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Abstract

While pre-trained language models achieve im-
pressive performance on various NLP bench-
marks, they still struggle with tasks that re-
quire numerical reasoning. Recent advances
in improving numerical reasoning are mostly
achieved using very large language models that
contain billions of parameters and are not ac-
cessible to everyone. In addition, numerical
reasoning is measured using a single score on
existing datasets. As a result, we do not have a
clear understanding of the strengths and short-
comings of existing models on different numer-
ical reasoning aspects and therefore, potential
ways to improve them apart from scaling them
up. Inspired by CheckList (Ribeiro et al., 2020),
we introduce a multi-view evaluation set for nu-
merical reasoning in English, called FERMAT.
Instead of reporting a single score on a whole
dataset, FERMAT evaluates models on various
key numerical reasoning aspects such as num-
ber understanding, mathematical operations,
and training dependency. Apart from providing
a comprehensive evaluation of models on dif-
ferent numerical reasoning aspects, FERMAT
enables a systematic and automated generation
of an arbitrarily large training or evaluation set
for each aspect.The datasets and codes are pub-
licly available to generate further multi-view
data for ulterior tasks and languages.1

1 Introduction

Numerical reasoning is an aspect that is often for-
gotten despite being an integral part of natural
language. It is the ability to interact with num-
bers using the fundamental mathematical prop-
erties and thus model an area of human cogni-
tive thinking (Saxton et al., 2019). Better under-
standing of numbers in language models would
benefit various tasks like fact-checking (Vlachos
and Riedel, 2015), text generation (Moosavi et al.,
2021; Suadaa et al., 2021), and educational tools

1https://github.com/jasivan/FERMAT

(Mandal et al., 2022). Current models’ perfor-
mance are still too weak with respect to numer-
ical accuracy to then be used in downstream tasks
like Infotabs (Gupta et al., 2020) which requires
identifying numbers in tables and then perform-
ing operations to correctly label statements causing
factuality errors in such tasks.

Recently, we have observed improved perfor-
mances on relevant datasets about numerical rea-
soning using very large language models (Wei et al.,
2022b; Lewkowycz et al., 2022; Kojima et al.,
2022). However, there are two main limitations
to this recent trend. First, as models become larger
their access becomes restricted to fewer users, i.e.,
users with the computational resources of large
companies. For example, using one of the best
mathematical models, the 540B parameter model
Minerva (Lewkowycz et al., 2022), would require
over 2212G of memory for inference only. Sec-
ond, the numerical reasoning capabilities of ex-
isting models are measured using a single score,
i.e., mostly accuracy on common benchmarks like
GSM8K (Cobbe et al., 2021). Therefore, their
strengths and shortcomings in different aspects of
numerical reasoning compared to other models are
not clear. As a result, it is unclear what numerical
reasoning aspects should be improved to improve
their performance on datasets requiring numerical
reasoning.

Motivated by CheckList (Ribeiro et al., 2020),
which is a behavioral test set concerning various
linguistic aspects of the input language, we pro-
pose a unique and open Flexible Evaluation set for
Representating Multiviews of Arithmetic Types,2

FERMAT, for evaluating the numerical reason-
ing capabilities of models based on multiple key
aspects . It evaluates models according to (a) dif-
ferent ranges and representations of numbers, (b)
different mathematical operations, and (c) the de-
pendence of models on the fine-tuning data. In

2We use the terms type, aspect and view interchangeably.
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addition, it contains a tool to automatically gener-
ate new instances for each of its aspects. FERMAT
enables (a) the identification of the strength and
shortcomings of models according to its aspects,
and (b) the automatic creation of additional train-
ing and evaluation instances using expert written
templates that reflect FERMAT’s categories.

FERMAT complements the recently proposed
LĪLA benchmark (Mishra et al., 2022a) for math-
ematical reasoning. LĪLA evaluates high-level as-
pects, e.g. whether performing mathematical rea-
soning also depends on commonsense knowledge
or how the performance changes depending on the
difficulty of the input language. However, even the
best-performing model on the LĪLA benchmark,
i.e., a 2.7B parameter model that is fine-tuned on
mathematical datasets, only achieves an accuracy
of around 20-30 points when the input is formu-
lated using a simple language and the test data is
from a different distribution than that of the train-
ing, and it is not clear how to further improve this
performance.

FERMAT, on the other hand, takes a deeper look
at more fine-grained aspects by diving into the core
mathematical abilities of the models and reporting
which specific operations a model can or cannot
perform and on which numbers. It also provides
templates for creating more instances for each as-
pect, e.g., to generate additional data to further train
or evaluate models on certain aspects. FERMAT
formulates the evaluation of numerical reasoning
using the question answering format, which is com-
monly used in NLP for evaluating various skills
(Tafjord et al., 2019; Dasigi et al., 2019; Jin et al.,
2019).

