
Punta Cana, Dominican Republic. Association for
Computational Linguistics.

Nitish Joshi and He He. 2022. An investigation of the
(in)effectiveness of counterfactually augmented data.
In Proceedings of the 60th Annual Meeting of the
Association for Computational Linguistics (Volume
1: Long Papers), pages 3668–3681, Dublin, Ireland.
Association for Computational Linguistics.

Dan Jurafsy and James H. Martin. 2021. Speech and
language processing, 3 edition, chapter 23.

Divyansh Kaushik, Eduard Hovy, and Zachary Lipton.
2020. Learning the difference that makes a differ-
ence with counterfactually-augmented data. In Inter-
national Conference on Learning Representations.

Diederik P. Kingma and Jimmy Ba. 2015. Adam: A
method for stochastic optimization. In 3rd Inter-
national Conference on Learning Representations,
ICLR 2015, San Diego, CA, USA, May 7-9, 2015,
Conference Track Proceedings.

Moxin Li, Fuli Feng, Hanwang Zhang, Xiangnan He,
Fengbin Zhu, and Tat-Seng Chua. 2022. Learning
to imagine: Integrating counterfactual thinking in
neural discrete reasoning. In Proceedings of the 60th
Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 57–69,
Dublin, Ireland. Association for Computational Lin-
guistics.

Qi Liu, Matt Kusner, and Phil Blunsom. 2021. Counter-
factual data augmentation for neural machine trans-
lation. In Proceedings of the 2021 Conference of
the North American Chapter of the Association for

14938

https://aclanthology.org/D12-1091
https://aclanthology.org/D12-1091
https://doi.org/10.18653/v1/2021.emnlp-main.24
https://doi.org/10.18653/v1/2021.emnlp-main.24
https://doi.org/10.18653/v1/2021.emnlp-main.24
https://doi.org/10.18653/v1/2022.acl-long.78
https://doi.org/10.18653/v1/2022.acl-long.78
https://doi.org/10.18653/v1/2022.acl-long.78
https://doi.org/10.18653/v1/2020.acl-main.398
https://doi.org/10.18653/v1/2020.acl-main.398
https://doi.org/10.18653/v1/2020.findings-emnlp.7
https://doi.org/10.18653/v1/2020.findings-emnlp.7
https://doi.org/10.18653/v1/2020.findings-emnlp.7
https://doi.org/10.18653/v1/2021.emnlp-main.482
https://doi.org/10.18653/v1/2021.emnlp-main.482
https://doi.org/10.18653/v1/2022.acl-long.256
https://doi.org/10.18653/v1/2022.acl-long.256
https://openreview.net/forum?id=Sklgs0NFvr
https://openreview.net/forum?id=Sklgs0NFvr
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
https://doi.org/10.18653/v1/2022.acl-long.5
https://doi.org/10.18653/v1/2022.acl-long.5
https://doi.org/10.18653/v1/2022.acl-long.5
https://doi.org/10.18653/v1/2021.naacl-main.18
https://doi.org/10.18653/v1/2021.naacl-main.18
https://doi.org/10.18653/v1/2021.naacl-main.18

Computational Linguistics: Human Language Tech-
nologies, pages 187–197, Online. Association for
Computational Linguistics.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach. ArXiv, abs/1907.11692.

Richard Montague. 1973. The Proper Treatment of
Quantification in Ordinary English, pages 221–242.
Springer Netherlands, Dordrecht.

Armineh Nourbakhsh, Cathy Jiao, Sameena Shah, and
Carolyn Rosé. 2022. Improving compositional gen-
eralization for multi-step quantitative reasoning in
question answering. In Proceedings of the 2022 Con-
ference on Empirical Methods in Natural Language
Processing, pages 1916–1932. Association for Com-
putational Linguistics.

Inbar Oren, Jonathan Herzig, Nitish Gupta, Matt Gard-
ner, and Jonathan Berant. 2020. Improving compo-
sitional generalization in semantic parsing. In Find-
ings of the Association for Computational Linguistics:
EMNLP 2020, pages 2482–2495, Online. Association
for Computational Linguistics.

