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Abstract
Audio-visual text generation aims to under-
stand multi-modality contents and translate
them into texts. Although various transfer learn-
ing techniques of text generation have been pro-
posed, they focused on uni-modal analysis (e.g.,
text-to-text, visual-to-text) and lack consider-
ation of multi-modal content and cross-modal
relation. Motivated by the fact that humans
can recognize the timbre of the same low-level
concepts (e.g., footstep, rainfall, and laughing),
even in different visual conditions, we aim to
mitigate the domain discrepancies by audio-
visual correlation. In this paper, we propose a
novel Transferable Audio-Visual Text Genera-
tion framework, named TAVT, which consists
of two key components: Audio-Visual Meta-
Mapper (AVMM) and Dual Counterfactual
Contrastive Learning (DCCL). (1) AVMM first
introduces a universal auditory semantic space
and drifts the domain-invariant low-level con-
cepts into visual prefixes. Then the reconstruct-
based learning encourages the AVMM to learn
“which pixels belong to the same sound” and
achieve audio-enhanced visual prefix. The well-
trained AVMM can be further applied to uni-
modal setting. (2) Furthermore, DCCL lever-
ages the destructive counterfactual transforma-
tions to provide cross-modal constraints for
AVMM from the perspective of feature distribu-
tion and text generation. (3) The experimental
results show that TAVT outperforms the state-
of-the-art methods across multiple domains
(cross-datasets, cross-categories) and various
modal settings (uni-modal, multi-modal).

1 Introduction

Audio-visual text generation bridges the gap be-
tween perception (visual and auditory) and com-
munication (via language), and is hence becoming
an increasingly important goal for artificial agents.
Uni-modal text generation tasks like machine trans-
lation (Wang et al., 2022; Jin et al., 2022b; Yin

∗ Equal contribution.
† Corresponding author

Figure 1: Examples of transferable multi-modal text
generation in the source domain (real-word) and the
target domain (animation). For the same events (“speak-
ing”, “cutting”), although the visual differences are sig-
nificant, the sounds are similar.

et al., 2022), and image caption (Chen et al., 2017;
Tewel et al., 2021; Hu et al., 2022) have already
flourished as a result of the large-scale pre-training
and huge model capacity. However, for audio-
visual text generation tasks, data annotation is more
arduous (temporal structure) and expensive (re-
quires monitors and speakers) than uni-modal text
generation. Moreover, despite the effectiveness,
existing works (Iashin and Rahtu, 2020a; Le et al.,
2020; Hori et al., 2021) inevitably suffer severe
degradation due to varying construction conditions
in different domains.

In this paper, to break through the constraint, we
propose a novel task, named transferable audio-
visual text generation. The main challenge of
this task is the multi-modal domain shifts caused
by varying conditions, like the visual style and
audio energy. One common approach to handle
the domain shift is domain-alignment-based trans-
fer learning. However, existing works (Sun and
Saenko, 2016; Rozantsev et al., 2018; Ding et al.,
2022) focus on the uni-modal analysis, which is
insufficient due to the lack of consideration of cross-
modal relations.

We observe that while audio and visual are of-
ten correlated in natural events and jointly affect
human perception, they have different characteris-
tics. As shown in Figure 1, the fact Timbre is an
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intrinsic property of the object leads to sounds of
the same concept (“speaking” or “cutting”) being
similar across domains where the appearance like
background, perspective, and style is significantly
different. Based on this phenomenon, domain in-
variant low-level concepts can be extracted from
the visual with the supervision of the audio, which
is pervasive, reliable, and cheaper in contrast to
expensive human annotation.

Grounded on the above discussions, we propose
an Audio-Visual Meta-Mapper network (AVMM).
The key idea of AVMM is to use a universal au-
ditory semantic space to align low-level concepts
across different visual domains. In particular, we
introduce a visual prefix that serves as a multi-
modal bridge between the visual and the audio.
Then, we reconstruct audio features from the uni-
versal auditory semantic space and produce the
audio-enhanced visual prefix. Essentially, the ac-
curacy of reconstructed audio provides a constraint
for AVMM to learn the latent visual-textual align-
ment. The reconstruct-based paradigm has another
windfall, allowing AVMM to transfer to both multi-
modal and uni-modal settings.

While the reconstruct-based paradigm implic-
itly learns the visual-textual alignment, we propose
Dual Counterfactual Contrastive Learning (DCCL)
to directly optimize the visual-audio alignment
score and promote the robustness of reconstructed
audio. We introduce distribution-based contrastive
learning to further improve the accuracy of recon-
structed audio and dependency-based contrastive
learning with token-wise diversity-aware weights
to provide modality-aware constraint from the per-
spective of text generation. Then, we apply the
above module and a base audio-visual text gen-
eration network to the meta-learning framework,
named TAVT, to empower AVMM with the ability
to accrue knowledge across domains, which would
assist in building internal multimodal representa-
tions broadly suitable for many domains. Our main
contributions are as follows:

• We are the first one to study the transferable
audio-visual text generation task.

• We introduce the audio-visual meta-mapping
network that aligns domain-invariant low-
level concepts between visual and a universal
auditory semantic space.

• Experimental results on both cross-dataset and
cross-category benchmarks demonstrate the
effectiveness of our models.

