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Abstract

With the ubiquitous use of online meeting plat-
forms and robust automatic speech recognition
systems, meeting transcripts have emerged as
a promising domain for natural language tasks.
Most recent works on meeting transcripts pri-
marily focus on summarization and extraction
of action items. However, meeting discussions
also have a useful question-answering (QA)
component, crucial to understanding the dis-
course or meeting content, and can be used to
build interactive interfaces on top of long tran-
scripts. Hence, in this work, we leverage this
inherent QA component of meeting discussions
and introduce MEETINGQA, an extractive QA
dataset comprising of questions asked by meet-
ing participants and corresponding responses.
As a result, questions can be open-ended and
actively seek discussions, while the answers
can be multi-span and distributed across mul-
tiple speakers. Our comprehensive empiri-
cal study of several robust baselines includ-
ing long-context language models and recent
instruction-tuned models reveals that models
perform poorly on this task (F1 = 57.3) and
severely lag behind human performance (F1
= 84.6), thus presenting a challenging new
task for the community to improve upon.1

1 Introduction

Millions of meetings occur every day worldwide,
which results in vast amounts of meeting tran-
scripts. Meeting transcripts are typically long doc-
uments, often domain-specific depending on the
subject matter, and contain a lot of information.
Basic tasks such as catching up with a missed meet-
ing, looking up a specific discussion or response to
a query can be time-consuming. These tasks can be
facilitated by NLP systems, including summariza-
tion and question-answering. To this end, several
publicly available small-scale corpora of meeting

1MEETINGQA data and code is available at https://
archiki.github.io/meetingqa.html

Figure 1: Representative example from meeting tran-
script segment in MEETINGQA. The question and anno-
tated answer are highlighted in red and blue respectively.

transcripts have been released (Carletta et al., 2005;
Janin et al., 2003; Garofolo et al., 2004, inter alia).

Prior NLP work on meeting transcripts mainly
focuses on summarization (Oya et al., 2014; Li
et al., 2019; Zhu et al., 2020, inter alia). However,
lack of annotated data impedes research on other
important NLP tasks in this domain. To address
this gap, we introduce a question-answering (QA)
task based on conversations in meeting transcripts.
Specifically, we consider questions asked by par-
ticipants during the meeting and aim to extract cor-
responding answer spans from relevant discussions
among meeting participants (refer to Figure 1).
This task has several practical applications such as
building an interactive meeting browser/interface
for navigating through transcripts and informing
tasks such as meeting summarization and handling
action items involving QA pairs (Kathol and Tur,
2008; August et al., 2022).
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While standard QA datasets consist of human
generated questions either based on short supplied
contexts (Rajpurkar et al., 2016, 2018; Rogers et al.,
2021) or are answered using a large collection of
documents (Joshi et al., 2017; Kwiatkowski et al.,
2019; Zhu et al., 2021b), our task setting is chal-
lenging yet interesting in several ways. First, meet-
ing transcripts are long documents and QA systems
still struggle to understand long contexts (Pang
et al., 2022; Soleimani et al., 2021). Second, suc-
cessfully answering questions asked within meet-
ings requires robust understanding of the conver-
sation and discourse that takes place both before
and after a question. Third, the multi-party spoken
text falls under a different domain when compared
to typical text documents. While standard long
documents rarely include any meaningful (non-
rhetorical) questions, multi-party meetings often
involve discussions asked by one participant and
answered by the rest, allowing us to use these ques-
tions to create a QA dataset. Furthermore, the
conversational nature of transcribed text differs
from written documents and may contain disflu-
encies and other artifacts. Finally, instead of using
annotator-generated questions (like in Wu et al.
(2022)), questions asked by participants are more
open-ended and discussion-seeking, with interest-
ing answer types that can be multi-span and/or con-
tributed by multiple speakers (e.g., Figure 1).

To this end, we first introduce our dataset MEET-
INGQA, created by annotating meetings transcripts
from the popular AMI (Augmented Multi-party
Interaction) corpus, containing over 100 hours of
meetings (Carletta et al., 2005), via a robust anno-
tation pipeline . MEETINGQA comprises of 7,735
questions asked by participants across 166 meet-
ings. Unlike other datasets, questions in MEET-
INGQA are less concise (12 words on average) and
reflect queries asked in a conversational setting.
The answers include realistic situations such as
rhetorical questions, multiple discontiguous spans
and/or contributions from multiple speakers.

Next, on MEETINGQA dataset, we test diverse
models designed for long input contexts such as
Longformer (Beltagy et al., 2020), and BigBird (Za-
heer et al., 2020) as well as RoBERTa (Liu et al.,
2019), and DeBERTa-v3 (He et al., 2020) with as
much meeting context surrounding the question as
possible. To incorporate the multi-span nature of
answers in our dataset, we design and experiment
with multi-span variants of the aforementioned

models. Furthermore, we also investigate how well
recent instruction-tuned large language models fare
at answering questions from MEETINGQA. Lastly,
we create a silver-annotation pipeline using ME-
DIASUM (Zhu et al., 2021a), a corpus containing
463.6K short interview transcripts, to provide ad-
ditional training data. We find that the best per-
formance is achieved by finetuned short-context
models (F1 = 57.3). Overall, we show that models
struggle to identify rhetorical questions and select-
ing which utterances constitute the answer. Thus,
model performance significantly trails behind hu-
man performance on MEETINGQA (F1 = 84.6),
leaving a large potential for future improvements
on this challenging task.

2 Our Dataset: MEETINGQA

We first describe our data collection process in
Section 2.1 and then provide an extensive analysis
of MEETINGQA in Section 2.2.

2.1 Data Collection

Question Selection. We leverage the punctuated
text to identify possible questions (ending with ‘?’).
We also filter out questions containing ≤ 2 words
as we manually find them to be either meaningless
or rhetorical. While questions are marked to facili-
tate annotators, we encourage them to find missed
potential questions due to incorrect punctuation.

Answer Annotation. For each possible question,
we ask annotators to label the set of sentences (each
identified by a unique number) from the meeting
transcript that form the answer. Additionally, we
also collect meta-data about the question. First, we
ask the annotators to label if the question was mean-
ingful, used to filter out rhetorical, unanswered
or logistical questions and incorrect punctuations.
Some speakers can ask consecutive or multiple
questions in the same turn that are often related
and answered together. In such scenarios, we al-
low annotators to combine questions and provide a
common answer from the meeting transcript. The
annotators mark these questions using the com-
bined question attribute. Finally, since our ques-
tions are conversation segments, they may not be
self-contained. Hence, we ask annotators to men-
tion the question context sentences (if any) sepa-
rately. We refer readers to Appendix A for more
details and examples from MEETINGQA.
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Do multiple speakers in the
answer agree with each other? No (25.0%) Maybe (43.8%) Yes (31.2%)

Is the question opinion-seeking? No (51.3%) Yes (49.7%)

Was the question framed
rhetorically? No (80%) Yes (20%)

Did the answer involve a
follow-up or action item? No (77.5%) Yes (22.5%)

For yes/no questions, could the
answer be reduced to yes/no? No (41.2%) Yes (58.8%)

Question Type

Figure 2: Analysis of 200 randomly selected questions from MEETINGQA. On left, we show the distribution of
question types. On right, we show additional properties of answerable questions: level of agreement in multi-speaker
answers, subjectivity of questions, question-framing, follow-ups and answer ambiguity in yes/no questions.

Annotation Process. All annotators were
hired by a professional crowdsourcing company
TELUS.2 The company obtained consent from the
crowd workers and conducted ethical reviews. To
train annotators, we provide comprehensive in-
structions for each type of annotation with several
manually annotated examples from a small subset
of transcripts and different possible scenarios
curated by the first author. The annotations were
collected in multiple batches, starting with the first
batch containing a small subset of 250 questions.
We iteratively provided extensive feedback to the
crowdworkers on their annotations and resolved
existing issues till the annotations were satisfactory.
Next, we assigned three independent annotators
to each question, and calculated Krippendorff’s
α = 0.73 (Krippendorff, 1980) using MASI-
distance (Passonneau, 2006), indicating substantial
agreement. We then collected annotations for the
remaining questions in two additional batches
using one annotator per question followed by a
quality assurance stage to validate the outcome of
the annotations. Overall, we spent $10,427 in the
annotation process, amounting to $61 per meeting.
For additional details refer to Appendix A.

2.2 Dataset Information and Analysis
After filtering and quality control, we were left
with a total of 7,735 questions from 166 meetings
(≈ 100 hours of meeting recordings).

Size and Splits. We split our dataset into train,
dev, and test sets such that questions in each split
come from distinct meetings. Table 1 shows dataset
statistics across different answer types, namely

2https://www.telusinternational.com/

Train Dev Test

Number of Meetings 64 48 54

Number of Questions 3007 2252 2476
w/ No Answer 956 621 764
w/ Multi-Span Answers 787 548 663
w/ Multi-Speaker Answers 1016 737 840

Avg. Questions per Meeting 46.98 46.92 45.85

Table 1: Dataset statistics of MEETINGQA.

unanswerable, multi-span, and multi-speaker (de-
scribed below). Due to relatively small number of
meetings in the AMI corpus and diversity in meet-
ing content, our test set contains a larger fraction
of questions from the dataset as opposed to the con-
ventional 80:10:10 split across train/dev/test sets.

Question Types. Unlike most QA datasets, ques-
tions in MEETINGQA are extracted directly from
the meeting transcripts. Consequently, we find that
questions may not be concise, and may not begin
with ‘wh’ prefixes, making our dataset challenging
yet interesting for the community. We perform a
manual analysis of question types based on 200
randomly selected questions from the test set in
Figure 2 (left). First, we observe that a majority of
questions in MEETINGQA are framed in a ‘yes/no’
manner, followed by ‘what’ and ‘how’ questions
that are typically information-seeking. We find that
in a discussion-heavy setting such as ours, yes/no
questions elicit a detailed response that cannot be
reduced to a direct ‘yes/no’ response in over 40%
of the cases (see Figure 2 (right)). Further, manual
analysis shows that nearly half the questions are
subjective, i.e., seeking opinions of meeting partic-
ipants, and as high as 20% of answerable questions
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Figure 3: Number of words (length) in a meeting transcript, question and answer (for answerable questions) in
MEETINGQA. The average length of a transcript, question, and answer is 5.9K, 12, and 35 words respectively,
while the maximum length of a transcript, question, and answer is 19.4K, 155, and 305 words respectively.

are framed rhetorically. Appendix A contains addi-
tional tri-gram-based analysis of questions.