We use FERMAT to highlight that single accu-
racy scores fail to give a holistic understanding of
a model, that template diversity has a high impact
in improving performance, and that number encod-
ings play an important part in numerical reasoning.
The FERMAT framework could subsequently be
adapted for different tasks according to the target
application,3 to give a more targeted approach to
improving models. Moreover, while the expert-
written templates in FERMAT are written in En-
glish, they can easily be translated to be adapted to
other languages.

3For instance, by automatically converting our QA tem-
plates to NLI (Demszky et al., 2018) if NLI is a more suitable
format for the downstream task.

2 Related Work

2.1 Datasets
Mathematical datasets focus on exploring different
levels of difficulties and areas of maths. Some look
at general symbolic maths, where the questions at
least involve algebraic notations. A certain group
of datasets explores numerical reasoning in context,
but the answers may not exclusively be numerical.
Unlike FERMAT, all these datasets evaluate mod-
els’ performances on the whole dataset based on
a single score. Moreover, as a result of the avail-
ability of many datasets, new benchmarks have
also been created based on regrouping the existing
datasets according to specific criteria. Such bench-
marks are created based on high-level aspects, e.g.,
how the performance changes when solving maths
also depends on commonsense reasoning, when the
maths is presented using equations, a simple lan-
guage, or a complex language, or when the input is
presented using a different task format. However,
the performance of existing general-purpose mod-
els is very low, even on the simplest aspects, e.g.,
when the maths is presented using a simple lan-
guage without requiring external knowledge. FER-
MAT, on the other hand, focuses on a fine-grained
analysis of numerical reasoning by aiming to deci-
pher models’ ability to understand numbers, opera-
tions, and their reliance on the training data.

2.1.1 General maths
Dolphin18K (Huang et al., 2016), DeepMind Math-
ematics (Saxton et al., 2019) and AQUA (Ling
et al., 2017) are datasets that have a focus on solv-
ing algebraic problems and therefore use algebraic
notation. These datasets are too complex for ex-
isting general purpose language models, mainly
because they expect multi-hop reasoning.4 For in-
stance, Wei et al. (2022b) only report an accuracy
around 25% for AQUA with a large, 62B parameter,
model.

2.1.2 Numerical context
Instead of the algebraic notation, some datasets are
worded problems but are formulated as multiple
choice questions, e.g. McTaco (Zhou et al., 2019)
and AQUA. This multiple choice format simplifies
the task into a classification which prevents work-
ing with the continuous essence of numbers. Even
if these are formatted into generative output tasks
they then sometimes expect textual outputs like

4E.g. [(6× 8)− (3× 6)]÷ (6 + 4) (Ling et al., 2017).
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DROP (Dua et al., 2019). DROP has textual an-
swers that can be extracted from the context which,
similarly to the multiple choice questions, are dis-
joint from the numerical reasoning skill.

2.1.3 Numerical solutions
The only datasets with textual input that solely ex-
pect numerical answers are GSM8K (Cobbe et al.,
2021), MAWPS (Koncel-Kedziorski et al., 2016),
CommonCore (Roy and Roth, 2015) and Illinois
(Roy and Roth, 2016). GSM8K provides textual
explanation for the solutions which has been effec-
tively used by Wei et al. (2022b). However, similar
to AQUA, GSM8K is very difficult for general pur-
pose language models with reported results below
5% accuracy using an 8B parameter model (Wei
et al., 2022b). Likewise, MAWPS requires some
use of algebra to solve the problems. However,
CommonCore and Illinois, which are subsets of
MAWPS, are constituted of simpler one or two-
hop problems.5 Since FERMAT is designed to
gain better insight by focusing on more accessible
problems, CommonCore and Illinois are the ideal
datasets.

2.1.4 View-based evaluation sets
Ribeiro et al. (2020) explain the motivation to move
away from raw accuracy but towards more informa-
tive evaluation sets which give better insight into
a given model. They look at different aspects of
a test set; the skills needed to correctly solve the
problem, in their case, linguistic phenomena like
negation in sentiment analysis.

NumGLUE (Mishra et al., 2022b), on the other
hand, is a multi-task benchmark that involves nu-
merical reasoning. It combines different tasks like
commonsense, domain specific language, quantita-
tive expressions, with arithmetic understanding to
create a more challenging benchmark. It also uses
different question format such as fill-in-the-blanks,
textual entailment, multiple choice questions, span
extraction and numerical outputs.