2 Related Work

Audio-Visual Learning. In the past few years,
there have been several works that focus on audio-
visual learning. (Arandjelovic and Zisserman,
2018) used a two-stream neural network to find
the most similar visual area to the current audio
clip. Some works (Hu et al., 2019, 2020) employed
contrastive learning to match the visual and audio
components. Recently, (Liu et al., 2021; Cheng
et al., 2023) proposed a framework for cross-modal
representation learning with a discrete embedding
space that was shared amongst different modalities
and promoted model interpretability. The above
approaches focus on the correlation of audio-visual
pairs. While we aim to align the visual of different
domains with a universal auditory semantic space
and enhance multi-modal transfer learning.
Audio-Visual Text Generation. The mainstream
audio-visual text generation task is video caption-
ing, which has attracted many researchers (Venu-
gopalan et al., 2015; Le et al., 2020; Ye et al., 2022;
Jin et al., 2022a). (Hao et al., 2018) proposed mul-
timodal feature fusion strategies to integrate audio
information into models. (Guo et al., 2019; Iashin
and Rahtu, 2020a) proposed an attention mecha-
nism to combine the visual and audio features for
better knowledge representation. (Tian et al., 2019)
introduced an audio-visual controller to manipu-
late the parameters and generate diverse modality-
aware captions. (Rahman et al., 2019) utilized the
idea of cycle consistency to build a model with
visual and audio inputs. (Iashin and Rahtu, 2020b)
encoded the feature representation of audio and
speech for a specific event proposal and produces a
caption. Compared to our work, none of the above
address the problem of domain shift and suffer se-
vere degradation when deployed to a low-resource
domain. Furthermore, they all take audio as supple-
mentary information for visuals while we attempt
to utilize the audio-visual correlation to minimize
the domain discrepancy.

3 Methods

We aim to train a model that can learn and quickly
adapt to new multimodal domains with limited la-
beled data under the meta-learning setting. In the
next sections, we will first define the audio-visual
meta-learning setting, then explain our architecture,
and finally describe how it is used during training
and inference time.
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Figure 2: The architecture of our text generation network with counterfactual contrastive learning.

3.1 Problem Formulation
We define a meta-training stage, where the model is
trained on the meta-trainDmeta−train partition and
a separate meta-test stage where the performance
is measured on the Dmeta−test partition. For the
support set, there are k samples chosen for each of
the N − 1 randomly sampled domains, and for the
query set, there are m samples from the remaining
domain, with m > k. The set Di is defined as
Di = (vi1, a

i
1, t

i
1), ...(v

i
k, a

i
k, t

i
k), where vij is the

visual feature, aij represents the audio features, and
tij is the output text, i.e., a caption to the video.

3.2 Model Architecture
The architecture that we present in this paper is
modular and consists of three components: the
meta-mapper, an audio-visual encoder, and a lan-
guage model as illustrated in Figure 2.
Audio-Visual Meta-Mapper Network. Intuitively
speaking, low-level visual concepts in different do-
mains often share similar sounds, e.g., footsteps,
laughing, and rain. Therefore, we propose an audio-
visual meta-mapping network (AVMM) to map
different visuals across domains into a universal
auditory semantic space and as well as addressing
shifts in the semantic distribution.

We first introduce the universal auditory seman-
tic space which has audio clusters learned from
Flickr(Thomee et al., 2015). In particular, we cut
the audio into units with fixed time length T and
run the clustering algorithm to find the k-centres
of all audio features as the audio clusters. We de-
fine the audio clusters as M = {m1,m2, ...,mk}.
These audio clusters could serve as a bridge be-
tween the audio and visual and assist in learning
quickly new domains by observing only limited
labeled examples.

To map the visual features into the latent space

Figure 3: Illustration of Audio-Visual Meta-Mapper.
Given a visual input, we map the visual to a visual pre-
fix and combine clusters by weighting m1,m2, ...,mk

to predict Arec. The accuracy of Arec provides a con-
straint for the self-attention layer to map an audio-
aligned visual prefix.

of the audio clusters, inspired by prompt learn-
ing(Lester et al., 2021), we introduce a set of l learn-
able tokens [p1, p2, ..., pl]. These tokens are called
visual prefix for the audio clusters. Particularly,
considering that the audio and visual are aligned
in temporal, we also cut the frame sequence into l
clips with time length T and obtain the embedding
[c1, c2, ..., cl] by pooling the features of each clip.
Then, we apply a mapper with self-attention (SA)
on the ci to obtain the visual prefix pi as follows:

ci =
1

|T |
∑

t∈T
vt

pi = SA(ci)

(1)

Then, we develop a reconstructor to reproduce
the audio features from the visual prefix, and
the accuracy of reconstructed audio provides a
constraint for the self-attention layer to retrieve
cross-domain invariance from the visual features
ci, and accumulate it into pi. To achieve this,
the reconstructor learns to combine audio clus-
ters from M to reconstruct dynamic audio features
Arec =

{
a1rec, a

2
rec, ..., a

l
rec

}
. The predicted audio

features airec is a weighted sum of audio clusters
m1,m2, ...,mk, where the weights are predicted
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by applying a linear layer ϕ to pi followed by a
softmax function to normalize weights, as follows:

airec =
K∑

k=1

wkmk,

where, wk = SoftMax(ϕk(pi))

(2)

During meta-training, we apply the mean square
error (MSE) loss Lrec on the reconstructed audio
Arec against the ground-truth audioA to update the
parameters in the meta-mapper network and shared
across all domains in Dmeta−train.
Audio-Visual Encoder. Formally, given a se-
quence of video frames, we first extract a se-
quence of the frame features V = {v1, v2, . . . , vm}
and the audio features A = {a1, a2, . . . , am}.
Then, we prepend this visual prefix to the frame
features, yielding the following sequence V