Length. Figure 3 shows the distribution of the
length of meeting transcripts, questions, and an-
swers in MEETINGQA. On average, each meeting
transcript comprises of 5.8K words which consti-
tute as long documents unlikely to fit entirely in the
input context of typical pretrained language mod-
els (Devlin et al., 2019; Liu et al., 2019; He et al.,
2020). Further, questions and their answers contain
an average of 12, and 35 words respectively.

Answer Types. Due to the nature of meeting
conversations and questions asked by participants,
most answers are direct responses or follow-up dis-
cussions. However, some questions are rhetorical
or do not elicit any discussion. These questions are
unanswerable (30% of MEETINGQA). Among an-
swerable questions, we note two scenarios of inter-
est: multi-span and multi-speaker answers. Multi-
span answers contain non-consecutive and discon-
tinuous utterances or sentences, typically in the
form of relevant discussion interleaved with irrele-
vant chit-chat (see examples in Appendix A). Addi-
tionally, multi-speaker answers occur when multi-
ple participants contribute to answering a question
which is typical in a discussion. Note that multi-
speaker and multi-span answer cases are not mu-
tually exclusive (refer to Figure 1 for an example).
We find that 40% of all answers (excluding unan-
swerable questions) in our dataset are multi-span
and 48% of answers are multi-speaker in nature.
Moreover, Figure 2 (right) shows from our manual
analysis that a considerable amount of disagree-
ment exists among speakers in multi-speaker an-
swers, with approximately 70% of cases displaying
some form of disagreement. Notably, 22% of an-
swers involve additional follow-up or action items,
which are specific to the context of meetings.

Human Performance. We estimate human per-
formance on MEETINGQA using a random sub-
sample of 250 questions from the test split. Each
question is assigned a different annotator who had
not previously annotated the meeting containing
that question. Scoring the provided answers rela-
tive to the reference answers in our dataset, yields
an F1 of 84.6. This breaks down to F1 of 80.7 and
86.3 for unanswerable and answerable questions
respectively. The F1 score for multi-span and multi-
speaker answers is 88.1 and 87.7 respectively.

3 Methods

In this section, we investigate the difficulty level
of our new MEETINGQA for state-of-the-art QA
systems and establish strong baseline results. We
describe strategies for retrieving contexts from tran-
scripts in Section 3.1, followed by different QA
models in Section 3.2, and silver data annotation
for data augmentation methods in Section 3.3.

3.1 Retrieving Contexts from Transcripts
Given that meeting transcripts are very long docu-
ments, it is infeasible to input the entire transcript
as context to typical QA models. Thus, we first
select a smaller transcript segment that fits the
model’s input length limitations. We explore two
strategies to retrieve contexts as described below.

Location-based Context Retrieval. We use the
relative location of the question in the meeting tran-
script to retrieve a context by fitting as many (com-
plete) sentences as possible under a fixed length
budget (measured in words). Further, we split this
budget into two components: prefix and suffix refer-
ring to the sentences that precede and succeed the
question respectively. We set the prefix budget to
50 words and the suffix budget to 250 words respec-
tively, resulting in a total budget of 300 words.3

3Ensures context fits into QA models limited 512 tokens.
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Retrieval Method Answer-Span Overlap Upper Bound

F1 IoU

Location 99.20 99.99 99.98
ROUGE-1 14.81 23.21 19.95
Embedding Cos. Sim. 32.45 38.24 34.17

Table 2: Upper-bound performance of different retrieval
methods for answerable questions split. Answer-span
overlap measures the relative number of sentences in
the annotated answer span present in the context (%).

Note that the suffix budget is significantly larger
than the prefix budget since we expect to find an-
swers in sentences following the question. The
sentences before the question only provide addi-
tional context to the ongoing discussion.

Score-based Context Retrieval. Alternatively,
we use the question as a query and compare it to
other sentences from the entire transcript via two
scoring methods consistent with Pang et al. (2021).
First, we retrieve sentences using ROUGE-1 score
relative to the question. Second, we use cosine
similarity based on sentence embeddings (Reimers
and Gurevych, 2019). We concatenate sentences in
the order they appear in the transcript until reaching
the total length budget. Similar to location-based
retrieval, we set the total budget to 300 words.

Results of Context Retrieval. Table 2 com-
pares both retrieval methods using the same total
length budget on the answerable questions split.
We observe that the sentence-level overlap be-
tween extracted contexts and annotated answers
for score-based retrieval is significantly lower than
for location-based retrieval. We use this overlap
to compute the maximum achievable performance
of QA systems for each type of retrieval. Corre-
spondingly, we find similar trends in upper-bound
performance metrics (discussed in Section 4) with
location-based contexts (near-perfect max F1) con-
siderably outperforming score-based contexts (max
F1 < 40). Therefore, for short-context models, we
henceforth use location-based contexts.

3.2 Models for Meeting-based QA

We primarily focus on extractive models includ-
ing both short and long-context models. Given
the transcript or a segment from it (context) and
the question, models are tasked with extracting
answer-span(s) from the context. We use two high-
performing short-context models RoBERTa and
DeBERTaV3, each supporting up to 512 tokens,

with extracted context from Section 3.1. Addition-
ally, we explore Longformer and BigBird which
support longer sequences of up to 4096 tokens
by utilizing a combination of sliding window and
global attention mechanisms. Further, the Long-
former Encoder-Decoder (LED) model supports up
to 16,384 input tokens. These models allow us to
use most or all portions of the transcript needed
for answering the questions as the context. In case
of an overflow, we use as many utterances from
the transcript around the question as possible and
truncate the rest. Note that these models output
a single answer-span by default. Therefore, for
multi-span answers, we train models to predict a
span starting with first utterance and ending with
the last utterance of the gold answer.

Multi-Span Models. In order to better model
multi-span answers, we follow Segal et al. (2020)
and pose multi-span QA as a sequence tagging task,
predicting if each token in the context is part of the
answer. For simplicity, we restrict ourselves to their
proposed IO tagging. Thus, the answer prediction
is a concatenation of all token-spans contiguously
tagged with I. Similar to single-span models, we
train multi-span variants of RoBERTa, DeBERTa,
Longformer, and BigBird models.

Instruction-Tuned Models. Furthermore, we
use FLAN-T5 (Chung et al., 2022), a publicly-
available instruction-tuned model, to study zero-
shot performance on our MEETINGQA. Given the
relatively large size of contexts and distinct nature
of our task, we rely on succinct instructions in-
stead of few-shot demonstrations. Furthermore,
due to the model’s generative nature, we cannot
directly use the predictions for our extractive QA
task. Therefore, we adapt instruction-tuned models
for our setting by employing instructions that ask
models to list sentences instead of directly generat-
ing answers that may be less faithful to the context.
Next, we filter out predicted sentences not present
in the context. While this is a strict selection crite-
rion, it removes any possible hallucinations.4

3.3 Silver Data Augmentation

Due to high annotation costs of gold labels, and
unavailability of similar QA datasets, we investi-
gate automatic methods to annotate answers. We
match the salient features of MEETINGQA, such
as meaningful questions within the transcript and

4Appendix E shows these choices improve overall scores.
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Model Intermediate Train Data Overall No Answer Answerable

All Multi-Span Multi-Speaker

F1 / IoU F1† F1 / IoU F1 / IoU F1 / IoU

RoBERTa-base
− 56.5 / 51.1 41.0 63.1 / 55.6 60.8 / 50.1 64.1 / 54.7
SQuADv2 54.1 / 49.4 37.4 61.5 / 54.7 50.8 / 40.2 56.2 / 46.9

+ silver 55.4 / 50.7 47.4 58.9 / 52.2 57.2 / 46.9 60.2 / 51.4

DeBERTa-base
− 57.3 / 52.9 55.8 58.0 / 51.6 49.6 / 39.3 55.3 / 46.7
SQuADv2 56.5 / 52.1 51.0 58.9 / 52.6 49.6 / 39.1 55.7 / 47.2

+ silver 55.2 / 50.4 46.7 59.0 / 52.0 51.4 / 40.5 57.7 / 48.6

Longformer-base
− 55.6 / 50.9 46.1 59.9 / 53.0 55.3 / 44.9 59.4 / 50.4
SQuADv2 54.2 / 49.1 31.4 64.4 / 56.9 58.0 / 47.2 62.6 / 53.0

+ silver 54.9 / 50.2 51.2 56.6 / 49.8 54.5 / 44.0 58.6 / 49.9
LED-base − 27.8 / 25.0 59.0 13.9 / 9.7 12.1 / 7.0 12.4 / 7.4

BigBird-base
− 53.7 / 48.6 44.4 57.8 / 50.4 58.1 / 47.5 62.6 / 53.4
TriviaQA 54.5 / 49.5 35.2 63.2 / 55.9 56.3 / 45.5 60.6 / 51.1

+ silver 54.7 / 49.8 43.7 59.6 / 52.4 57.6 / 46.9 60.5 / 51.2

Turn-based Baseline − 35.9 / 30.4 0.5 51.8 / 43.8 42.0 / 31.5 47.3 / 40.0

Human Performance − 84.6 / 83.5 80.7 86.3 / 84.6 88.1 / 86.2 87.7 / 85.3

Table 3: Comparing performance of finetuned single-span models and human performance on across answer types
(best numbers in bold). Intermediate Train Data denotes the intermediate training data used, lack of which indicates
direct finetuning. †All scores for unanswerable questions are equal as the reference string is empty.

multi-speaker discussions using the MEDIASUM

dataset (Zhu et al., 2021a). This dataset contains
463.6K short multi-party interview transcripts, de-
tailed speaker information, and identifies a host or
interviewer who steers the discussion via questions.