A more mathematically expansive set is the
recently introduced LĪLA dataset (Mishra et al.,
2022a) where they regroup 20 existing datasets into
23 reasoning tasks including some of NumGLUE.
These tasks are split into maths domains (e.g. ge-
ometry or arithmetics), language complexity (e.g.
only maths, simple language, or long passages in-
volving co-reference), question format (e.g. gener-

5An n-hop problem is one with the combination of, at
most, n of the basic operations.

ative answer or fill in the blank), and background
knowledge required (e.g. knowledge of formulae
or commonsense). However, as mentioned, exist-
ing models struggle even with simple aspects that
do not require background knowledge or do not
contain complex language or maths. FERMAT
complements LĪLA by looking in-depth at more
fine-grained numerical reasoning aspects . It also
contains expert-written templates associated with
each aspect that can be used to generate an arbi-
trary number of new instances to address the iden-
tified shortcomings or generate more evaluation
instances. We design FERMAT for arithmetic prob-
lems presented using simple language. However,
our methodology can be tailored to refine the anal-
ysis of LĪLA’s other aspects.

2.2 Improving Numerical Reasoning

The literature has two main ways of improving
numerical reasoning: (a) by designing task-specific
models capable of numerical reasoning (Kumar
et al., 2021, 2022; Liang et al., 2022; Dua et al.,
2019; Andor et al., 2019; Yang et al., 2021), and
(b) by scaling up (Brown et al., 2020; Chowdhery
et al., 2022; Chen et al., 2021). Both methods
also attempt to further pre-train existing models on
maths related data (Geva et al., 2020; Cobbe et al.,
2021; Wei et al., 2022b; Lewkowycz et al., 2022;
Zhou et al., 2022). Other existing ways include
using better number encoding (Muffo et al., 2022)
or objective functions (Petrak et al., 2022).

2.2.1 Task-specific models: Maths solvers
Some models have been specifically created to
solve maths problems by outputting expressions
(Kumar et al., 2021, 2022; Patel et al., 2021) or
pseudo-programs (Liang et al., 2022; Dua et al.,
2019) which are then evaluated using an external
module. Notwithstanding the performance of these
models, they can only be used to solve maths prob-
lems that, moreover, need to be represented in a
closed arithmetic form. This restricts the versatility
of these models both in terms of the maths and
tasks that they can solve.

Unlike the other maths solvers, GenBERT (Geva
et al., 2020) and NT5 (Yang et al., 2021) generate
the final output as text, making them more general-
purpose. Both are pre-trained on numerical and
textual tasks to solve mathematical problems. Both
of these models are evaluated on DROP (Dua et al.,
2019) which only provides an accuracy score, so
their general numerical skill performance is not
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well-understood.6

2.2.2 Improving maths by scaling

More general-purpose models that perform well
with respect to mathematical reasoning are GPT3
(175B) (Brown et al., 2020), PaLM (540B) (Chowd-
hery et al., 2022) and Codex (175B) (Chen et al.,
2021) where their parameter size is given in brack-
ets. GPT3 was fine-tuned by Cobbe et al. (2021) on
GSM8K to achieve state of the art results. Similar
works using PaLM and Codex investigate prompt-
ing (Wei et al., 2022b; Zhou et al., 2022) and ex-
tended training (Lewkowycz et al., 2022).

All of these models are general-purpose so are
able to do more than solve maths problems but
are not well understood. Some ablation studies
analyse specific aspects of specific models. For in-
stance, Lewkowycz et al. (2022) conducted a digit
study and highlighted that Minerva is unable to per-
form any multiplication of numbers with more than
seven digits. However, their sizes make it impos-
sible for many research and industry communities
to utilise them, even just at inference time. We
do not have the computation resources or access
for running these large models. However, FER-
MAT, which is publicly available and easily acces-
sible, can be used to perform a more comprehensive
analysis of these models to further identify their
strengths and shortcomings.

3 Multi-view Evaluation Set: FERMAT

FERMAT gives a holistic view of a model by eval-
uating fine-detailed aspects of numerical reasoning.
It is akin to Ribeiro et al. (2020)’s CheckList, which
focuses on linguistic variations for defining its as-
pects. FERMAT is used to interpret models by
evaluating them on three orthogonal views includ-
ing (a) Number Understanding, (b) Mathematical
Operations, and (c) Training Dependency. It also
provides an automated method of generating new
training or evaluation examples for a given number
type or operation.

We collect the initial instances for creating the
FERMAT evaluation set using the established Illi-
nois (Roy and Roth, 2016) and CommonCore (Roy
and Roth, 2015) datasets. After removing dupli-
cates, we collect 1111 unique instances from these

6Both models report a similar performance (below 2%
difference) on DROP, therefore in our work will focus on the
smaller one, NT5.

two datasets which we name the Original set.7 We
choose instances from CommonCore and Illinois
because they perfectly fit with FERMAT’s design
by providing one or two-hop questions. Moreover,
their extensive annotation is supplemented with an
alignment between the numbers in the question and
the corresponding expression that the solution is
calculated from. We leverage these annotations in
FERMAT to create different variations of the same
problem for different aspects.

3.1 Number Understanding
Each instance of the Original set is used to gener-
ate 18 different numerical types where the numbers
change but the language is fixed. These are cate-
gorised as (a) Alternative Representations, and (b)
Range of Numbers. Examples of each is given in
Table 1.