′
=

[p1, ..., pl, v1, ..., vm]. After that, we adopt a self-
attention module to learn visual representation
f

′
v ∈ Rd and audio representation f

′
a ∈ Rd

as follows: f
′

= MHA(f, f, f),where, f ∈
{V′ , A} and MHA(·) denotes multi-head attention
(Vaswani et al., 2017). Then we apply audio-visual
cross-attention to identify attention across two dif-
ferent kinds of feature fields. For simplicity, we
formulate this stage as:

xt=AV−Encoder(fi, fj , fj),where, i, j∈{v, a}
(3)

where xt ∈ {xav, xva}. Illustratively, the details of
the encoder are provided in Appendix A.
Language Model Generator. As opposed to the
original Transformer’s decoder, we introduced an
α to evaluate the contribution of different modali-
ties (audio and visual) to each word. At time step
t, αt is computed by measuring the relevance be-
tween the cross-attention of each modality and the
previous words Y = {y1, y2, ..., yt−1} as follows:

αt = σ (Wt [Y,MHA(Y, xt, xt)] + bt) (4)

where [·, ·] indicates concatenation, σ is the sig-
moid activation and Wt is a 2d× d weight matrix.
The decoder outputs caption Ỹ is defined as:

Ỹ=αav·MHA(Y,xav, xav)+αva·MHA(Y,xva, xva) (5)

With αt, the model can provide interpretability for
the audio-visual fusion strategy.

3.3 Counterfactual Contrastive Learning
Although the reconstruction-based paradigm pro-
vides a constraint for AVMM, it cannot directly

optimize the visual-audio alignment scores. There-
fore, we propose a Dual Counterfactual Contrastive
Learning (DCLL) which constructs fine-grained
supervision signals from counterfactual results to
directly optimize the visual-textual alignment with-
out relying on the quality of randomly-selected
negative samples.
Distribution-based Contrastive Learning. Con-
cretely, we take the reconstructed audio cues Arec

as positive samples A+ and inverse the audio clus-
ters M and weight matrix wk pairings to construct
counterfactual audio cues as negative samples A−.
Then, we illustrate the contrastive learning method
with the causal triplet (A,A+, A−). Intuitively, we
construct distribution-based contrastive learning as
follows

Ldis = − log

(
e(s(A,A+)/τ)

∑n
i=1 e

(s(A,Ai)/τ)

)
(6)

where s (p, q) = pT q/ ∥p∥ ∥q∥ denotes the dot
product between l2 normalized p and q; τ is the
temperature parameter. The distribution-based con-
trastive learning further improves the accuracy and
robustness of reconstructed audio.
Dependency-based Contrastive Learning. For
the audio-visual text generation task, there exists
a modality imbalance in natural language tokens
as different tokens depend on different modali-
ties and the reconstructed audio should also show
similar dependence for different tokens. We con-
sider the dependency-based contrastive loss to
maintain consistency in the distribution of scores
for the original and positive samples. First, the
(A,A+, A−) paired with the V are fed into the
audio-visual encoder to generate the joint embed-
dings of them. Then, we compute the dependence
score ψ (V,A) = αav/αva of original sample as
the anchor r, the score ψ (V,A+) of the factual
sample as the positive r+ and the score ψ (V,A−)
of the counterfactual sample as the negative r−.
Concretely, the contrastive loss is formulated as
follows:

Ldep = − log

(
e(s(r,r

+)/τ)
∑n

i=1 e
(s(r,ri)/τ)

)
(7)

The dependency-based contrastive learning con-
siders the different performances of audio-visual
in text generation to further provide cross-modal
constraints on the mapper.
Token-Wise Modality-Aware Weights. In order
to identify some vague concepts like talking and
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singing, we devise the token-wise modality-aware
weights to encourage the model to use the corre-
sponding modality in the text generation process.
We obtain the association of each word with audio
modality and visual modality as follows:

W i
ma =

1

N

N∑

i=1

(
αi
av

αi
va

)
(8)

Where W i
ma indicates the i-th word’s weights and

N is the data sample size. We apply the weight
Wma on the cross-entropy loss, as follows:

Lcap=−
n∑

t=1

Wma ∗ log(wt = yt|y1:t−1) (9)

where log(wt = yt|y1:t−1) denotes the probability
of predicting word wt given the previously gener-
ated y1:t−1.

3.4 Meta-Training and Inference
The holistic training procedure is shown in Algo-
rithm 1. Here, for simplicity, we assume that our
full model is defined as a function fθ, which re-
ceives the visual features v and audio features a as
input and produces y as output. The loss function,
optimized per domain during training, is as follow:

L = Lcap + Lrec + λLdis + µLdep, (10)

where the hyper-parameter λ and µ seek a trade-off
between the two counterfactual-contrastive learn-
ing losses (details about the hyper-parameter can
be found in the supplementary materials).
Meta-Training To meta-train the model, we ran-
domly select K − 1 specific domains in D as
support set Ds, and the remaining domain as a
query set Dq. When adapting to a new domain Di,
the trainable meta parameters θ become domain-
specific parameters, namely θi. These domain-
specific parameters are computed with N gradient-
step updates, similar as in MAML(Finn et al.,
2017), with the following rule for one gradient up-
date: θ

′
i = θ−α∇θLDi(fθ). This is referred as the

inner-loop update, where α is the hyperparameter
for the step size. Next, the model meta-parameters
θ are optimized for the performance of f

θ
′
i

, using
the query set Dq samples and the domain-specific
parameters θ

′
i as initialization of the model:

min
∑
LDi(fθ′i

) =
∑
LDi(fθ−α∇θLDi

(fθ))(11)

which is called outer-loop optimization. The meta-
optimization across all domains Di is performed