We begin by identifying the host speaker and fo-
cusing on their questions. Next, we predict which
speaker(s) would answer the question by identify-
ing speaker entities mentioned in utterances or from
previous dialogue turns. Finally, we search utter-
ances from the identified speakers until a stopping
criterion is met and label it as the answer. Due to
the assumptions made in the above process, models
trained directly on this data could overfit on spuri-
ous correlations (Jia and Liang, 2017; Wang and
Bansal, 2018). Thus, we apply various perturba-
tions to the context such as separating the question
and answer utterances, converting to unanswerable
questions by removing relevant sentences, creat-
ing more speaker transitions, and masking speaker
names. Refer to Appendix F for additional details.

4 Experiments and Results

Evaluation Metrics. Following Rajpurkar et al.
(2016) we report macro-averaged F1 on the entire
test set as well as on specific answer types (Sec-
tion 2.2).5 However, F1 treats sequences as bag-
of-words, and thus, there can be a non-significant

5We also report exact match (EM) scores in Appendix C.

overlap between a random span and the target span
for large span lengths. To address this, Soleimani
et al. (2021) propose reporting Intersection-over-
Union (IoU) defined as:

IoU = |p ∩ t|
/
|p ∪ t|,

where p and t are the predicted and target spans, re-
spectively. Since our answer spans are much longer
than those in SQuAD (refer to Figure 3), we also re-
port macro-averaged IoU to measure performance.

Training Settings. We measure performance of
various models in both finetuned and zero-shot set-
tings. First, we directly finetune the base pretrained
model on the model on MEETINGQA. Next, to
supplement training data we explore intermediate-
training (Phang et al., 2018; Pruksachatkun et al.,
2020) with SQuAD v2.0 (Rajpurkar et al., 2018)6

or a combination including silver data from Sec-
tion 3.3 prior to finetuning on MEETINGQA, in-
creasing the training data by 5x and 10x respec-
tively. Additional details on checkpoints, hyperpa-
rameters, and training are present in Appendix B.

Turn-based Baseline. We devise a straightfor-
ward algorithm called turn-based baseline that is
inspired by the automatic silver data annotation

6SQuADv2.0 is used for all models except BigBird, for
which we use TriviQA due to lack of reliable existing model
checkpoint on HuggingFace (Wolf et al., 2019).

15005



Model Int. Train Data Overall No Answer Answerable

All Multi-Span Multi-Speaker

F1 / IoU F1 F1 / IoU F1 / IoU F1 / IoU

RoBERTa-base − 54.0 / 48.1 41.1 59.8 / 51.4 58.2 / 47.2 60.9 / 50.9
silver 55.1 / 50.0 40.1 61.9 / 54.5 56.4 / 45.8 60.0 / 50.2

DeBERTa-base − 54.5 / 47.9 35.3 63.0 / 53.8 62.9 / 51.1 64.9 / 53.6
silver 55.1 / 49.8 36.1 63.6 / 56.1 63.0 / 52.7 66.1 / 56.5

Longformer-base − 53.8 / 48.2 39.4 60.3 / 52.3 58.8 / 48.3 62.0 / 52.0
silver 52.3 / 48.0 57.2 50.2 / 44.0 47.2 / 38.0 49.0 / 40.8

BigBird-base − 49.6 / 43.4 28.3 59.2 / 50.2 57.3 / 45.5 60.9 / 50.2
silver 53.5 / 48.0 36.4 61.2 / 53.2 61.3 / 50.9 63.9 / 54.1

Table 4: Comparing performance of finetuned multi-span models across evaluation metrics and answer types.

algorithm explained in Section 3.3. In the turn-
based baseline, when a speaker asks a question,
the predicted answer includes all the subsequent
utterances of other speakers until the same speaker
gets another turn (stopping criterion). Note that,
turn-based baseline assumes all questions can be
answered and always provides single-span answers,
although the predictions may be multi-speaker.

4.1 Results and Discussion

We report performance of various fine-tuned single-
span, multi-span models in Tables 3, and 4 respec-
tively on the test split of MEETINGQA. Further,
we evaluate zero-shot performance in Table 5. We
summarize our findings below and refer readers to
Appendix C for additional results.

Main Baselines and Comparison with Human
Performance. Results from Tables 3 and 4
show that single-span models (narrowly) outper-
form the multi-span models, with the best overall
performance achieved by single-span variant of
DeBERTa-base (overall F1 = 57.3). Other single-
span variants of Longformer and BigBird achieve
higher performance on answerable questions (up
to F1 = 64.4) but have lesser overall performance
due to lower F1 scores on unanswerable questions.7

Comparing to the human performance (overall F1
= 84.6), we find at least a 25 point difference in
overall F1 of all finetuned models. Across various
answer types, the difference in F1 scores is still at
least 20 points. Similar trends holds for EM and
IoU metrics too.8 In the zero-shot setting (refer to
Table 5), the difference in overall scores with re-
spect to human performance is even greater (≥ 44

7Model predictions may be biased against (or towards)
empty spans impacting score of unanswerable questions.

8Following the order EM ≤ IoU ≤ F1 for all models.

points across all metrics). Furthermore, all fine-
tuned models outperform the turn-based baseline
(with the exception of LED-base), whereas the cor-
responding zero-shot variants fail to outperform the
turn-based baseline on overall metrics. This sug-
gests that our dataset is challenging for current QA
systems, leaving significant scope for improvement
via interesting future work.

Impact of Long-Context Models. We observe
that in a majority cases short-context models (espe-
cially RoBERTa) outperforms long-context models
(Longformer and BigBird) by 1-2 points. Further-
more, the LED model that completely fits 90%
of transcripts has significantly lower overall score
(≈30 F1 point difference) due to poor performance
on answerable questions.9 We believe that the
ability to fit larger contexts is traded-off by well-
optimized design of short-context models. This is
consistent with the findings of Pang et al. (2022)
and suggests better long-context models may be
needed to outperform shorter extractive models.

Impact of Multi-Span Models. Table 5 shows
that in the zero-shot setting, multi-span variants
slightly outperform their single-span counterparts
for long-context models and slightly underperform
for DeBERTa. In Appendix C, we find that within
answer types zero-shot performance drops for unan-
swerable questions while improving for multi-span
and multi-speaker answers. For finetuned models
(Tables 3 and 4), the overall performance of multi-
span models is comparable if not slightly less than
single-span variants.10 Notably, for short-context

9Due to this, we do not experiment further with LED mod-
els in multi-span, intermediate-training, and zero-shot settings.

10Note that we do not intermediate train multi-span models
on standard extractive QA tasks such SQuAD v2.0. Therefore,
gold training data for multi-span models is always scarce.
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Model Int. Train Data F1 IoU

RoBERTa-base (SS) SQuADv2 27.9 26.0
+ silver 34.6 31.1

DeBERTa-base (SS) SQuADv2 19.8 17.5
+ silver 34.2 32.1

Longformer-base (SS) SQuADv2 15.1 9.4
+ silver 32.5 29.6

BigBird-base (SS) TriviaQA 7.6 3.5
+ silver 33.7 31.2

RoBERTa-base (MS) silver 34.9 30.9
DeBERTa-base (MS) silver 31.6 27.5
Longformer-base (MS) silver 35.1 31.3
BigBird-base (MS) silver 35.3 31.7

FLAN-T5 XL − 33.8 26.1
FLAN-T5 XL (self ans) − 34.0 28.6
FLAN-T5 XL (ext ans) − 25.6 23.8

Table 5: Comparing performance of zero-shot models
on all questions. Single-span and multi-span models are
denoted by SS and MS respectively. Identifying answer-
able questions using FLAN-T5 is denoted by ‘self ans’
and ‘ext ans’ denotes use of external supervised model.

models, there is significant gain in performance for
all answerable questions. Further, we observe that
multi-span models consistently underperform on
unanswerable questions (as high as 15 F1 points).
Performance of multi-span model on unanswerable
questions can be negatively impacted by even one
false positive I tag, changing the prediction from
unanswerable to answerable. While prior work on
multi-span QA (Segal et al., 2020; Li et al., 2022)
have found tagging-based approaches to outper-
form single-span variants, they only explore fac-
toid questions on relatively shorter contexts. Future
work can focus on improving multi-span QA for
more open-ended questions like in MEETINGQA.

Impact of Intermediate Training. Silver data
augmentation is effective in zero-shot settings
with ≥15 point improvement for single-span long-
context models (Table 5). For finetuned models,
however, we do not observe significant improve-
ments in overall scores from intermediate-training
compared to directly finetuning. Interestingly, sil-
ver data augmentation improves performance on
unanswerable questions for single-span models (ex-
cept DeBERTA) and multi-span models.

Instruction-Tuned Models. Lastly, Table 5
shows zero-shot performance of instruction-tuned
FLAN-T5 model. We find the FLAN-T5 XL model
(3B parameters) outperforms most zero-shot single-
span models and narrowly underperforms zero-shot
multi-span models. Despite the design of instruc-

0 20 40
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Multi-span

Short-Context Models

0 20 40

Long-Context Models

(a) % Unanswerable Pred Error

Finetuned Zeroshot

0 20 40 60

Single-span

Multi-span

0 20 40 60
(b) Speaker IoU in Model Errors

Figure 4: Error analysis of different model configu-
rations on answerable questions. Top: percentage of
errors where the model incorrectly predicts a question
is unanswerable. Bottom: overlap with gold speakers in
incorrect predictions on multi-speaker questions.

tions and filtering (Section 3.2), the model under-
performs on unanswerable questions. Thus, we add
an additional step to identify answerable questions
and use model responses only for predicted answer-
able questions. The question classification can be
done zero-shot using the same FLAN-T5 model11

or by training an external supervised model.12 We
observe that using the FLAN-T5 model is more
effective (yields best performance) than using a
supervised model (6 F1 point drop) as the predic-
tions of the latter are biased towards the question
being unanswerable. Future work can further focus
on accurately identifying answerable questions to
improve overall performance.