Table 1: Numerical Types with examples.

3.1.1 Alternative Representations
Alternative Representations transforms the num-
bers into 11 different forms. The first four cate-
gories (rows 1 to 4) have the same number as the
Original set but represented differently whereas the
next five categories (rows 5 to 9) use the same dig-
its in the same order but by varying the magnitude
of the number. The last two (rows 10 and 11) form
the digit grouping subcategory where comma and
space separators are used between groups of three
digits.8 This would give insight into the breadth
of representations a model can accommodate, in-
dependent of the specific digit used, for instance,

7The Original set acts as the comparison to existing nu-
merical reasoning benchmarks.

8These have different numbers to the original questions
because the Original set only contains 17 numbers where digit
grouping would be visible. For comparison, the numbers are
identical to the large integers type from Section 3.1.2.
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elucidate whether a model would be able to equally
answer “12×34”, “34×12” and “1.2×3.4”. Note
that the commutative category (row 4) refers only
to operations that are invariant to operand permu-
tation and thus only has 611 associated questions
instead of 1111.

3.1.2 Range of Numbers
The Original set has a highly skewed distribution
towards smaller integers with 94.89% of numbers
being 1 or 2 digit integers. Therefore, a random
number generator is used to create 7 sub-categories
of a “Range of Numbers” split into integers (rows
12 to 16) with large integers (greater than 1000),
small integers (less than 1000) and 2, 3 and 4 digit
integers, and decimals (rows 17 and 18) with 1 or
2 decimal place numbers.

3.2 Mathematical Operations

The operations sought by the model plays a vi-
tal role in numerical reasoning. A one-hop prob-
lem which requires a single operation, to a human,
would seem much easier than a two-hop problem
where an intermediate calculation would need to be
computed first. With regards to this, we consider
9 operation sets generated using basic operations
(addition, subtraction, multiplication and division).
Their distribution is given in Appendix A.

3.3 Training Dependency Classification

The frequency of the occurrence of a number in
pre-training data has a great impact on the perfor-
mance of the model on those numbers (Razeghi
et al., 2022). Motivated by this, FERMAT also
includes a view for training dependency, but at the
fine-tuning or prompting-level only. Despite the
test being unseen, a model could be learning the
training data and focalise on seen numbers or seen
operations. Therefore, we include a Training De-
pendency Classification aspect to FERMAT using
the following classes based on what was seen dur-
ing training:9

(a) Exact: all the numbers and operations are seen
with the same operations modulo commutativ-
ity, e.g. “(3 + 2)× 5”,

(b) All Numbers: all the numbers are seen but
with different operations, e.g. “(5− 2)÷ 3”,

9All the examples are associated to the test expression,
“5× (2 + 3)”.

(c) Number & Operation: at least one number
and operation are seen, e.g. “(5+3)÷ 4”, the
“5” and the addition are at least seen,

(d) One Number: at least one number is seen with
none of the operations, e.g. “9− 5”, the “5” is
seen but nor with the “9”, nor with subtraction,

(e) One Operation: at least one operation is seen
without any numbers, e.g. “4+7”, the addition
is seen but not with these numbers.

It is important to note that all operations from the
test set are seen in the training set, therefore accord-
ing to our classification criteria, the least common
class is always One Operation. Future work may
have more complicated mathematical operations
in the test set that are never seen at training time
such as powers or trigonometric functions, but we
believe these to be too difficult for the models to
learn without prior exposure.

3.4 Generating Training Data

In addition to the evaluation set, FERMAT also pro-
vides a solution for generating an arbitrary length
dataset that targets specific number or operation
types.10 This dataset is generated based on tem-
plates that come from three separate sources that
are completely independent to the FERMAT eval-
uation set. The first set comprises of 100 ques-
tions written by two professional secondary school
mathematics teachers and reviewed by a third one.
The distribution of the templates generated reflect
a uniform distribution over the operations. The
second and third sources are GSM8K and AQUA
where 155 and 71 templates were selected respec-
tively. Only the questions that used at most two
basic operations were extracted and the numbers
were replaced by place holders to transform them
into templates. These templates are only used in
Section 5.4 to enhance the linguistic and mathemat-
ical variety of the templates. The distribution of
operations used in the templates alongside some
examples are given in Appendix B.

4 Experimental setup

To demonstrate the effectiveness of our evaluation
set, FERMAT, we will perform the evaluations in
two settings, (a) zero-shot, where we evaluate ex-
isting models, and (b) fine-tuned, where we further

10In this work, it is used for training but it could also be
used for evaluation.
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train the models on arithmetic data generated using
our training data in Section 3.4.