Algorithm 1: Transferable Audio-Visual
Text Generation

Input: k source domains D={D1, ..., Dk}
Output: Model parameters θ

1 while not done do
2 Randomly select (k − 1)Ds ∼ D, and

the remaining domain as Dq ;
3 Sample Bi ∼ Ds ;
4 foreach Bi do
5 θ

′
i = θ − α∇θLBi(fθ)

6 end
7 Sample Bq ∼ Dq ;
8 θ

′
q = θ − α∇θLBq(fθ);

9 Meta-optimization;
10 θ=θ−β∇θ

∑K−1
i=1 (LDi(fθ′i

)+LDq(fθ′q
))

11 end
12 Meta-Test;
13 if audio in Dtarget then
14 θ = θ − α∇θL(fθ);
15 else

/* Frozen the AVMM */
16 θ = θ − α∇θLcap(fθ);
17 end

using stochastic gradient descent update rule, as
follows: θ ← θ−β∇θ

∑LDi(fθ′i
), where β is the

step size hyperparameter.
Meta-Test In the meta-test stage, we consider a
new domain Dtarget, which also has a support set
Ds for fast adaptation by fine-tuning the model
meta-parameters θ to a given task, and a query set
Dq to evaluate the model on this domain. Note that
in audio-absent datasets like MSVD, we can freeze
the parameters of the audio-visual meta-mapper
network and utilize the reconstructed audio features
to boost the performance.

4 Experiment

4.1 Datasets and Metrics.

Datasets For transferable audio-visual text gen-
eration, we design two benchmark datasets. A
cross-domain benchmark was constructed based
on MSR-VTT(Xu et al., 2016) containing 20 cat-
egories as well as multimodal audio and video
streams. We divided a new 10-domain dataset
based on MSR-VTT categories as shown in Ta-
ble 1 (more detailed information about the dataset
can be found in Appendix B). For cross-dataset
benchmark, we use MSVD(Chen and Dolan, 2011)
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Domain Dmeta−train Domain Dmeta−test

News 1727 Animation 816
Movie 1652 Music 733
Sports 1623 Animal 613

Cooking 985 Kids 558
Traffic 815 Beauty 478

Table 1: The number of videos for 10 domains
reorganized from MSRVTT.

which consists of 1,970 video clips collected from
YouTube, and MSR-VTT† which consists of the
whole Dmeta−test as target domains.
Metrics. We evaluate the methods across all
four commonly used metrics for video caption-
ing: BLEU-n (Papineni et al., 2002), METEOR
(Banerjee and Lavie, 2005), ROUGE-L (ROUGE,
2004), CIDEr (Vedantam et al., 2015). We follow
the standard practice to use the Microsoft COCO
evaluation server (Chen et al., 2015).

4.2 Train Details.
Feature Extraction. For the visual feature, we use
the ResNet-101 (He et al., 2016) model pre-trained
on ImageNet as the backbone feature extractor for
frames. The frames are used as the input of the
CNN without re-sizing or cropping. The audio fea-
tures are extracted by the VGGish(Hershey et al.,
2017). For the sentences, to simplify the implemen-
tation, we use a joint vocabulary containing words
in both the source domain and the target domain.
And words appearing less than 3 times are replaced
with a special token.
Proposed Method Settings. The hidden size is
1024 for all the multi-head attention mechanisms.
The numbers of heads and attention blocks are 8.
For meta-training, we adopt Adam with a fixed
inner learning rate of 0.0001 and outer learning
rate of 0.001. We train the source domains with
a batch size of 32. For the meta-test, we use the
beam-search method with a beam width of 5 to
generate the predicted sentences during testing. We
train TAVT on an NVIDIA GeForce RTX 2080, for
TAVT each epoch takes around 4 hours.

4.3 Performance Evaluation
Compared Models. To the best of our knowl-
edge, there is no work investigating transferable
audio-visual text generation. So we first choose the
state-of-the-art video caption approaches based on
two different approaches: (1)The RNN-based mod-
els: RecNet (Wang et al., 2018), AVAF(Guo et al.,

2019), MARN(Pei et al., 2019), AVIC(Tian et al.,
2019), SGN(Ryu et al., 2021) and SHAN(Deng
et al., 2022). (2) The Transformer-based models
Att-TVT(Chen et al., 2018) and SBAT (Jin et al.,
2020). Then, for a fair comparison, these meth-
ods are all trained on Dmeta−train with the same
meta-learning framework as TAVT and tested on
the target domain.
Evaluation Results. In Table 2 we report the per-
formance of our method in comparison with the
aforementioned competitors on the cross-datasets
benchmark. As it can be observed: (1) Our method
outperforms all compared methods on all metrics
by a large margin on MSR-VTT† and MSVD. (2)
In particular, AVIC and Att-TVT focus on de-
signing complex multimodal fusion strategies to
learn visual-audio representations, but leave the
audio invariance unexploited. TAVT uses audio
as a supervisory signal to align visual informa-
tion in different domains, focusing on transferring
the invariant in audio to visual prefix. Therefore,
our model outperforms them by a significant mar-
gin (+1.5%∼9.6% of CIDEr on MSR-VTT†). (3)
Note that in the MSVD which has only a visual
stream, we freeze the parameters of AVMM and use
the reconstructed audio instead the real audio i.e.,
TAVT(Arec). TAVT still performs well (+13.5% of
CIDEr on MSVD), which indicates that the meta-
mapper network has accumulated domain-sharing
knowledge through meta-training. In other words,
the frozen meta-mapper network can produce dis-
criminative visual prefix and reconstruct informa-
tive audio features even in the absence of real audio
supervision.