Error Analysis. Next, we analyze some intrigu-
ing patterns in the errors within model predictions.
Firstly, we observe that identifying rhetorical or
unanswerable questions asked in a meeting is a
challenging sub-task. Training a separate binary
classification model that classifies whether a ques-
tion is answerable based on the context from MEET-
INGQA yields only an F1= 49.2 (see Appendix B).
In Figure 4a, it becomes apparent that a significant
portion of errors in predictions for answerable ques-
tions stem from the model incorrectly predicting
that the question is rhetorical, particularly in the

11Different instruction like based on the context, did anyone
answer the given question? This elicits a ‘yes’/‘no’ response.

12Using the sequence classification head of RoBERTa-base
model trained on questions from MEETINGQA (Appendix B).
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zero-shot setting. Additionally, in case of multi-
span answers, single-span models exhibit higher
fraction of errors where predictions include sen-
tences not present in the gold answer, in contrast
to their multi-span counterparts (for details refer to
Appendix D). This follows from the construction
of single-span models, as described in Section 3.2.
Lastly, for multi-speaker answers, we analyze the
overlap in speakers (measured via IoU) of predicted
and gold answers in Figure 4b. We find that even
incorrect predictions of finetuned models contain
roughly 55% speaker overlap with the gold answer,
i.e., models can effectively predict which speak-
ers answer the question. However, incorrect pre-
dictions in the zero-shot setting contain only 30%
speaker overlap indicating that zero-shot models
may struggle to predict which speakers answer the
question. Future works can explore methods to
effectively identify rhetorical questions and predict
which speakers answer the question to improve
overall performance. A more detailed analysis of
errors can be found in Appendix D.

5 Related Work

Our work builds upon prior work on meeting tran-
scripts and question answering. Rogers et al. (2021)
provide a comprehensive survey of several QA
datasets and formats.

Meeting Transcripts. Several other small-scale
corpora of meeting recordings or transcripts are
publicly available (Janin et al., 2003; Garofolo
et al., 2004; Chen et al., 2005; Mostefa et al.,
2007). We restrict ourselves the most popular
and frequently used AMI corpus. Other works
study various aspects of summarizing meeting tran-
scripts (Mehdad et al., 2013; Wang and Cardie,
2013; Shang et al., 2018; Li et al., 2019; Zhu et al.,
2020, inter alia) or extracting action-items (Mor-
gan et al., 2006; Purver et al., 2007; Cohen et al.,
2021). The work closest to ours uses Markov mod-
els to classify dialogue-acts as questions, answers
or others (Kathol and Tur, 2008).

QA on Conversational Text. Prior work com-
prises of QA datasets based on small chit-chat from
TV shows (Sun et al., 2019; Yang and Choi, 2019)
or domain-specific chat-rooms (Li et al., 2020).
The QACONV (Wu et al., 2022) dataset builds on
these works with conversations from multiple do-
mains (including MEDIASUM). However, these
works employ human annotators for generating

questions based on their understanding of the con-
versation resulting in straight-forward questions
testing local information. Consequently, the answer
spans of these datasets are significantly shorter,
single-span, restricted to one speaker and often cor-
respond to simple noun phrases (as high as 80% for
QACONV). In contrast, questions asked by meet-
ing participants are more open-ended, discussion-
seeking, and correspond to longer answers (≈ 7x)
with complex multi-span and multi-speaker scenar-
ios. Note that our work is different from conver-
sational QA datasets that consist of a sequence of
questions and answers simulating a conversation
grounded in a short paragraph (Choi et al., 2018;
Reddy et al., 2019; Campos et al., 2020).

Long-Context QA. Recent works show that QA
models struggle to understand answer questions
correctly using long contexts (Pang et al., 2022;
Mou et al., 2021; Soleimani et al., 2021; Dasigi
et al., 2021). However, unlike our work, the source
(long) documents for building these datasets are
taken from written-text domains such as books,
film-scripts, research papers, or news articles.

6 Conclusion

In this work, we present MEETINGQA, an extrac-
tive QA dataset based on meeting transcripts to
identify answers to questions asked during discus-
sion among meeting participants. Detailed analysis
of the data reveals it is a challenging real-world
task. Baseline experiments with a wide variety of
models show the current performance lags behind
human performance by at least 25 and 44 over-
all F1 points for finetuned and zeroshot models
respectively. This demonstrates that current QA
systems find our task challenging, leaving tremen-
dous scope for improvement. We hope that future
works will aim to bridge this gap and our work
fosters research in NLP tasks (especially QA) on
other text domains such as meeting transcripts.
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Limitations

Due to the structure of MEETINGQA, the answers
to questions asked by participants (if any) are
present in the transcript itself, making it an ex-
tractive task. Therefore, we do not extensively
explore the use of generative models since the pre-
dictions do not stick to the sentences in the tran-
script and could possibly include hallucinations.
However, we aim to mitigate hallucinations by us-
ing instruction-tuned generative models with suit-
ably designed instructions and enforce a strict exact
match criteria for filtering any possible hallucina-
tions. Future work can explore how to adapt or
evaluate non-instruction-tuned generative models
on this task and better identify hallucinations with
a more relaxed filtering to improve performance.
We also do not report zero-shot performance of
InstructGPT (Ouyang et al., 2022) as these models
are not freely accessible. Additionally, we use a
simple multi-span QA adaptation technique from
Segal et al. (2020), but predicting answer spans
by classifying each token can be difficult to train
leading to slightly lower performance (discussed in
Section 4.1). We hope our dataset provides addi-
tional motivation for future work on multi-span QA.
Finally, MEETINGQA only comprises of publicly
available meeting transcripts in English, but our
methodology of data collection and model training
(using multilingual variants) should still be appli-
cable for other languages in future work.

Ethical Considerations

The human participants in our work were recruited
by an external crowd-sourcing company that en-
sured annotators provided informed consent, were
given fair compensation, and no personally identi-
fiable information (PII) was collected or released.
We use existing publicly available meeting tran-
scripts collected by the AMI project (Carletta et al.,
2005) in controlled scenarios and filtered for of-
fensive/toxic content. We also conducted manual
inspection of a random sample from annotated tran-
scripts and did not find any toxic content or PII.
Furthermore, the collected data and experiments
are conducted in English and we do not claim gen-
eralization of our findings across languages. Given
the broad nature of meetings, the content can fall
into a number of domains, of which only a few
are represented in the AMI corpus. Therefore, we
do not expect models trained on MEETINGQA to
generalize to certain domains such as judicial, ethi-

cal review, congressional proceedings, etc. which
involve specific jargon and rules of engagement.
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Figure 5: Top-25 most frequently occurring trigrams in
questions from MEETINGQA.

A Additional Details on MEETINGQA

A.1 Tri-gram Analysis of Question Types

In contrast to most QA datasets, questions in MEET-
INGQA are extracted directly from the meeting
transcripts and thus are conversation segments.
Consequently, we find that questions may not be
concise, often use auxiliary verbs, and do not typ-
ically begin with ‘wh’ or ‘how’ prefixes, making
our new QA task and dataset challenging yet inter-
esting for the community. This makes conventional
analysis of question types based on prefixes less
relevant here, and instead, we compute the top-25
most common trigrams from all questions, shown
in Figure 5. The three most common question pat-
terns are: ‘do you/we ...’, and ‘what ...’. Addition-
ally, the trigrams demonstrate that our questions are
open-ended and seeking opinions or thoughts from
other participants that tend to elicit long responses.

A.2 Dataset format and meta-information

We provide annotations for each meeting tran-
script at the sentence level in ‘.json’ for-
mat, and each sentence has 4 primary at-
tributes: displayText, speakerFaceId,
sentenceId, and question which contain
the sentence text, integer identifier of the speaker
(unique within a meeting), integer identifier of
the sentence, and information about the sen-
tence as a question respectively. The ques-
tion attribute is relevant only if the sentence
is identified as a question. It contains ad-
ditional attributes: possible, meaningful,
questionContext, combinedQuestion,
and answerSpan. First, we perform “ques-
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Figure 6: Illustrative QA example from a portion of
meeting transcript in MEETINGQA. The question and
annotated answer are highlighted in red and blue respec-
tively. This example corresponds to a multi-speaker
(Speaker 0, 3, and 4) and multi-span answer (due to
chit-chat from Speaker 0).

tion selection” described in Section 2.1 and
set the possible tag as True to guide the
annotators. The remaining attributes are
set to default values meaningful = False,
answerSpan = [], questionContext =
[], and combinedQuestion = [] prior to
annotation. Annotators modify the question
attribute during the course of the annotation
and can even mark additional questions out-
sider our question selection criteria by set-
ting possible = True. They lable the re-
maining attributes according to the “answer
annotation” steps mentioned in Section 2.1.
The list type attributes questionContext,
combinedQuestion, and answerSpan con-
tain sentences specified using the value of the cor-
responding sentenceId attributes. The domain
of meeting transcripts (from AMI corpus) is a com-
bination of elicited scenario-driven data, and nat-
ural data. We refer interested readers to the AMI
project page for more information about the topic
or scenario of each meeting.13

We find that out of 7.7K questions in MEET-
INGQA, only 66 (< 1%) additional questions were
identified by the annotators that were missed by our

13Refer to documentation links: https://groups.
inf.ed.ac.uk/ami/corpus/scenariomeetings.
shtml, and https://groups.inf.ed.ac.uk/ami/
corpus/nonscenariomeetings.shtml.