4.1 Zero-shot Evaluation
For zero-shot performance, we evaluate the follow-
ing models on FERMAT without any training:11

T0 (3B) (Sanh et al., 2022), FLAN-XL (3B) (Wei
et al., 2022a), BHĀSKARA (2.7B) (Mishra et al.,
2022a), FLAN-large (770M), FLAN-base (220M),
T5-base (220M) (Raffel et al., 2020), BART-
base (140M) (Lewis et al., 2020), and NT5 (3M)
(Yang et al., 2021), where the size of the models
is given in brackets. A zero-shot evaluation is ap-
propriate because these models are intended to be
used as off-the-shelf multi-purpose models.

T0, FLAN, BHĀSKARA and NT5 have been
trained using prompts, so we also test them with
and without prompts. We select the prompts by
consulting the original papers and judge which fit
closest with our question answering task (see Ap-
pendix C for the exact prompts used). From the
models we considered, BHĀSKARA, FLAN and
NT5 are the ones that have also been trained for
maths related datasets. BHĀSKARA is trained on
LĪLA and reaches near state of the art performance,
thus is a reliable model to compare numerical rea-
soning capabilities. However, since LĪLA contains
lots of existing data, BHĀSKARA has seen 46.89%
of the Original test set (Mishra et al., 2022a) at
training time. It also includes DeepMind Mathe-
matics (Saxton et al., 2019) in its pre-training data.
FLAN has also seen DeepMind Mathematics in
training. NT5 is pre-trained on synthetic numerical
tasks involving non-worded problems with integers
up to 20000, decimals, negatives and percentages
and textual tasks as described by Geva et al. (2020),
and then fine-tuned on DROP.

4.2 Fine-tuned Evaluation
For this setting, we create a training data called
Base (see Section 4.2.1) on which we fine-tune
the following models: FLAN-large, FLAN-base,
T5-base , BART-base and NT5 accessed from
Huggingface (Wolf et al., 2020). We also use
a digit tokeniser as implemented by Petrak et al.
(2022) which gives more promising results in fine-
tuning experiments compared to using the default

11If the output of the examined model contains more than
the numerical answer, e.g. the explanation of the answer,
we only extract the numerical part from the generated output
based on how the model is originally trained. For example,
BHĀSKARA gives the answer before an explanation, whereas
T0 provides it after.

tokeniser for numbers.12 Due to limitations in com-
putational resources, we are unable to use the 3B
parameter models for fine-tuning. Moreover, de-
spite BHĀSKARA being advertised as a good start-
ing point for maths related data, it is still too big
for us to train.13

4.2.1 Training data
The templates described in Section 3.4 were used
to generate the Base training set of 200K questions
with a uniform distribution over four common num-
ber types, i.e. integers and decimals with 1 or 2
decimal places all between 0 and 1000, and integers
between 1000 and 1000000. This distribution also
means that each of these types have 50K questions,
so we would suspect that all 1000 integers between
0 to 1000 and most of the 10000 1 decimal place
numbers would appear in the training set whereas
all 100000 and 999900 respectively from the other
two categories cannot be seen. Furthermore, all
of the expert templates were used therefore the op-
eration distribution is the same as the one for the
template set (see Appendix B). The same method-
ology was used to create a development set of 1K
questions. This was used to decide on hyperparam-
eters which are described in Appendix D.

5 Results

Table 2 illustrates the zero-shot and fine-tuning
performance of eight models on FERMAT with
green highlighting the stronger performances for
a given arithmetic type and red the poorer ones.
For models that use prompts (T0, BHĀSKARA,
FLAN and NT5), for each type, we report their
mean accuracy using all the prompts and no-prompt
settings. For these models, the standard deviation
between the prompted and non-prompted results
is below 1.5%, therefore the reported results are
representative (see Appendix E for the full results).

5.1 Zero-shot Evaluation

Firstly, from Table 2’s sea of red, we can de-
duce that most of these models, especially T0 and
the base models, tend to perform poorly at arith-
metic reasoning, irrespective of size. The best-
performing models, BHĀSKARA and FLAN-XL,
are ones trained on maths data. But their perfor-
mance is only respectable for a variant of the Orig-

12Note that NT5’s tokeniser already separates the digits, so
we omit the use of digit tokenisation for this model.

13We use NVIDIA V100 GPU nodes with a 32G memory.
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Table 2: Zero-shot and fine-tuned performances. Accuracy shown in percentage and all green scores are above the
arbitrary threshold of 10% to subduce any false strong performances.

inal set where nearly half of the numbers are single
digits.

Secondly, the accuracy level for Original is al-
ways part of the highest values, expect for NT5, so
it is not a representative test set for numerical rea-
soning despite being derived from existing bench-
marks. This could also be due to the poor diver-
sity of the Original set as stressed in Section 3.1.2.
Contrastingly, NT5 has its highest accuracy for ad-
dition and subtraction meaning that it is generally
learning operations over specific number types.