In Table 3 we also report the performance on
cross-categories benchmark. TAVT outperforms
all other methods on five domains, which indicates
that our method generalizes well. In particular, for
some low-resource domains with only a few labeled
data such as kids and beauty, other methods suffer
from severe performance degradation, while TAVT
outperforms them by a large margin (+3.2% on
kids and +4.5% on beauty).

4.4 Ablation Studies

To analyze the effect of different components, we
conduct ablation studies on the MSR-VTT† dataset.
The following variants of our method are evaluated:
Effectiveness of audio-visual meta-mapper. To
evaluate the advantage of AVMM and audio fea-
tures. We first remove both AVMM and other sub-
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Methods →MSR-VTT† (mutli-modal) →MSVD (uni-modal)

BLEU-1 BLEU-4 M R C BLEU-1 BLEU-4 M R C
RecNet(Wang et al., 2018) 71.1 40.8 26.9 59.5 43.4 79.8 52.9 34.4 70.6 83.3

AVAF(Guo et al., 2019) 72.2 40.7 27.3 60.0 44.9 - - - - -
MARN(Pei et al., 2019) 73.7 40.2 27.9 60.2 47.6 83.6 50.1 35.7 72.5 93.7
AVIC(Tian et al., 2019) 74.0 41.4 28.1 61.2 48.6 - - - - -
SGN(Ryu et al., 2021) 75.8 41.2 28.1 60.6 50.2 84.4 53.3 35.6 72.6 95.2

SHAN(Deng et al., 2022) 76.2 40.9 28.2 60.1 51.5 84.2 53.5 35.4 72.8 95.7
Att-TVT(Chen et al., 2018) 74.9 40.3 28.1 60.3 48.5 - - - - -

SBAT(Jin et al., 2020) 75.4 40.9 28.3 60.9 50.4 82.0 53.6 35.5 72.2 91.1
TAVT (Arec) 78.3 41.8 28.3 61.8 52.6 84.7 53.9 36.1 73.3 96.8

TAVT 78.5 42.1 28.6 61.9 53.0 - - - - -

Table 2: Performance comparisons of two transfer tasks on the cross-datasets benchmark. All methods use the
Dmeta−train as the source domain and transfer to→MSVD and→MSR-VTT†. The best results are bold.

Domain Methods B@4 M R C

→Animation
SBAT 44.7 29.2 64.2 47.6
SHAN 45.5 29.6 64.7 48.6
TAVT 47.3 30.6 65.8 50.4

→Music
SBAT 42.7 27.9 61.2 43.8
SHAN 43.8 28.6 62.4 44.5
TAVT 45.5 29.2 63.1 46.1

→Animal
SBAT 36.6 26.0 56.1 46.7
SHAN 37.8 26.4 56.8 47.7
TAVT 38.3 27.0 58.1 48.4

→Kids
SBAT 40.5 22.2 57.6 44.4
SHAN 41.1 23.9 58.0 45.6
TAVT 42.7 26.1 60.4 47.6

→Beauty
SBAT 31.6 24.1 52.9 27.3
SHAN 33.1 24.5 53.5 28.5
TAVT 35.0 25.8 55.0 31.8

Table 3: Performance comparisons of five transfer tasks
on the cross-categories benchmark. The complete ex-
perimental results are shown in Appendix C.2.

modules which are related to audio and only use
the visual information as the lower bound ( w/o.
audio). Then, we give the results without AVMM
(w/o. AVMM). We also report the result that retains
AVMM but uses the reconstructed audio instead of
real audio (w/o. real audio).

Table 4 shows that while audio contains infor-
mation that is complementary to visual and can
improve performance somewhat ( w/o. audio vs
w/o. meta-mapper), the more important for trans-
fer learning is the cross-domain invariance which
contained in audio and provided the supervised sig-
nal to align visual in different domains (w/o. meta-
mapper vs TAVT). In addition, the reconstructed
audio can ultimately exhibit an upper bound on
performance close to that achieved using real au-
dio, demonstrating the accuracy and validity of the
meta mapper network (w/o. real audio vs TAVT).

Effectiveness of different modules. The results

Method B@1 B@4 M R C
w/o. audio 75.3 37.9 26.3 59.7 47.2

w/o. AVMM 77.1 39.6 27.5 60.0 50.4
w/o. real audio 78.0 41.8 28.2 61.4 52.4

TAVT 78.5 42.1 28.6 61.9 53.0

Table 4: Ablation studies about audio features.

Methods B@1 B@4 M R C
w/o. MAML 76.4 39.8 26.8 59.8 50.2

w/o. Lrec 76.9 40.8 27.2 61.8 51.6
w/o. Ldis 77.5 41.4 28.0 61.4 52.2
w/o. Ldep 77.3 41.6 28.5 61.9 52.4
w/o. ma 77.8 41.8 28.4 61.5 52.7
TAVT 78.5 42.1 28.6 61.9 53.0

Table 5: Ablation studies about different modules.

in Table 5 illustrate that the constraints provided
by the accuracy of the reconstructed audio features
are effective and critical (w/o. Lrec). The coun-
terfactual thinking is helpful and can further im-
prove the accuracy by +0.8% on CIDEr (w/o. Ldis).
Moreover, optimizing the cross-modal relationship
between audio and visual from a text generation
perspective can further improve the performance of
the model (w/o. Ldep). In addition, w/o. MAML
denotes the model without meta-learning. We can
observe that TAVT performs significantly better
than w/o. MAML.
Effectiveness of token-wise modality-aware
weight. To investigate how token-wise modality-
aware weight improves the performance from the
perspective of linguistics, we visualize some to-
ken’s weight and the text generation process in
Appendix E. The result in Table 5 shows that token-
wise modality-aware weights can further improve
the performance of TAVT by optimizing the asso-
ciation of text and audio-visual modalities.