Figure 7: Illustrative QA example from a portion of
meeting transcript in MEETINGQA. The question and
annotated answer are highlighted in red and blue respec-
tively. This example corresponds to a multi-speaker
(Speaker 0, 2, 3, and 4) and multi-span answer
(due to chit-chat from Speaker 0, 3, and 4). The
second question asked by Speaker 4, “My data is
coming?”, is unanswerable/rhetorical and labeled with
meaningful = False.

question selection criteria. Further, 751 questions
(9.7%) were annotated with additional context sen-
tences via questionContext and a total of
784 (10.1%) were combined with another ques-
tion via combinedQuestion attribute. Among
the latter, an average of 2.2 (maximum 4) questions
were combined and these questions were an aver-
age of 1.5 sentences apart. The average length of
questionContext (when annotated) was 1.7
sentences (maximum 3) which preceded the ques-
tion by 1.7 sentences. Note that for the purposes
of QA evaluation, we only use the possible and
answerSpan attributes. The remaining attributes
serve as meta-information to understand the dataset
better and can facilitate error analysis and/or fu-
ture work. Also to come up with overall question
counts, we ignore the combinedQuestion at-
tributes and count all the questions individually.
Therefore, this attribute serves as an indicator of
when and why different questions share the same
answer. Empirically, we note that the combined
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Figure 8: Illustrative QA example from a portion of
meeting transcript in MEETINGQA. The question and
annotated answer are highlighted in red and blue re-
spectively. The first two sentences (in green) provide
necessary context to understand the question. This ex-
ample corresponds to a multi-speaker (Speaker 1, 3,
and 4) and multi-span answer.

questions and question context typically fit within
the contexts created using location-based retrieval
(Section 3.1) and are present in the input fed into
QA models in the vast majority of cases.

A.3 Additional Annotated Examples

Next, we show multiple examples of snippets from
meeting transcripts with QA components present
in MEETINGQA in Figures 6-11. Figure 7 also
contains an example of an unanswerable question
asked by Speaker 4 (“my data is coming?”)
which is either rhetorical or corresponds to incor-
rect punctuation. In such cases, annotators label
meaningful = False and an empty/null an-
swer annotation (answerSpan = []). On the other
hand, Figure 11 also contains two consecutive ques-
tions asked by Speaker 1 but the annotators
mark both as meaningful = True, but choose
to combine them via (combinedQuestion) and
share a common answer. This because the first
question is more generic, and the second question
builds on top of it, by providing a specific exam-
ple of what is loaded and what isn’t. Further, in
Figure 8 we provide an example of question which
needs additional context sentences annotated via
questionContext. Figures 6, 9, and 11 are
diverse instances of multi-speaker and multi-span
answers in our dataset.

Figure 9: Illustrative QA example from a portion of
meeting transcript in MEETINGQA. The question and
annotated answer are highlighted in red and blue respec-
tively. This example corresponds to a multi-speaker
(Speaker 3, and 4) and multi-span answer.

A.4 More on Data Collection

AMI Transcript Preprocessing. The AMI cor-
pus is a collection of 171 meeting transcripts con-
taining manually annotated and punctuated speaker-
specific XML files for each meeting. We parse
these XML files and combine utterances from mul-
tiple speakers by aligning the start times into a
single transcript (with speaker information) corre-
sponding to each meeting. We then use a disfluency
detector model to identify and remove disfluencies
from the utterances (Jamshid Lou and Johnson,
2020).

Annotator Recruitment and Training. All an-
notators are hired by a professional crowdsourcing
company TELUS.14 The company obtained con-
sents from the crowdworkers before the annota-
tion process and conducted ethical reviews. The
company recruited 18 annotators, all based in the
United States and native English speakers, who had
previously successfully participated in text-based
annotation projects. In addition to the instruction
document (shared in the supplementary) curated
by the first author, TELUS conducted a series of
(virtual) meetings to deliver instructions, conduct
example walk-through of the annotation and clarify
doubts. At the end of initial training, a small batch
of 5 meetings was provided to each of the annota-
tors to calibrate performance. The responses were
then compared to the good quality annotations per-
formed by 2 project leads at TELUS manually in
consultation with the authors. Feedback was pro-

14https://www.telusinternational.com/
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Figure 10: Illustrative QA example from a portion of
meeting transcript in MEETINGQA. The question and
annotated answer are highlighted in red and blue respec-
tively. This example corresponds to a multi-speaker
(Speaker 1, 2, 3, and 4) and multi-span answer.
Speaker 1 asks two questions which are combined
(via combinedAnswer) and share a common answer
(same entry in answerSpan).

vided to the annotators to improve the quality of
annotations, and based on their final responses the
top-6 best performing annotators were selected to
work on the project.

Quality Control. From the pool of selected an-
notators, project leads recruited two of the best per-
forming and experienced annotators to help with
quality control. Any annotated meeting transcript
was assigned to either of these two annotators for
review. Between the two, meeting annotated by one
was assigned to the other for review. After the re-
view, minor errors in annotation were fixed directly,
otherwise major errors were sent back to the respec-
tive annotators for a re-annotation of the question
and in some rare cases the annotation was redone
by the reviewers. At the end of annotation batch
(total of 4), the transcripts were sent to the authors
who extensively reviewed them and provided feed-
back. We also looked for typos, and other issues
which were fixed promptly. The TELUS project
leads did not find any toxic and offensive content at
their end and no such concerns were reported in the
quality control stage. Further, all communication
with the annotators is done by the crowdsourcing
company and no personally identifiable informa-
tion (PII) is released to the authors. Additionally,
their execution platform contains unique identifiers

Figure 11: Illustrative QA example from a portion of
meeting transcript in MEETINGQA. The question and
annotated answer are highlighted in red and blue respec-
tively. This example corresponds to a multi-speaker
(Speaker 0, 3, and 4) and multi-span answer (due to
chit-chat from Speaker 0, 3, and 4).

for all annotators ensuring their PII is not released
along with the annotated data. Finally, based on
the feedback from annotators, we removed all ques-
tions corresponding to 5 meetings as the meeting
content was hard to follow.

Time Taken. On an average across meeting tran-
script and annotators, it took ≈ 1 hour to annotate
each meeting transcript which averages to ≈ 1.3
minutes per question. However, the per meeting an-
notation time strongly correlated with the length of
the transcript (number of sentences). Among ques-
tions, annotators spent more time on answerable
questions. This is because if the question is marked
unanswerable (not meaningful), they did not have
find exact answer span (in sentences) and anno-
tated other meta-information. The project leads
also ensured that the amount of time taken by each
annotators was consistent with internal estimated
by the intial batch used during annotator recruit-
ment. The total production time for this project (for
TELUS) was 186.5 hours.
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Model
Int. Exact Match (EM)

Train Overall Answerable

Data All M-Span M-Speaker

− 28.8 23.3 0 12.1
RoBERTa SQuADv2 31.0 28.2 0 12.0
(base) + silver 30.3 22.7 0 11.6

− 34.9 25.6 0 12.9
DeBERTa SQuADv2 34.6 27.3 0 12.9
(base) + silver 31.4 24.5 0 12.2

− 31.0 24.3 0 11.7
Longformer SQuADv2 27.3 25.5 0 11.8
(base) + silver 30.8 21.7 0 13.0

− 31.0 24.3 0 11.7
BigBird TriviaQA 34.6 27.3 0 12.9
(base) + silver 31.4 24.5 0 12.2

Human − 75.2 73.0 72.5 66.4

Table 6: Comparing exact match scores of finetuned
single-span models and human performance and for
different answer-types. M-Span and M-Speaker denote
muli-span and multi-speaker splits respecitvely. No
Answer EM (same as No Answer F1) present in Table 3.

Compensation. The annotators were compen-
sated through a fixed hourly rate defined for each
participant. No additional bonus was provided to
incentivize faster turnaround times. The average
hourly wage for participants was roughly $20/hour
in compliance with all the federal and local local
laws to ensure fair payment.

B Experimental Details

GPU Compute. For training and/or inference we
used a combination of 6 NVIDIA A10 24 GB GPUs
and 2 NVIDIA RTX A6000 48GB GPUs. Directly
finetuning on MEETINGQA starting from a pre-
trained checkpoints is quite fast and takes not more
than 4 GPU hours (depending on the batch size).
Intermediate training on the silver-annotated data
(5 epochs) takes about 12-18 GPU hours (training
time is higher for long-context models).

Hyperparameters. For the short-context mod-
els (RoBERTa and DeBERTa-v3) we used max se-
quence length of 512, (stride of 128 but not utilized
due to location-based context retrieval), and batch
size of 16. For long context models, we used max
sequence length of 4096, stride of 128, and batch
size varied between 8 and 16 (depending on GPU
availability). Note that there is no stride for multi-
span models. For model training on MEETINGQA,
we use a learning rate of 3e-5, warmup ratio of
0.2, and train for 15 epochs with an early stopping

Model
Int. Exact Match (EM)

Train Overall Answerable

Data All M-Span M-Speaker

RoBERTa − 26.0 19.3 7.0 11.3
(base) silver 30.3 26.0 8.0 12.8

DeBERTa − 25.2 20.6 7.9 11.2
(base) silver 29.2 26.1 13.3 17.9

Longformer − 26.4 20.6 7.6 10.1
(base) silver 32.0 20.7 5.0 12.0

BigBird − 20.0 16.3 7.7 9.1
(base) silver 25.8 21.0 4.8 12.9

Human − 75.2 73.0 72.5 66.4

Table 7: Comparing exact match scores of finetuned
multi-span models and human performance and for dif-
ferent answer-types. M-Span and M-Speaker denote
muli-span and multi-speaker splits respecitvely. No An-
swer EM (same as No Answer F1) present in Table 4.

criteria set to a patience of 2 epochs (F1 on dev
split). For intermediate training with silver data,
we use the same hyperparameters except we train
for 8 epochs with the same early stop criteria. The
hyperparameters values used are pretty standard
and were not tuned explicitly for MEETINGQA.

Model Sizes. RoBERTa base and large models
comprise of 125M and 355M parameters respec-
tively, while DeBERTa base and large models com-
prise of 86M and 304M parameters. On the other
hand, Longformer-base comprises of 149M pa-
rameters. Since BigBird is initialized with the
RoBERTa checkpoints they share the same model
size. Finally, instruction-tuned models FLAN-T5
LARGE, XL and XXL consist of 770M, 3B, and 11B
model parameters respectively.