Thirdly, even the larger models that are explic-
itly trained on maths datasets, i.e., BHĀSKARA
and FLAN-XL, perform poorly on numbers that
contain more than one digit indicating a limitation
for their use in real-world tasks where the numbers
can be of any range. This is in line with previous
studies showing the shortcomings of models on
longer digits (Lewkowycz et al., 2022; Muffo et al.,
2022).

5.2 Evaluation after Fine-tuning

As expected, with many greener cells, the fine-
tuned models are better than their zero-shot coun-
terparts and demonstrate more consistent perfor-
mance across all the types. FERMAT’s training and
evaluation set templates, while covering similar as-
pects, are from completely independent sources.
However, we observe that fine-tuning smaller com-
monly used models on this training data outper-
forms larger models like BHĀSKARA that are
fine-tuned on various maths datasets, for instance
BHĀSKARA is trained on over 1.32K distinct
questions and programs. This underlines the bene-
fit of creating the training data based on a diverse
set of mathematical aspects. The larger FLAN
is the only model to consistently improve on the
two-hop questions suggesting that more parameters

may be required to learn more complex reasoning
as observed by Xiong et al. (2021).

Similarly, NT5 only makes significant improve-
ment with addition and subtraction, which it was
pre-trained on with synthetic questions. There-
fore, as a smaller model, NT5 is only able to better
generalise mathematical addition and subtraction
but struggles to learn new operations during fine-
tuning. However, instead of its size, this could
also be due to the complexity of mathematics it has
seen at pre-training. In addition, we observe that
models’ performances on the “Commuted” aspect
within the “Same numbers” subset are considerably
lower than the other aspects. This indicates a po-
tential for developing better number encodings that
learn similar representations for the same number
regardless of the position or input representation,
e.g., “three” and 3, and 3.0.

5.3 Training dependency of performance

Figure 1: Training and test data overlap separated be-
tween correct and incorrect predictions made by FLAN-
large (left bars) and T5-base (right bars).

It is important to understand why our fine-tuned
models are better across multiple types. For this,
we class the expression required to answer the test
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sets using the Training Dependency Classification
described in Section 3.3. Figure 1 presents the de-
pendency of the training data for the FLAN-large
(left bars) and T5-base (right bars) models. For
each bar, the ratio of correct (orange) and incor-
rect (blue) predicted samples are identified (the full
results are given in Appendix F).

The bars’ monotonic trend suggests that if more
of a test expression is seen at training, the model is
more likely to answer it correctly. However, even
for the exact match category, the performance is
only 46%. This is because the language that is used
to describe the targeted equation may be different
in different instances, e.g. the words “another” and
“increases” are only two possible terms suggest-
ing an addition (see Appendix B for their use in
context), indicating that the model needs exposure
to a variety of different ways maths is expressed
and that enriching the training data with higher
language diversity can be beneficial.

In addition, the accuracy for Exact and All Num-
bers classes are similar for both models highlight-
ing that seeing numbers during training, and there-
fore having a correct encoding for them, plays an
important role in solving their corresponding maths
operations, e.g. 89 and 30 appear both in the train-
ing set, “Stacey prints 30 letters to post. The printer
was filled with 89 sheets of paper. How many more
letters could she print?”, and in the 2 digit test set,
“89 beavers were working on their home. 30 went
for a swim. How many beavers are still working on
their home?”. This could be seconded by FLAN-
large having higher accuracy than T5-base for each
class as is has seen more maths at pre-training.

5.4 Impact of training templates

As eluded in Section 5.3, linguistic and mathemat-
ical diversity seem to be key to the improvement
of numerical reasoning. Therefore, we investigate
a model’s performance when trained with the dif-
ferent templates, thus diverse language and mathe-
matics. We fix the distribution of the aspects used
in all those training instances to equal amounts of
“Integers 0 to 1000”, “1000+ random”, “1dp ran-
dom” and “2dp random”. We use FLAN-base for
the experiments of this section as it still has partic-
ularly low performances in mainly two-hop aspects
according to the results of Table 2, even after fine-
tuning. Moreover, it is a small enough model to
train on larger datasets.

In this section, we consider the following three

training sets to compare the effect of template
diversity (see Appendix G for detailed distribu-
tion): (1) Base is the 200K training data from Sec-
tion 4.2.1 which only uses the expert templates,
(2) Base Scaled Up is Base with an addition 100K
instances from the same distribution of aspects.
To make a fair comparison with the next training
set, the language and mathematics is fixed as it
only uses the expert templates, (3) Base Diversi-
fied starts with Base and also adds 100K instances
from the same distribution of aspects. However, un-
like all the other training sets which purely use the
expert templates, this augments the initial set us-
ing templates recovered from GSM8K and AQUA
(see Section 3.4) which enhances the language
and mathematics seen. We compare FLAN-base
fine-tuned on the above training set along with the
model’s zero-shot baseline performance. Figure 2
illustrates the results of these experiments.