14989



Figure 4: Illustrations of text generated by SHAN and TAVT. The last one on MSVD has only a visual stream. The
red word highlights the advantages of TAVT.

Figure 5: The performance of TAVT and previous meth-
ods under different sizes of labeled videos. As the re-
sults show, TAVT can achieve competitive results with
only 40% of the data.

The performance in low-resource domain. To
quantitatively verify the performance in the low
resource domain, we compare TAVT and previous
methods under different sizes of labeled video as
shown in Figure 5. We observe that TAVT con-
sistently outperforms the other methods and can
achieve close to full performance with only 40%
of the training data, while other methods require
about 70% of the training data.
Hyper-Parameter Analysis. To seek the trade-
off between the DCCL, we introduce the hyper-
parameter λ and µ. Figure 6 shows that the model
achieves the best performance when λ=1e-4 and
µ=1e-2, suggesting that proper hyper-parameters
are crucial to achieve good performance.

4.5 Qualitative Analysis

To qualitatively verify the effectiveness of our
TAVT, we display the results of TAVT in the multi-
modal and uni-modal settings. As shown in Fig-
ure 4, TAVT can accurately describe low-level con-
cepts such as “chirping”, “rainy” and “piano” with

Figure 6: Model performances under different λ and µ
hyper-parameters on MSR-VTT†

the help of audio-enhance visual prefix. When
transferred to a uni-modal domain where miss-
ing audio, the AVMM can capture the correlation
audio-visual correlation and reconstruct audio fea-
tures that are semantically relevant to the visual.

5 Conclusion

In this paper, we first study the task of transfer-
able audio-visual text generation tasks. To miti-
gate multimodal content domain shift, we observe
that low-level visual concepts have similar sounds
in different domains and propose a novel frame-
work TAVT with two technical contributions. The
first one is the audio-visual meta-mapper, which
can transfer the domain-invariant concept informa-
tion within the universal auditory semantic space
into the visual prefix. Moreover, the well-trained
audio-visual meta-mapper can also reconstruct se-
mantic audio features in audio-absent mode. We
then apply dual counterfactual contrastive learn-
ing to directly optimize the visual-audio alignment.
Extensive experiments on both cross-datasets and
cross-domains benchmarks verify the effectiveness
of our model. Furthermore, our TAVT framework
can be transferred to other text generation tasks e.g.,
video QA in a plug-and-play fashion.
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6 Limitation

We identify a few limitations of the current work.
Our approach still suffers from biases in the train-
ing data and may produce incorrect output or lead
to an inaccurate understanding of multi-modal con-
tent. And a large-scale audio-visual pre-trained
model is a promising direction toward more ad-
vanced and cheaper approaches for transfer learn-
ing, which we leave for future study.

7 Ethics Statement

We adopt the widely-used datasets that were pro-
duced by previous researchers and followed all
relevant legal and ethical guidelines for their acqui-
sition and use. Besides, we recognize the potential
influence of our technique. When deployed our
approach will have to record, store and process
video and audio information related to human ac-
tivities, which will have privacy implications for
some application domains. We are committed to
conducting our research ethically and ensuring that
our research is beneficial. We hope our work can
inspire more investigations for transfer learning
on multi-modal tasks and wish our framework can
serve as a solid baseline for further research.
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Appendix

This appendix contains four sections. (1) Ap-
pendix A introduce the detail about audio-visual
encoder. (2) Appendix B introduces the details
of the benchmark construction. (3) Appendix C
provides the complete performance comparison
on cross-categories benchmark (3) Appendix D
discusses the design of universal auditory seman-
tic space (Appendix D.1) and visualize the uni-
versal Auditory semantic space (Appendix D.2)
(4) Appendix E provide the analysis of token-wise
modality-aware weights and visualize the text gen-
eration process.

A Encoder

For the visual input V
′
= [p1, ..., pl, v1, ..., vm]

and audio input A = [a1, ..., am], we first adapt
the self-attention layer SelfAtt to learn the visual
representation and audio representation as follows:

f
′
v = SelfAtt(V

′
, V

′
, V

′
) (12)

f
′
a = SelfAtt(A

′
, A

′
, A

′
) (13)

The SelfAtt layer contains multi-head attention
which can be calculated by multiple single heads:

MHA(F, F, F ) = Concat(h1, h2, ..., hh), (14)

hi = ATT(FWQ
i , FW

K
i , FW

V
i ) (15)

where, WQ
i ,W

K
i ,W

V
i ∈ Rd d

h and W 1 ∈ Rd×d.
hi denotes the i-th head and h is the number of
heads. ATT represents scaled dot-product attention
as ATT(Q,K, V ) = softmax(Q·KT

√
dk

). Then we
apply audio-visual cross-attention to identify atten-
tion across two different kinds of feature fields as
follows:

xav = CrossAtt(f
′
v, f

′
a, f

′
a) (16)

xva = CrossAtt(f
′
a, f

′
v, f

′
v) (17)

where CrossAtt layer is similar to SelfAtt con-
tains multi-head attention.