Pretrained Checkpoints. For models with-
out intermediate-training we use the standard
checkpoints for all models available on Hug-
gingFace. For the score-based context re-
trieval in Section 3.1, we use HuggingFace’s
evaluate library for computing ROUGE-
1 and the multi-qa-MiniLM-L6-cos-v1
model from the sentence-transformers
python package for embedding cosine similar-
ity. During silver data annotation, we used the
en_core_web_sm from spacy package for
NER. For intermediate training (SS) we used the
following pretrained checkpoints (base size):

• RoBERTa: deepset/roberta-base-squad2
• DeBERTa: deepset/deberta-v3-base-squad2
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Model Int. Train Data Overall No Answer Answerable

All Multi-Span Multi-Speaker

F1 / EM / IoU F1† F1 / EM / IoU F1 / EM / IoU F1 / EM / IoU

RoBERTa-base (SS) SQuADv2 27.9 / 25.9 / 26.0 80.2 4.6 / 1.6 / 1.8 2.9 / 0 / 1.2 3.6 / 0.1 / 1.6
+ silver 34.6 / 20.7 / 31.1 32.6 35.4 /15.4 / 30.4 26.3 / 0 / 19.2 28.1 / 1.7 / 21.0

DeBERTa-base (SS) SQuADv2 19.8 / 16.2 / 17.5 50.3 6.2 / 1.0 / 2.9 5.6 / 0 / 2.6 6.0 / 0 / 2.9
+ silver 34.2 / 25.4 / 32.1 63.1 21.3 / 8.6 / 18.3 15.5 / 0 / 11.6 16.5 / 1.4 / 12.6

Longformer-base (SS) SQuADv2 15.1 / 0 / 9.4 0.1 21.8 / 0 / 13.5 32.8 / 0 / 21.3 28.8 / 0 / 18.3
+ silver 32.5 / 20.5 / 29.6 39.8 29.2 / 11.9 / 25.0 23.3 / 0 /17.4 23.3 / 1.8 / 17.5

BigBird-base (SS) SQuADv2 7.6 / 0.8 / 3.5 0.1 10.9 / 1.2/ 5.0 9.6 / 0 / 5.0 10.7 / 0 / 5.5
+ silver 33.7 / 23.8 / 31.2 53.3 25.0 / 10.7 / 21.4 18.4 / 0 / 13.5 20.0 / 1.9 / 15.1

RoBERTa-base (MS) silver 34.9 / 19.8 / 30.9 24.0 39.8 / 17.9 / 34.0 29.2 / 0.3 / 20.9 29.4 / 0.5 / 21.2
DeBERTa-base (MS) silver 31.6 / 17.0 / 27.5 15.8 38.6 / 17.5 / 32.7 27.2 / 0.2 / 19.4 27.4 / 0 / 19.2
Longformer-base (MS) silver 35.1 / 21.3 / 31.3 32.6 36.2 / 16.3 / 30.9 25.7 / 0 / 18.5 27.3 / 0.4 / 19.9
BigBird-base (MS) silver 35.3 / 20.9 / 31.7 35.5 35.2 / 14.4 / 30.1 26.4 / 0.2 / 19.2 28.1 / 2.0 / 20.8

FLAN-T5 LARGE − 26.0 / 12.4 / 20.6 17.4 29.8 / 10.2 / 22.0 23.9 / 0.2 / 15.7 25.6 / 1.6 / 17.1
FLAN-T5 LARGE (self ans) − 26.3 / 13.0 / 21 20.0 29.1 9.9 / 21.4 / 23.5 / 0.2 / 15.4 24.9 / 1.6 / 16.6
FLAN-T5 LARGE (ext ans) − 22.8 / 20.9 / 21.7 62.0 5.7 / 2.9 / 4.1 2.5 / 0 / 1.7 3.5 / 0.1/ 2.3
FLAN-T5 XL − 33.8 / 17 / 26.1 15.6 41.9 / 17.6 / 30.8 20.8 / 0.2 / 13.3 23.7 / 2.3 / 16.3
FLAN-T5 XL (self ans) − 34.0 / 22.2 / 28.6 45.3 28.9 / 11.9 / 21.1 20.8 / 0.2 / 13.3 23.7 / 2.3 / 16.3
FLAN-T5 XL (ext ans) − 25.6 / 22.8 / 23.8 62.0 9.4 / 5.3 / 6.8 4.4 / 0 / 2.8 5.0 / 0.6 / 3.5
FLAN-T5 XXL − 31.0 / 15.1 / 24.2 26.2 33.1 / 10.2 / 23.3 32.7 / 0.3 / 22.6 31.4 / 1.0 / 21.4
FLAN-T5 XXL (self ans) − 31.6 / 19.3 / 26.2 44.6 25.7 / 7.9 / 18.0 25.1 / 0.3 / 17.3 24.4 / 0.7 / 16.5
FLAN-T5 XXL (ext ans) − 24.3 / 22.2 / 22.8 62.0 6.0 / 2.9 / 3.8 3.5 / 0 / 2.3 3.7 / 0 / 2.4

Table 8: Comparing performance of zero-shot models for different answer-types. Single-span and multi-span models
trained on intermediate training data are denoted by SS and MS respectively. Identifying answerable questions using
FLAN-T5 is denoted by ‘self ans’ whereas ‘ext ans’ denotes use of external supervised model. †F1, EM and IoU are
the same for unanswerable questions as the reference is an empty string.

• Longformer: mrm8488/longformer-base-4096-
finetuned-squadv2

• BigBird: google/bigbird-base-trivia-itc

Licensing. We used the AMI dataset that has
CC-BY-4.0 license. Our released data will have
the CC-BY-NC license. We do not violate the con-
straints put in the MEDIASUM dataset to use inter-
view files for reasearch purposes only.

Instructions/Prompts. For instruction-tuned
FLAN models we use the following prompt
template to generate sentences from the context
that answer the question.

[CONTEXT]
Based on the conversation above,
which sentences from the conversta-
tion answer [SPEAKER]’s question:
[QUESTION]

Here, [.] is a placeholder filled in separately
for each instance/question. Additionally, for the
‘self ask’ setting, we first use a prompt (shown
below) to get the model to output if the question
is answerable. If the model outputs “no”, filter
out those questions and use an empty string as

the predictions. We find answers to the remaining
questions using the prompt above.

[CONTEXT] Based on the con-
versation above, did anyone an-
swer [SPEAKER]’s question:
[QUESTION] Respond “yes” if
answered, “no” otherwise.

Binary Answerable Classification Model. As
mentioned in Section 4.1, we train a separate super-
vised RoBERTa-base model to detect if a question
is answerable. This is formulated as a binary classi-
fication task, therefore we train the sequence classi-
fication head on questions from MEETINGQA. We
use the same hyperparameters as for single-span
RoBERTa models mentioned above. The final per-
formance of this model, is not as strong with an
overall F1 = 49.2. This indicates that even a sim-
ple binary task formulation from MEETINGQA is
challenging and requires thorough understanding
of meeting discussions.

C Additional Results

Building on Tables 3 and 4, which contain F1 and
IoU scores, we present the exact match (EM) scores
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Model Int. Train Data Overall No Answer Answerable

All Multi-Span Multi-Speaker

F1 / EM / IoU F1† F1 / EM / IoU F1 / EM / IoU F1 / EM / IoU

Fi
ne

tu
ne

d

RoBERTa-large (SS)
− 54.7 / 34.5 / 50.7 59.8 52.4 / 23.2 / 46.6 45.6 / 0 / 36.5 50.8 / 11.1 / 43.1

SQuADv2 55.6 / 32.3 / 51.0 59.4 53.8 / 20.2 / 47.3 52.8 / 0 / 43.3 54.9 / 10.0 / 46.2
+ silver 55.3 / 31.7 / 50.7 63.4 51.7 / 17.5 / 45.1 53.4 / 0 / 43.9 54.4 / 7.7 / 45.5

DeBERTa-large (SS)
− 56.1 / 30.9 / 51.0 43.1 61.9 / 25.5 / 54.5 55.2 / 0 / 44.3 59.6 / 12.4 / 50.1

SQuADv2 57.2 / 32.0 / 52.4 52.0 59.5 / 23.0 / 52.6 55.6 / 0 / 45.8 59.4 / 11.8 / 50.9
+ silver 55.7 / 31.5 / 51.0 52.1 57.3 / 22.4 / 50.5 55.2 / 0 / 44.9 58.5 / 10.4 / 49.3

RoBERTa-large (MS) − 48.6 / 18.3 / 38.7 47.2 49.2 / 5.4 / 34.9 50.2 / 1.1 / 34.9 50.1 / 1.2 / 34.5
silver 49.4 / 19.3 / 40.1 48.9 50.6 / 6.8 / 35.7 52.0 / 2.1 / 36.2 51.7 / 2.3 / 35.8

DeBERTa-large (MS) − 56.8 / 29.4 / 50.2 47.1 61.2 / 21.5 / 53.0 58.8 / 6.0 / 47.9 62.2 / 9.9 / 52.0
silver 57.5 / 31.2 / 51.4 48.4 62.3 / 22.9 / 54.2 59.6 / 7.1 / 48.3 63.5 / 10.7 / 52.9

Z
er

o-
sh

ot

RoBERTa-large (SS) SQuADv2 31.7 / 29.7 / 29.9 92.4 4.6 / 1.8 / 2.0 2.6 / 0 / 1.1 3.4 / 0 / 1.5
+ silver 33.4 / 20.6 / 30.0 38.0 31.3 / 12.8 / 26.4 24.2 / 0 / 17.3 24.7 / 0.1 / 17.9

DeBERTa-large (SS) SQuADv2 27.3 / 23.5 / 24.8 72.4 7.1 / 1.7 / 3.5 6.0 / 0 / 3.0 6.0 / 0.1 / 3.0
+ silver 35.8 / 24.4 / 32.9 52.2 28.5 / 12.0 / 24.3 21.0 / 0 / 15.2 21.7 / 1.0 / 16.3

RoBERTa-large (MS) silver 35.2 / 20.3 / 31.7 25.1 39.7 / 17.2 / 33.6 28.5 / 0 / 20.2 29.2 / 0 / 20.7
DeBERTa-large (MS) silver 32.1 / 17.4 / 28.2 16.6 38.3 / 16.9 / 32.2 27.1 / 0 / 19.3 27.2 / 0 / 18.7

Table 9: Comparing performance of RoBERTa and DeBERTa large models for different answer-types. Single-span
and multi-span models trained on intermediate training data are denoted by SS and MS respectively. †F1, EM and
IoU are the same for unanswerable questions as the reference is an empty string.
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Figure 12: Error distribution (answerable Qs) for various single-span models finetuned directly on MEETINGQA.

in Tables 6 and 7 for finetuned single-span and
multi-span respectively. While the relative trends
across the models remains the same, we find that
the EM scores are the lowest because it reflects pre-
dictions that perfectly match the reference. Another
noteworthy observation is that the EM scores of all
single-span models on the multi-span split is 0.
This can be explained by the training procedure of
single-span models (described in Section 3.2). The
models are trained to predict a single “super-span”
starting from the first sentence in the reference to
the last sentence in the reference. Therefore, even
in the theoretical best-case-scenario, the models
would predict a single super-span containing all
the reference sentences interleaved by irrelevant
sentences for questions with multi-span answers.
We analyze errors due to this in Appendix D.