Figure 2: Fine-tuning FLAN-base on the three training
sets described in Section 5.4 and the zero-shot results,
see Appendix H for table of results.

First, as already established, training on diverse
templates over a variety of aspects is beneficial by
the shear difference illustrated by Figure 2 between
Zero-shot (black) and the fine-tuned performance
(blue, orange, green). In contrast, when compar-
ing Base (blue) and Base Scaled Up (orange), we
remark that despite seeing 100K more combina-
tions of numbers and operations, the learning stag-
nates when using the same templates meaning that
the model has learnt as much as it could from the
breadth of the available templates. Consequently,
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either linguistic or mathematical diversity is re-
quired to make a sufficient contribution. This phe-
nomenon is, in fact, displayed by the improvement
generated by Base Diversified (green), in certain
aspect by over 21%. The diversity helps the model
map the language used to describe particular math-
ematics better, for instance “share” to mean “divi-
sion”, and possibly observing more variety of this
in different context seems to improve the model.
Therefore, a diversity in the templates used is im-
portant, suggesting that a large variety of language
may be required to attempt to further ameliorate
the performance. Nevertheless, the mathematical
diversity seems to also play a more important role
as the diverse templates from GSM8K and AQUA
have more two-hop operations (see Appendix B).
Relatedly, the mean percentage increase of one-hop
operations from Base to Base Diversified is approx-
imately 95% which is about half the mean percent-
age increase for two-hop operations, i.e. 187%.
This suggests that mathematical variation may be
more central than language diversity.

Second, the variance in accuracy between “1dp
random” and “2dp random” and analogously “Inte-
gers 0 to 1000” and “1000+ random” is also intrigu-
ing. Despite having the same number of training
instances with these aspects the accuracy is always
lower for “2dp random” and “1000+ random” re-
spectively, the reason for this is that these aspects
involve harder skill for which either the additional
100K examples or the size of the examined model
is not enough to learn this skill.14 On the other
hand, for a simpler aspect like “2 digit” represen-
tation, the model’s performance improves consid-
erably using the additional training instances. We
can conclude that template diversity alone may not
improve the models and that work on generalisa-
tion over larger sequence of integers (i.e. integers
larger than 1000, more than two decimal places)
such as tokenisation and representation of numbers
is critical.

Third, a noteworthy observation is that Base Di-
versified (green) performs worse than Base (blue)
only on the “Original 2dp no 0” aspect, e.g., using
“.32” instead of “0.32”. When further analysing
the model’s output of this aspect for Base Diversi-
fied, we note that the model, on top of the 19.8%
accuracy, produces an additional 19.7% of outputs

14This is in line with our preliminary experiments where
we observed that using complex maths datasets like GSM8K
was not beneficial for general-purpose models to learn basic
mathematical reasoning skills.

containing correct digits but an incorrect magni-
tude, e.g., the correct answer might be “1.8”, but
the model predicts “0.18”. The model might be
disturbed by the decimal place or the absence of
zero, implying that number encoding including po-
sitioning is vital, and thus, an accurate encoding of
numbers is crucial.

6 Conclusion

The majority of existing datasets for numerical rea-
soning evaluate models based on a single score,
making it impossible to identify their strengths and
shortcomings to further improve them. Multi-view
benchmarks are the alternative for a more compre-
hensive and informative evaluation of models. In
this direction, we introduce FERMAT, a multi-view
evaluation set that enables a fine-grained analysis of
models based on three key aspects including num-
ber understanding, mathematical operations, and
training dependency. FERMAT’s aspects are as-
sociated with separate templates for generating in-
stances for both evaluation and training sets, which
are collected from completely independent sources
and domains.

Our results confirm that comparing a single accu-
racy score, as with all existing maths datasets, is not
representative of the performance on various nu-
merical reasoning aspects as the evaluation dataset
may be skewed towards a specific data distribution.
Based on our results, a wider language and mathe-
matical variation can improve even smaller models.
However, an apparent future direction is to focus
on improving number encodings in existing models
and understanding how these affect performance.

7 Limitations

Three main limitations with regards to certain as-
pects of this paper are the comparison against very
large models, the distribution of the Original set,
and the restriction of the output length.

Firstly, due to the lack of computational re-
sources and availability of some models, we were
unable to make a rigorous comparison of our fine-
tuned models’ as described in Section 5.2 against
very large models like Minerva (Lewkowycz et al.,
2022) or even Codex (Chen et al., 2021). How-
ever, these larger models can still be evaluated as
FERMAT is made publicly available.