B Details about Datasets

To more adequately validate the effectiveness of
our proposed approach, we first regrouped the 20
categories of MSR-VTT and reorganization a new
10-domain dataset based on the MSR-VTT (Xu
et al., 2016) categories information as shown in Ta-
ble 6. The number of videos regrouped 10 domains
is shown in Figure 7. We use five of them as source

Figure 7: The distribution of video numbers in our re-
grouped 10 domains.

domains and the remaining five domains (“Anima-
tion”, “Music”, “Animal”, “Kids” and “Beauty”)
as target domains. And a random sampling strategy
is applied in the target domain for dataset split.

Domain Category
News howto, education, science, news
Movie tv shows, movie, doc, ads
Sports people, sports, travel

Cooking food, cooking
Traffic vehicle

Animation gaming, animation
Music music
Animal animal

Kids kids
Beauty beauty

Table 6: Statistics of our 10 regroup captioning domains
based on the MSR-VTT dataset.

C Experiment Results

C.1 Baseline Setting

To the best of our knowledge, there is no work
investigating transferable audio-visual text gener-
ation, thus we choose the state-of-the-art video
caption approach and use MAML on top of it to
construct the baseline. We compare the perfor-
mance of the TAVT with that of state-of-the-art
methods based on two different approaches: (1)The
RNN-based models: RecNet (Wang et al., 2018)
which adds a reconstructor to reconstruct the visual
features from the generated caption, AVAF(Guo
et al., 2019) combined different multimodal fu-
sion methods and attention mechanism, MARN(Pei
et al., 2019) which equips with a memory consist-
ing of words and corresponding visual contexts,
AVIC(Tian et al., 2019) introduce audio-visual con-
troller to balance the importance between audio and
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Methods →Animation →Music

BLEU-1 BLEU-4 M R C BLEU-1 BLEU-4 M R C
RecNet(Wang et al., 2018) 72.7 42.8 27.4 62.0 45.3 71.6 41.5 26.5 59.1 40.1

MARN(Pei et al., 2019) 75.5 44.5 28.3 63.4 47.2 74.6 43.4 27.6 60.3 42.6
AVIC(Tian et al., 2019) 75.2 44.8 28.7 63.6 47.1 74.9 43.0 27.7 60.5 42.9
SGN(Ryu et al., 2021) 75.6 45.1 29.2 64.2 48.5 75.8 43.4 28.0 61.9 44.5

SHAN(Deng et al., 2022) 76.2 45.5 29.6 64.7 48.6 76.0 43.6 28.2 61.8 44.2
Att-TVT(Chen et al., 2018) 72.4 44.3 29.0 63.8 46.3 73.1 42.2 27.8 61.7 42.0

SBAT(Jin et al., 2020) 72.1 44.7 29.2 64.2 47.6 74.8 42.7 27.9 61.2 43.8
TAVT 76.8 47.3 30.6 65.8 50.4 79.0 45.5 29.2 63.1 46.1

Table 7: The results of performance comparisons. All methods use the Dmeta−train as the source domain and
transfer to vehicle and music domains. The best results are bold.

Methods →Animal →Kids

BLEU-1 BLEU-4 M R C BLEU-1 BLEU-4 M R C
RecNet(Wang et al., 2018) 72.9 35.6 24.3 53.5 43.6 73.0 37.2 21.4 55.0 41.8

MARN(Pei et al., 2019) 74.7 36.9 25.7 55.1 45.0 75.5 38.7 22.5 55.8 43.3
AVIC(Tian et al., 2019) 75.0 36.8 25.9 55.7 45.6 74.9 39.1 22.8 56.3 43.2
SGN(Ryu et al., 2021) 76.6 38.1 26.6 56.2 47.3 76.1 40.7 23.3 57.6 45.1

SHAN(Deng et al., 2022) 76.3 37.8 26.4 56.8 47.7 76.5 41.1 23.9 58.0 45.6
Att-TVT(Chen et al., 2018) 74.7 36.0 25.8 56.3 46.2 75.3 40.2 21.7 57.1 44.3

SBAT(Jin et al., 2020) 75.8 36.6 26.0 56.1 46.7 75.1 40.5 22.2 57.6 44.4
TAVT 78.5 38.3 27.0 58.1 48.4 77.3 42.7 26.1 60.4 47.6

Table 8: The results of performance comparisons. All methods use the Dmeta−train as source domain and transfer
to animal and kids domains. The best results are bold.

Methods →Beauty

BLEU-1 BLEU-4 M R C
RecNet 60.7 28.9 21.8 51.3 24.6
MARN 64.4 30.5 23.0 52.2 26.4
AVIC 64.8 30.7 23.5 52.0 26.3
SGN 65.3 33.3 24.5 53.7 28.6

SHAN 65.0 33.1 24.5 53.5 28.5
Att-TVT 62.5 31.1 23.7 52.3 26.8

SBAT 63.4 31.6 24.1 52.9 27.3
TAVT 67.8 35.0 25.8 55.0 31.8

Table 9: The results of performance comparisons. All
methods use the Dmeta−train as source domain and
transfer to animal and kids domains. The best results
are bold.

visual modalities, SGN(Ryu et al., 2021) which en-
code a video into semantic groups and SHAN(Deng
et al., 2022) which use syntax-guided hierarchical
attention to integrate visual and sentence-context
features. (2) The Transformer-based models Att-
TVT(Chen et al., 2018) which fuses the modali-
ties from video and text with attention mechanism,
SBAT (Jin et al., 2020) which uses boundary-aware
pooling operation to reduce the redundancy.

Figure 8: Impact of Temperature τ on MSRVTT†.