In Table 5, we only present the overall scores
for various models. All the scores on different

splits are given in Table 8. We observe that for
all single-span models (except RoBERTa on unan-
swerable questions) adding silver data in interme-
diate training helps improve performance across all
splits. Furthermore, the multi-speaker and multi-
span splits consistently pose a challenge for all
models evaluated in a zero-shot setting. Also,
within answer-types performance drops for unan-
swerable questions while improving for multi-span
and multi-speaker answers. The challenge posed
by unanswerable questions can be explained by
the multi-span adaptation (Section 3.2). By posing
question answering as a token-classification task,
even one false positive (I tag instead of all Os) in
token label, changes the answer prediction from
unanswerable to answerable. Finally, we note that
when using a pipeline-approach of isolation unan-
swerable questions separately, we find the errors
in this step cascade and are reflected in the per-
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Figure 13: Error distribution (answerable Qs) for various multi-span models finetuned directly on MEETINGQA.
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Figure 14: Error distribution (answerable Qs) for various single-span and multi-span models evaluated zero-shot on
MEETINGQA. Single-span models use SQuADv2 + silver data for intermediate training whereas multi-span models
use only silver data for intermediate training.

formance on answerable questions of the overall
system. These systems perform better on unanswer-
able questions (not identified by regular instruction
and filtering), however the false-positives decrease
performance on answerable questions, even more
so when using an external supervised model.

In Table 8, we see clear scaling of performance
as we move from FLAN-T5 large (770M) to FLAN-
T5 XL (3B). However, for FLAN-T5 XXL (11B)
the performance of unanswerable, multi-span and
multi-speaker questions increases (≥ 8 F1 points)
but performance on other answerable questions de-
creases (≈ 9 F1 points) which in turn reduces the
overall performance as compared to FLAN-T5 xl.
Table 9 evaluates the performance of RoBERTa-
large and DeBERTa-large architectures for single-
span and multi-span models in both finetuned and
zero-shot settings. The corresponding performance
of the base models can be found in Tables 3, 4,
and 5 respectively. We do not observe any signifi-
cant increase in performance when using the larger
checkpoints, thus leaving ample room for future
work to bridge the gap between model and human
performance on MEETINGQA.

D Error Analysis

In this section, we analyze error patterns across
models discussed in Sections 3.2 and 4 in detail.
First, we note that for the unanswerable questions
split, any error corresponds to the model predicting
a non-empty answer span. The frequency of this
for a given model can be calculated by 100 − F1
score for this split (provided in Tables 3, 4, and 8).
However, for answerable questions, errors in model
predictions are diverse as categorized below.

I. Prediction is an empty-span (unanswerable)

II. Predicted span contains a sentence not present
in the gold or annotated reference span

III. At least one of the sentences in the reference
span is not present in the predicted span

IV. Combination of errors with respect to refer-
ence span (both II and III)

Therefore, whenever the model prediction does not
exactly match the annotated reference span, we
can put it in one of the above 4 categories. We per-
form this analysis for various finetuned single-span,
finetuned multi-span models as well as zeroshot
single-span, multi-span and instruction tuned mod-
els discussed in Sections 3.2 and 4. For brevity, we
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Figure 15: Error distribution (answerable Qs) for different configurations of Instruction-tuned FLAN-T5 models.

Model Training Data Multi-Span Split Multi-Speaker Split

% Preds. % Preds. Speaker IoU

Fi
ne

tu
ne

d

RoBERTa-base (SS) MEETINGQA 0.0 65.04 58.71
DeBERTa-base (SS) MEETINGQA 0.0 43.44 48.88
Longformer-base (SS) MEETINGQA 0.0 52.29 52.04
Bigbird-base (SS) MEETINGQA 0.0 63.86 57.15

RoBERTa-base (MS) MEETINGQA 52.58 48.66 54.72
DeBERTa-base (MS) MEETINGQA 70.86 54.48 63.76
Longformer-base (MS) MEETINGQA 53.98 50.54 57.27
Bigbird-base (MS) MEETINGQA 71.12 42.72 55.70

Z
er

o-
sh

ot

RoBERTa-base (SS) SQuADv2 + silver 0.0 8.72 31.71
Longformer-base (SS) SQuADv2 + silver 0.0 12.36 27.19

RoBERTa-base (MS) silver 5.30 3.47 34.35
Longformer-base (MS) silver 1.51 1.2 30.30

FLAN-T5 − 11.01 10.71 31.11
FLAN-T5 (self ans) − 9.50 8.69 22.75
FLAN-T5 (ext ans) − 1.51 2.02 4.85

Table 10: Error analysis for various models and configurations on multi-span and multi-speaker splits.

pick representative models from different possible
combinations of intermediate training data. This
is illustrated in Figures 12-15 with error I shown
in red, error II shown in yellow, error III shown in
blue, and error IV shown in green.

Table 3 shows very similar performance differ-
ent intermediate training data configurations for a
given model architecture. Thus, we present error
distribution for single-span models directly fine-
tuned on MEETINGQA in Figure 12. We find that
most of the errors belong to categories II-IV. The
DeBERTa model has a relatively high unanswer-
able prediction error which is primarily because
its predictions skew towards unanswerable as ex-
plained by the F1 score on No Answer (unanswer-
able) split in Table 3. Next, in Figure 13 we show
the error distributions on the corresponding multi-
span models finetuned directly on MEETINGQA.
We observe that, for all model (except RoBERTa)
the frequency of incorrectly predicting unanswer-
able goes down as well as the prediction span con-

taining sentences outside the reference (error II).
However, the frequency of hybrid error IV increases
significantly. This can partly be explained by the
design of single-span and multi-span models. As
mentioned in Section 3.2, training data of the single
span model involves creating a single “super-span”
starting from the first sentence in the reference to
the last sentence in the reference. This by construc-
tion involves error II and supervision on this data
directs the model to include irrelevant sentences in
the answer span if it is sandwiched between two
relevant sentences. Also, for multi-span models
an unanswerable prediction implies all tokens are
labeled with the O tag, and even one false positive
(I tag) would make the prediction answerable. Due
to this, one can expect these models to mispredict
empty spans less frequently.

Interestingly, when we look at zero-shot perfor-
mance of single-span and multi-span models in Fig-
ure 14, we find relatively high frequency of error I

and very low frequency of error II. The errors III
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and hybrid IV also become more common. These
models which are trained only on intermediate data,
do not generalize in their ability to predict when
a question is unanswerable. Further, we find that
in the zero-shot evaluation setting, model predic-
tions are shorter than the reference span by at least
one sentence on average (≈ 2 sentences for multi-
span split). This indicates in zero-shot evaluation
models are more likely to predict a part of the an-
swer than output spans that covers all sentences in
the reference, containing extra sentences that lie
outside the reference.

Finally, we look at the errors of instruction-tuned
FLAN-T5 models in Figure 15. When using FLAN-
T5 with appropriate instruction and filtering we
find that most of the errors are hybrid, i.e. predicted
sentences do not cover the reference span entirely
and also contains irrelevant sentences. When we
add the self-ans pipeline on top of it with additional
instructions to spot unanswerable questions, the
predictions contain more empty spans (relatively)
which is reflected in the increase in frequency of
error I and the No Answer F1 (in Table 8). Surpris-
ingly, when we use an external supervised model
to predict unanswerable questions, it contributes to
the vast majority of errors in the pipeline (error I).
This is consistent with the fact that the test F1 score
of this model on the task of classifying questions
as answerable or not was only 49.2.

So far, we have analyzed errors in predictions for
all the answerable questions. Next, we focus our
attention on questions with multi-span and multi-
speaker answers. Within the multi-span split, we
calculate the fraction of incorrect predictions (as
per exact match) that are multi-span, denoted by
multi-span preds (%). Similarly, for multi-speaker
split, we calculate the fraction of incorrect predic-
tions (as per exact match) that are multi-speaker in
nature, denoted by multi-speaker preds (%). Fur-
ther, we compare the list of speakers in the refer-
ence and predicted spans using Jaccard similarity
(IoU) denoted as speaker IoU. We compute and re-
port these metrics for all the aforementioned mod-
els in Table 10.

As expected, due to the single-span training,
none of the predictions of the single-span mod-
els are multi-span in nature. On the other hand,
even incorrect predictions of the finetuned multi-
span models are multi-span in nature at least half of
the times. However, a significant fraction, between
29-46%, of the errors in this split can be attributed

Method F1 EM IoU

list instruction 33.4 13.0 25.3
+ filtering 35.1 17.6 27.6

direct instruction 14.0 5.4 7.9
+ filtering 28.0 20.6 22.4

Table 11: Overall performance comparison of both types
of instructions with and without filtering.

to single-span predictions for various models. For
zero-shot models, over 90% of incorrect predic-
tions are single span (also vast majority of all pre-
dictions are single span). On the multi-speaker
split, the incorrect predictions of finetuned models
are multi-speaker in nature. However, the speaker
IoU (< 65) indicates that predicted spans often
miss utterances from relevant speakers in the ref-
erence and also include irrelevant utterances from
other speakers. Zero-shot models on the other hand,
only tend to give single-speaker responses which is
the primary source for errors. Note that, relatively
high frequency of error I or prediction unanswer-
able spans also contributes in driving down the
values of these metrics (empty spans have no span
or speaker information).