Pengcheng Yin, Hao Fang, Graham Neubig, Adam
Pauls, Emmanouil Antonios Platanios, Yu Su, Sam
Thomson, and Jacob Andreas. 2021. Compositional
generalization for neural semantic parsing via span-
level supervised attention. In Proceedings of the 2021
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, pages 2810–2823, Online.
Association for Computational Linguistics.

Li Yujian and Liu Bo. 2007. A normalized levenshtein
distance metric. IEEE Transactions on Pattern Anal-
ysis and Machine Intelligence, 29(6):1091–1095.

Le Zhang, Zichao Yang, and Diyi Yang. 2022. TreeMix:
Compositional constituency-based data augmentation
for natural language understanding. In Proceedings
of the 2022 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, pages 5243–5258,
Seattle, United States. Association for Computational
Linguistics.

Yilun Zhao, Yunxiang Li, Chenying Li, and Rui Zhang.
2022. MultiHiertt: Numerical reasoning over multi
hierarchical tabular and textual data. In Proceedings
of the 60th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 6588–6600, Dublin, Ireland. Association for
Computational Linguistics.

Fengbin Zhu, Wenqiang Lei, Youcheng Huang, Chao
Wang, Shuo Zhang, Jiancheng Lv, Fuli Feng, and Tat-
Seng Chua. 2021. TAT-QA: A question answering
benchmark on a hybrid of tabular and textual con-
tent in finance. In Proceedings of the 59th Annual

Meeting of the Association for Computational Lin-
guistics and the 11th International Joint Conference
on Natural Language Processing (Volume 1: Long
Papers), pages 3277–3287, Online. Association for
Computational Linguistics.

Ran Zmigrod, Sabrina J. Mielke, Hanna Wallach, and
Ryan Cotterell. 2019. Counterfactual data augmenta-
tion for mitigating gender stereotypes in languages
with rich morphology. In Proceedings of the 57th
Annual Meeting of the Association for Computational
Linguistics, pages 1651–1661, Florence, Italy. Asso-
ciation for Computational Linguistics.

14939

https://doi.org/10.1007/978-94-010-2506-5_10
https://doi.org/10.1007/978-94-010-2506-5_10
https://preview.aclanthology.org/emnlp-22-ingestion/2022.emnlp-main.125/
https://preview.aclanthology.org/emnlp-22-ingestion/2022.emnlp-main.125/
https://preview.aclanthology.org/emnlp-22-ingestion/2022.emnlp-main.125/
https://doi.org/10.18653/v1/2020.findings-emnlp.225
https://doi.org/10.18653/v1/2020.findings-emnlp.225
https://doi.org/10.18653/v1/2021.naacl-main.225
https://doi.org/10.18653/v1/2021.naacl-main.225
https://doi.org/10.18653/v1/2021.naacl-main.225
https://doi.org/10.1109/TPAMI.2007.1078
https://doi.org/10.1109/TPAMI.2007.1078
https://doi.org/10.18653/v1/2022.naacl-main.385
https://doi.org/10.18653/v1/2022.naacl-main.385
https://doi.org/10.18653/v1/2022.naacl-main.385
https://doi.org/10.18653/v1/2022.acl-long.454
https://doi.org/10.18653/v1/2022.acl-long.454
https://doi.org/10.18653/v1/2021.acl-long.254
https://doi.org/10.18653/v1/2021.acl-long.254
https://doi.org/10.18653/v1/2021.acl-long.254
https://doi.org/10.18653/v1/P19-1161
https://doi.org/10.18653/v1/P19-1161
https://doi.org/10.18653/v1/P19-1161

A Results on retrieved facts

Table 9 shows the performance of FinQANet versus
FinQANet+CounterComp on retrieved facts from
the FinQA dataset. Similar to gold facts, Counter-
Comp improves program accuracy, especially on
multi-step output.