C.2 Performance on Cross-Categories
Benchmark

To further validate the generalizability of the pro-
posed method, we also conduct experiments on five
reorganized Dmeta−test domains. From the results
in Table 7,8 and 9, we observe that our method
outperforms other methods in all five target do-
mains, which indicates that our method has good
generalization and can compensate for the perfor-
mance degradation caused by limited label data in
low-resource domains such as kids and beauty.
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Cluster
Number

B@1 B@4 M R C

10 77.3 41.4 28.2 61.2 52.0
100 78.5 42.1 28.6 61.9 53.0
200 78.2 41.7 28.5 61.7 52.3
300 77.0 41.2 27.9 61.1 51.8

Table 10: The Comparison of different cluster number.

C.3 Hyper-Parameter Analysis

We evaluate 11 different values τ from 0.01 to 1.0
on MSRVTT† and report the results in Figure 8. It
shows that the performance achieves the best when
τ is set to 0.4 and becomes poor when τ is too small
or too large. This result suggests that a proper τ
value is crucial to achieving good performance.

D Analysis of Universal Auditory
Semantic Space

D.1 Construction Details

Audio Clusters. We design our model by introduc-
ing a universal auditory semantic space consisting
of a set of audio clusters. We are interested in nat-
ural environmental sounds. We download videos
from videos on Flickr(Thomee et al., 2015) and
extract their sounds. We downloaded over 750,000
videos from Flickr, which provides over a year (377
days) of continuous audio. The only pre-processing
we do on the sound is to extract the spectrogram
from the video files and subtract the mean. We
extract spectrograms for approximately five sec-
onds of audio and obtain the audio clip features by
VGGish and select conv4_1 as the extraction layer.
Selection of Clustering Algorithm. To obtain the
audio cluster, we apply K-means (MacQueen et al.,
1967) to the extracted audio features. Specifically,
K-Means require a manual setting of cluster num-
ber values. Thus, we experimented with different
cluster numbers. From the results shown in Table
10, we can see that when setting the cluster number
as 100 achieve better results on our extracted audio
features from Flickr.

D.2 Visualization of Audio Clusters.

In Figure 9, we visualize the semantic space. We
can see that there are a large number of low-level
concepts shared across different domains. The
sounds of these low-level concepts are similar but
have significant visual differences. This provides a
guarantee for the effectiveness of our approach.

E Analysis of Token-Wise
Modality-Aware Weights

Modality Imbalance. There exists a modality im-
balance in natural language tokens as different to-
kens depend on different modalities. For exam-
ple, some nouns of objects like “shirts”, “lamps”
and “flowers” are only visually related, but some
objects like “guitar” and “alarm clock” can make
sounds that are auditory related. Moreover, the
verbs which indicate the low-level concepts like
“talking”, “hit” and “kick” are obviously auditory
related. And we visualize the word clouds in Figure
10.
Visualization of Text generation. To investigate
how the token-wise modality aware weight im-
proves the performance from the perspective of
linguistics, we visualize the text generation pro-
cess. In Figure 11, we present the modality depen-
dency scores of each word. Firstly, we can find
that words have different dependencies on differ-
ent modalities in the process of generation, which
proves the existence of modal imbalance. For ex-
ample, some quantifiers (a, group) and some nouns
(children) rely more on the visual modality, while
guitar and sing rely more on the audio modality.
There are also some prepositions and conjunctions
that often rely on the context text for a generation.
Secondly, comparing w/o. ma and TAVT, we can
find that token-wise modality-aware weights can
optimize the dependence of different words on dif-
ferent modalities, encouraging the model to use the
correct modality to generate words, which can help
identify some vague concepts such as talking and
singing.

14996



Figure 9: Universal Auditory Semantic Space Visualization: We visualize a few clusters from the semantic space
and how they align to different domains. On top of the spectrograms (yellow/red heatmaps), we also show the
original video frame related to the sound.

(a) Word clouds for words related to audio (b) Word clouds for words related to visual.

Figure 10: Word clouds for audio-visual words where font size indicates the audio-visual relevancy of words.

Figure 11: The visualization of the dependency of different words on audio and visual modalities during text
generation. Red indicates audio modality and blue indicates visual modality. The Higher bars represent higher
dependency scores.
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�3 C2. Did you discuss the experimental setup, including hyperparameter search and best-found
hyperparameter values?
Section 4.2

� C3. Did you report descriptive statistics about your results (e.g., error bars around results, summary
statistics from sets of experiments), and is it transparent whether you are reporting the max, mean,
etc. or just a single run?
Not applicable. Left blank.

�3 C4. If you used existing packages (e.g., for preprocessing, for normalization, or for evaluation), did
you report the implementation, model, and parameter settings used (e.g., NLTK, Spacy, ROUGE,
etc.)?
Section 4

D �7 Did you use human annotators (e.g., crowdworkers) or research with human participants?
Left blank.

� D1. Did you report the full text of instructions given to participants, including e.g., screenshots,
disclaimers of any risks to participants or annotators, etc.?
No response.

� D2. Did you report information about how you recruited (e.g., crowdsourcing platform, students)
and paid participants, and discuss if such payment is adequate given the participants’ demographic
(e.g., country of residence)?
No response.

� D3. Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? For example, if you collected data via crowdsourcing, did your instructions to
crowdworkers explain how the data would be used?
No response.

� D4. Was the data collection protocol approved (or determined exempt) by an ethics review board?
No response.

� D5. Did you report the basic demographic and geographic characteristics of the annotator population
that is the source of the data?
No response.
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