E Instruction-tuned Model Ablations

In Section 3.2, we describe adaptation of genera-
tive FLAN-T5 model to our extractive setting by
(i) designing instructions that ask models to list
which sentences from the context contain the an-
swer (mentioned in Section B); and (ii) filtering
out all sentences from the model response that are
not present in the context to remove any possible
hallucinations. To show the importance of both
these steps, we first compare with an instruction
eliciting a direct response (answer) from the model,
mentioned below.

[CONTEXT]
Based on the conversation above, state
the answer(s) given to [SPEAKER]’s
question: [QUESTION]

We call this direct instruction as opposed to
the list instruction mentioned used in Sections 3.2
and 4.1. Further, we examine the importance of
filtering by comparing raw model responses to their
filtered counterparts. The comparison on a random
subset of 500 question from the dev splits is shown
in Table 11. We find that our chosen type of in-
struction (list) significantly outperforms the direct
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ID Transcript Segment

CNN-130961 ...
SPEAKER 3: He wants to spread it across the country.
SPEAKER 2: Let me go back to the Confederate flag issue that you raised a few moments ago, Faye.
I’m getting a couple of e-mails on that where "Republican policies have done little to support African-
Americans. Isn’t Bush the same man who was indifferent about the Confederate flag? We do not forget
so soon". And also Peter in New York says: "Bush may be trying to appeal to black voters, but if he
goes down in the polls, don’t be surprised if he wraps himself in that Confederate flag". This is an issue
that will not go away with these candidates and with these races. So I mean, how much of an influence
is this going to be?
SPEAKER 0: Well, it’s going to be a big influence. It’s an issue that ought not to go away. And actually
we don’t have to look to the future. We already know what happened when Bush went down in the
polls, when it was following New Hampshire, when he was nervous about the South Carolina primary
when he wrapped himself in the Confederate flag. So there’s already a bit of a history there. And even
though in the scheme of things the Confederate flag is a very symbolic issue, but symbols do matter.
Try telling Jewish Americans if they should move on, that they should forget about a swastika that a
candidate who would remain silent on a swastika is deserving of their support.
SPEAKER 3: Well, look, Bobbie, I think what I want to establish right here is that George Bush has
made it very clear that he thinks that there is only one flag that matters, that there is only one flag that
represents freedom and that there’s only one flag that one should die for in this country, and that is Old
Glory. And I think that he has said that he has a personal point of view on the flag, and he thinks that it
is a matter that should be resolved at the state level. The state has taken down the flag due to voices...
SPEAKER 2: But how does that illustrate that we’re one country under one flag? ...

CNN-116 ...
SPEAKER 7: That poll that just flashed up on the screen suggests that she did do well because that poll
seems to have been taken around the time of the Letterman interview, and it shows almost a dead heat
statistically, if you take the margin of error into account. So if that poll is accurate, then she’s moved
up from where she was according to other polls.
SPEAKER 9: Yes, she has moved up.
SPEAKER 1: But she is down from a year ago. So I’m curious as to why you think that she may have
lost her edge a little bit from a year ago or people don’t seem to be quite as enthusiastic about her?
SPEAKER 7: People always like politicians better when they’re not running for office. As soon as you
decide that you are actually going to run, there are a certain number of people who decide they don’t
like you anymore. They liked you when you were a proposed candidate, and they don’t like you are
your ambition comes to show.
SPEAKER 9: And Bobbie, she benefited I think from the entire impeachment situation. She was, you
know, standing in support of Bill Clinton, and I think her poll numbers went up. But then when it
looked like she was going to be just a typical politico, and people started looking at her views on the
issues, and her stumbles in Israel and so forth, the numbers just started to go down.
SPEAKER 1: Well she had that victim status when she first started thinking about entering this race.
SPEAKER 9: Yes, I think ...

Table 12: Representative examples from the silver annotated data. The question and the automatically identified
answers are highlighted in red and blue respectively. In the first example, Speaker 0’s utterances are not automatically
annotated since the entity in the utterance of Speaker 2 (“Faye”) corresponds to Speaker 3’s name. Thus, the
algorithm predicts only Speaker 3 would answer.

instruction (tends to be more abstractive). Further-
more, filtering consistently improves overall per-
formance especially when using direct instructions
possibly due to higher number of hallucinations in
the corresponding model answers.

F Silver Data Augmentation Details

Section 3.3 describes the silver data annotation pro-
cess to annotate publicly available interview tran-
scripts from CNN and NPR (Zhu et al., 2021a) for
extractive QA task similar to MEETINGQA. We
first identify the subset of speakers that act as the
host or interviewer and focus on questions asked
by these speakers to generate answer annotations.

Based on the utterance containing the question, we
first automatically identify speaker(s) answer the
question using a rule-based approach. This is done
by (i) finding speakers mentioned in the question
sentence or utterance using an off-the-shelf NER
model (mentioned in Appendix B), (ii) identifying
speakers from previous speaker turns if the same
speaker takes the turn after the host speaker assum-
ing this is a case of follow-up questions, or (iii) in
the absence of first two conditions, all speaker that
take turns after the host. Finally, we search utter-
ances corresponding to identified speakers in the
transcript until a stopping criterion (max number
of utterances, or reach the next host utterance) is
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met and label it as the answer. From the 463.6K
transcripts, only 15% of the files have identify host
who steer the interview and have sufficiently high
frequency of questions. However, each of these
transcripts result in roughly 20 annotated questions
on average. For intermediate training, we sample
a total of 150K questions from this set and split it
randomly into train, dev, test splits in 80 : 10 : 10
ratio. Table 12 shows a few examples of silver
answer annotations for questions asked in MEDIA-
SUM interviews.

Perturbations. First, we add random sentences
between the question and answer utterances to pre-
vent a location bias in which model predicts sen-
tences that immediately follow the question as the
answer. Second, we create scenarios where the
question is unanswerable by removing annotated
answer spans from the context. Third, we replace
speaker names in the context with a numeric iden-
tifier because information about speaker names
are not always available in the transcript includ-
ing AMI dataset. For multi-span models, we fur-
ther insert random sentences from elsewhere in the
transcript in between annotated answers to facili-
tate better span selection. Finally, the number of
speaker turns in MEDIASUM are 10x smaller than
those in AMI dataset (refer to Table 2 of Zhu et al.
(2021a)). Therefore, we create more speaker tran-
sitions by splitting a long speaker utterance into
shorter utterances by multiple speakers.

15023



ACL 2023 Responsible NLP Checklist

A For every submission:
�3 A1. Did you describe the limitations of your work?

Section 7

�3 A2. Did you discuss any potential risks of your work?
Section 8

�3 A3. Do the abstract and introduction summarize the paper’s main claims?
Section 2, 3 and 4 verify the claims made.

�7 A4. Have you used AI writing assistants when working on this paper?
Left blank.

B �3 Did you use or create scientific artifacts?
Section 2

� B1. Did you cite the creators of artifacts you used?
No response.

�3 B2. Did you discuss the license or terms for use and / or distribution of any artifacts?
Appendix B

�3 B3. Did you discuss if your use of existing artifact(s) was consistent with their intended use, provided
that it was specified? For the artifacts you create, do you specify intended use and whether that is
compatible with the original access conditions (in particular, derivatives of data accessed for research
purposes should not be used outside of research contexts)?
Section 8, Appendix B

�3 B4. Did you discuss the steps taken to check whether the data that was collected / used contains any
information that names or uniquely identifies individual people or offensive content, and the steps
taken to protect / anonymize it?
Section 8, Appendix A

�3 B5. Did you provide documentation of the artifacts, e.g., coverage of domains, languages, and
linguistic phenomena, demographic groups represented, etc.?
Section 2, 8, Appendix A

�3 B6. Did you report relevant statistics like the number of examples, details of train / test / dev splits,
etc. for the data that you used / created? Even for commonly-used benchmark datasets, include the
number of examples in train / validation / test splits, as these provide necessary context for a reader
to understand experimental results. For example, small differences in accuracy on large test sets may
be significant, while on small test sets they may not be.
Section 2

C �3 Did you run computational experiments?
Section 3-4

�3 C1. Did you report the number of parameters in the models used, the total computational budget
(e.g., GPU hours), and computing infrastructure used?
Appendix B, Sec 4

The Responsible NLP Checklist used at ACL 2023 is adopted from NAACL 2022, with the addition of a question on AI writing
assistance.

15024

https://2023.aclweb.org/
https://2022.naacl.org/blog/responsible-nlp-research-checklist/
https://2023.aclweb.org/blog/ACL-2023-policy/
https://2023.aclweb.org/blog/ACL-2023-policy/


�3 C2. Did you discuss the experimental setup, including hyperparameter search and best-found
hyperparameter values?
Appendix B, Sec 4

�3 C3. Did you report descriptive statistics about your results (e.g., error bars around results, summary
statistics from sets of experiments), and is it transparent whether you are reporting the max, mean,
etc. or just a single run?
Sec 4, Appendix B, C

�3 C4. If you used existing packages (e.g., for preprocessing, for normalization, or for evaluation), did
you report the implementation, model, and parameter settings used (e.g., NLTK, Spacy, ROUGE,
etc.)?
Appendix B

D �3 Did you use human annotators (e.g., crowdworkers) or research with human participants?
Section 2, Appendix A

�3 D1. Did you report the full text of instructions given to participants, including e.g., screenshots,
disclaimers of any risks to participants or annotators, etc.?
Appendix A and supplementary data folder

�3 D2. Did you report information about how you recruited (e.g., crowdsourcing platform, students)
and paid participants, and discuss if such payment is adequate given the participants’ demographic
(e.g., country of residence)?
Section 2, Appendix A

�3 D3. Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? For example, if you collected data via crowdsourcing, did your instructions to
crowdworkers explain how the data would be used?
Section 2, Appendix A

�7 D4. Was the data collection protocol approved (or determined exempt) by an ethics review board?
Ethical Review was conducted by crowd-sourcing company.

�3 D5. Did you report the basic demographic and geographic characteristics of the annotator population
that is the source of the data?
Appendix A

15025