Model Program accuracy
1 step 2 steps 3+ steps Overall

FinQANet 64.13 57.03 20.56 58.30
+CounterComp 67.52 58.87 22.79 61.18

Table 9: Ablation results on the FinQANet model, ap-
plied to the FinQA dataset with retrieved facts.

B Training algorithm

Algorithm 1 details our pre-indexing, sampling,
and training processes. Note that the algorithm
is a simplified version of our implementation, e.g.
it follows a basic SGD instead of a batch SGD
process, and shows the process for only one epoch.

C CounterComp for operators versus
operands

CounterComp intervenes on operators, whereas
operands provide another possible intervention tar-
get. As mentioned in Section 2, Learning to Image
(L2I) (Li et al., 2022), which focuses on counterfac-
tual scenarios for operands, was able to outperform
TAGOP by a large margin. L2I was evaluated on
TAT-QA, a dataset with a limited set of possible
multi-step operations, resulting in the challenge of
compositional generalization being mainly focused
on operands. Since we were not able to recreate
the results reported in the original L2I paper6, in-
stead we evaluate an operand-focused approach via
a metric learning method similar to CounterComp.

Given an anchor, we generate new samples using
the operations laid out in the L2I paper (i.e. SWAP,
ADD, MINUS, etc.), where one or more operands
are perturbed in random. We apply the same pertur-
bation in the facts. This effectively eliminates the
"imagination" component but provides a baseline
that is more comparable to CounterComp. These
samples are used as positive examples, whereas
negative examples are randomly sampled from the
batch.

6This could be because we failed to generate a TAT-HQA
dataset that was comparable to the one used in the original
paper.

Algorithm 1 Training algorithm

1: Training data: {([Q||F](i), S(i))}Ii=1

2: Parameters: λ
3: Model: model

// Create the indices for pos and neg samples
4: pos_index← {}
5: neg_index← {}
6: for i ∈ {1, . . . , I} do
7: O(i) ← s

(i)
1 , s

(i)
4 , · · · , s(i)L−3

8: add_to_index(pos_index, O(i), i)
//p is the perturbed output and l is the location of the
perturbation

9: for p, l ∈ possible_perturbations(O(i)) do
10: j ← find_matching_sample(p)
11: add_to_index(neg_index, O(i), (j, l))
12: end for
13: end for

// Train (single epoch, non-batch version)
14: for i ∈ {1, . . . , I} do
15: for j ∈ {1, 2, · · · , 5} do

// Basic model loss
16: L(i) ← loss(model.forward([Q||F](i)), S(i))

// Pos/neg sampling
17: O(i) ← s

(i)
1 , s

(i)
4 , · · · , s(i)L−3

18: pos_sample← sample(pos_index[O(i)] \ i)
19: neg_sample, l← sample(neg_index[O(i)])

// Find candidate intervention spans
20: Q(i) ← find_intrvntn_span(i)
21: Q(i)

pos ← find_intrvntn_span(pos_sample)
22: Q(i)

neg ← find_intrvntn_span(neg_sample)
// Calculate edit distances and loss

23: NLD(i)
pos ← norm_edit_dist(Q(i),Q(i)

pos)

24: NLD(i)
neg ← norm_edit_dist(Q(i),Q(i)

neg)

25: α(i) = 1− |NLD(i)
neg − NLD(i)

pos|
26: pos_dist(i)j = ||h(i)

l − h
(i)
l,pos||22

27: neg_dist(i)j = ||h(i)
l − h

(i)
l,neg||22

28: L(i)
tripletj

= max{pos_dist(i)j −neg_dist(i)j +α(i), 0}
29: end for
30: L(i) = (1− λ)L(i) + λ

5

∑5
j=1 L

(i)
tripletj

31: end for
32: L = 1

I

∑I
i=1 L(i)

33: model.backward(L)

Table 10 shows the program accuracy of Coun-
terComp versus the new method when applied to
each dataset. As expected, TAT-QA is the only
dataset responsive to the perturbation of operands.
All other datasets suffer from an exclusive focus
on operands. For HiTab and MULTIHIERTT, the
operand strategy also underperforms compared to
the baseline FinQANet performance (see Table 5).