Secondly, another limitation of FERMAT is its
use of Illinois and CommonCore which have highly
skewed distributions of numbers (see Section 3.1.2)
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and their answers are mainly integers which is not
representative of the real-world. This undesired
effect is mirrored in the number types that use the
same numbers as Original. However, this was part
of our design for FERMAT as the alternative would
have been to combined all the ranges of numbers
used with the representation, creating too many as-
pects but mainly conflicting with non-independent
analyses between representation and range of num-
bers. Therefore, we chose to use the same numbers
as Original, and since the templates will be openly
accessible, they can be used to generate more com-
binations for wider aspects.

Lastly, when generating training questions, de-
spite our best intentions, we had to limit the length
of the output to an arbitrary length of 12 digits,
therefore some number combination were not pos-
sible, for example 1÷3 = 0.3333... . This practical
implication could have been avoided with the use
of fractions or rounding. But we judged that it
would have added an extra layer of difficulty for
the models and decided to restrict the output length
instead.
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Appendix

A Distribution of Mathematical
Operations

Table 3 gives the distribution of the various oper-
ations that exist in the Original set and thus FER-
MAT’s evaluation set.

Hops Expression Frequency
a+ b 154

One-hop a− b 162
a× b 113
a÷ b 102

(a+ b)− c 190
a× (b+ c) 100

Two-hop (a+ b)÷ c 90
a× (b− c) 100
(a− b)÷ c 100

Total 1111

Table 3: Distribution of the mathematical operations for
the Original set.

B Templates

The templates’ operation distribution is given by
Table 4.

Operations Freq Operations Freq
a+ b 16 a− b 28
a× b 28 a÷ b 35

a+ b+ c 9 a+ b− c 23
a× (b+ c) 20 a× (b− c) 13
(a+ b)÷ c 20 (a− b)÷ c 17
a− b− c 3 (a÷ b) + c 3
(a× b) + c 13 (a× b)− c 5
(a× b)× c 10 (a× b)÷ c 51
a÷ (b+ c) 6 a÷ (b− c) 8
a× (b÷ c) 6 (a÷ b)× c 12

Total 326

Table 4: Table of operations present in the training
templates with their corresponding frequency. The ones
in bold are the ones present in the expert templates.

Exemplar templates from each of three sources
are given below where number place holders are in
bold:
Expert Template: Britney has num1 knitting
needles. She buys another num2 . How many
needles does she have?
Expert Expression: num1 + num2
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GSM8K Template: a trader sells num1 me-
ters of cloth for $ num2 . what is the cost price of
one metre of cloth ?
GSM8K Expression: ( num2 / num1)

AQUA Template: the average weight of num1
persons increases by num2 kg when a new person
comes in place of one of them weighing num3 kg .
what might be the weight of the new person ?
AQUA Expression: ( num3 +( num1*num2 ))

C Prompts

Examples of the prompts used for the respective
models are given below. In the examples, the
underlined text is the prompt.
Model: T0
Prompt name: Trivia
Example: Answer the following question. What is
2 plus 3?

Model: T0, FLAN
Prompt name: WebQA
Example: Question: What is 2 plus 3? Answer:

Model: FLAN
Prompt name: Trivia
Example: Please answer this question: What is 2
plus 3?

Model: NT5
Prompt name: NT5 prompt
Example: answer_me: What is 2 plus 3?

D Hyperparameters

The hyperparameters were tested on a smaller set
for efficiency. During fine-tuning, we used 100
epochs with an early stopping patience of 10 and
threshold of 1.0. The best model was based on
accuracy of the evaluation set. All experiments
were conducted with a learning rate of 5e-5, weight
decay of 0.005, warm-up of 100, float32 and 3 gen-
eration beams. The rest of the hyperparameters
were as the default setting in Huggingface. The
max input length was 512 and max target length,
16 which is above the 12 digit limit we restrained
ourselves to for the answers when generating ques-
tions. The resource used was an Nvidia Tesla V100
with 32G.

E Zero-shot results with and without
prompts

The full results for each model including when
prompts were used for all the arithmetic types are
given by Table 6.

F Training Dependency Results

The full results for the Training Dependency classi-
fication is shown in Table 5.

Table 5: Training Dependency for all fine-tuned models.

G Distribution of Training sets

Table 7 shows the distribution of the training set
created from the templates, with raw numbers of
instances generated based on the specific number
aspect and mathematical operation design. The
bold mathematical operations are the ones present
in the expert templates.

H FLAN-base template diversity

Table 8 shows the results of FLAN-base for each
numerical reasoning aspects as a zero-shot perfor-
mance and when fine-tuned on different . Accuracy
is given as a percentage. Green cells indicate higher
accuracy and red poorer performance.
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Table 6: Zero-shot results for separate model including different prompts. Accuracy shown in percentage.

Table 7: Distribution of templates for the Base, Base Scaled Up and Base Diversified sets. In bold are the expressions
that appear in the expert templates, whereas all expressions appear in the additional GSM8K and AQUA templates.

15040



Table 8: Results from fine-tuning FLAN-base on different distribution of templates.
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