14940

Model FinQA TAT-QA HiTab MULTIHIERTT
CounterComp
(operators)

74.49 70.01 32.61 40.85

CounterComp
(operands)

68.98 70.80 28.88 37.67

Table 10: Program accuracy of CounterComp versus a
sampling strategy focused on operands. FinQANet was
used for all experiments.

14941

ACL 2023 Responsible NLP Checklist

A For every submission:
�3 A1. Did you describe the limitations of your work?

8

�3 A2. Did you discuss any potential risks of your work?
6.3, 6.4, 8

�3 A3. Do the abstract and introduction summarize the paper’s main claims?
1

�7 A4. Have you used AI writing assistants when working on this paper?
Left blank.

B �3 Did you use or create scientific artifacts?
5.1, 5.2

�3 B1. Did you cite the creators of artifacts you used?
5.1, 5.2

�3 B2. Did you discuss the license or terms for use and / or distribution of any artifacts?
5.1, 5.2

�3 B3. Did you discuss if your use of existing artifact(s) was consistent with their intended use, provided
that it was specified? For the artifacts you create, do you specify intended use and whether that is
compatible with the original access conditions (in particular, derivatives of data accessed for research
purposes should not be used outside of research contexts)?
5.1, 5.2

�7 B4. Did you discuss the steps taken to check whether the data that was collected / used contains any
information that names or uniquely identifies individual people or offensive content, and the steps
taken to protect / anonymize it?
The data is based on publicly available corporate reports.

�3 B5. Did you provide documentation of the artifacts, e.g., coverage of domains, languages, and
linguistic phenomena, demographic groups represented, etc.?
5.1, 5.2

�3 B6. Did you report relevant statistics like the number of examples, details of train / test / dev splits,
etc. for the data that you used / created? Even for commonly-used benchmark datasets, include the
number of examples in train / validation / test splits, as these provide necessary context for a reader
to understand experimental results. For example, small differences in accuracy on large test sets may
be significant, while on small test sets they may not be.
1

C �3 Did you run computational experiments?
5

�3 C1. Did you report the number of parameters in the models used, the total computational budget
(e.g., GPU hours), and computing infrastructure used?
5

The Responsible NLP Checklist used at ACL 2023 is adopted from NAACL 2022, with the addition of a question on AI writing
assistance.

14942

https://2023.aclweb.org/
https://2022.naacl.org/blog/responsible-nlp-research-checklist/
https://2023.aclweb.org/blog/ACL-2023-policy/
https://2023.aclweb.org/blog/ACL-2023-policy/

�3 C2. Did you discuss the experimental setup, including hyperparameter search and best-found
hyperparameter values?
5

�3 C3. Did you report descriptive statistics about your results (e.g., error bars around results, summary
statistics from sets of experiments), and is it transparent whether you are reporting the max, mean,
etc. or just a single run?
6

�7 C4. If you used existing packages (e.g., for preprocessing, for normalization, or for evaluation), did
you report the implementation, model, and parameter settings used (e.g., NLTK, Spacy, ROUGE,
etc.)?
No packages used.

D �7 Did you use human annotators (e.g., crowdworkers) or research with human participants?
Left blank.

� D1. Did you report the full text of instructions given to participants, including e.g., screenshots,
disclaimers of any risks to participants or annotators, etc.?
No response.

� D2. Did you report information about how you recruited (e.g., crowdsourcing platform, students)
and paid participants, and discuss if such payment is adequate given the participants’ demographic
(e.g., country of residence)?
No response.

� D3. Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? For example, if you collected data via crowdsourcing, did your instructions to
crowdworkers explain how the data would be used?
No response.

� D4. Was the data collection protocol approved (or determined exempt) by an ethics review board?
No response.

� D5. Did you report the basic demographic and geographic characteristics of the annotator population
that is the source of the data?
No response.

14943

