
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics
Volume 1: Long Papers, pages 15072–15087

July 9-14, 2023 ©2023 Association for Computational Linguistics

Decoder Tuning: Efficient Language Understanding as Decoding

Ganqu Cui1, Wentao Li1, Ning Ding1, Longtao Huang2, Zhiyuan Liu1,3∗, Maosong Sun1,3∗
1 NLP Group, DCST, IAI, BNRIST, Tsinghua University, Beijing

2 Alibaba Group 3 IICTUS, Shanghai
cgq22@mails.tsinghua.edu.cn

Abstract

With the evergrowing sizes of pre-trained mod-
els (PTMs), it has been an emerging practice
to only provide the inference APIs for users,
namely model-as-a-service (MaaS) setting. To
adapt PTMs with model parameters frozen,
most current approaches focus on the input side,
seeking for powerful prompts to stimulate mod-
els for correct answers. However, we argue
that input-side adaptation could be arduous due
to the lack of gradient signals and they usu-
ally require thousands of API queries, resulting
in high computation and time costs. In light
of this, we present Decoder Tuning (DecT),
which in contrast optimizes task-specific de-
coder networks on the output side. Specif-
ically, DecT first extracts prompt-stimulated
output scores for initial predictions. On top
of that, we train an additional decoder net-
work on the output representations to incor-
porate posterior data knowledge. By gradient-
based optimization, DecT can be trained within
several seconds and requires only one PTM
query per sample. Empirically, we conduct
extensive natural language understanding ex-
periments and show that DecT significantly
outperforms state-of-the-art algorithms with
a 200× speed-up. Our codes are available at
https://github.com/thunlp/DecT.

1 Introduction

Recent advances in pre-trained models (PTMs)
demonstrate the power of the “pre-training-
fine-tuning” paradigm, which empowers broad
downstream NLP tasks with a single backbone
model (Devlin et al., 2019; Raffel et al., 2020; Rad-
ford et al., 2019). Given the million even billion-
scale models, model-as-a-service (MaaS) has be-
come an emerging practice in deploying massive
PTMs, where users can only get access to model
inference APIs (Brown et al., 2020; Sun et al.,
2022b). Under such a scenario, PTMs’ parameters

∗Corresponding Author.

Figure 1: Accuracy v.s. training time for MaaS adapta-
tion methods under different training shots. We plot
{1, 4, 16, 64, 256}-shot DecT, 0-shot Prompt, 1-shot
ICL and {1, 4, 16}-shot for other algorithms. DecT
outperforms all baselines by a large margin with a
200×speed-up.

are frozen, and users cannot fine-tune the model on
downstream tasks for adaptation. To find an alter-
native way, researchers have studied MaaS PTM
adaptation methods extensively.

Most existing approaches in this line are based
on prompts, which modify inputs with specific pat-
terns. By wrapping inputs into cloze-style ques-
tions or prepending inputs with a few demonstra-
tive examples, PTMs could produce the right out-
puts directly and show strong “in-context” learning
abilities (Petroni et al., 2019; Brown et al., 2020)
without any parameter update. Besides heuristic
prompt design, some recent works try to optimize
the input prompts without gradients. Among them,
Black-box Tuning (BBT) (Sun et al., 2022b) and
BBTv2 (Sun et al., 2022a) apply evolutionary al-
gorithm (Hansen and Ostermeier, 2001) on con-
tinuous prompt tokens, while RLPrompt (Deng
et al., 2022) adopts reinforcement learning to find
discrete prompt tokens. Nevertheless, gradient-
free optimization is rather difficult and these input-

15072

side methods need to query the PTMs thousands
of times for optimization, which leads to huge in-
ference costs in terms of time and computation
resources. Moreover, their final performance is not
satisfying as well.

Given the flaws of input-side adaptation, we turn
to output-side adaptation, which builds tunable de-
coder networks on model outputs. Comparatively,
output-side adaptation enjoys two major advan-
tages: (1) We can directly tune decoder networks
on top of model outputs with back-propagation
rather than arduous alternatives. (2) We can re-
duce thousands of model queries to only once per
sample. However, designing decoder networks is
not straightforward. Past studies have shown that
merely tuning an MLP or LSTM (Hochreiter and
Schmidhuber, 1997) over output features cannot
provide satisfying results (Sun et al., 2022a,b), leav-
ing this path underexplored.

In this work, we aim to solve the performance
issue for output-side adaptation, and we argue that
there are two critical reasons behind it: (1) Simply
utilizing PTMs as feature extractors ignores the
infilling ability of PTMs, which is a strong prior
for adaptation. (2) MLP and LSTM are not proper
networks especially when training data is not suffi-
cient.

Based on these findings, we present Decoder
Tuning (DecT), an enhanced output-side adaptation
method. Specifically, DecT has two crucial design
choices to address the above issues. First, DecT
queries the PTM with prompts and adopts model
output scores as the initial predictions, which takes
advantage of internal model knowledge. Second,
on top of the output representations, we select a
Prototypical Network (ProtoNet) (Snell et al., 2017)
as the decoder network and train it to fit the training
data, which is more suitable for few-shot learning.
In this way, DecT modifies the initial model scores
with subsequent training data, thus achieving better
performance.

Through few-shot learning experiments on ten
language understanding datasets, we highlight
three advantages of DecT (see Figure 1). (1) DecT
achieves over 3% absolute accuracy improvement
on average, greatly outperforming previous works.
(2) DecT is highly efficient. Compared with ma-
jor prompt engineering baselines, DecT dramati-
cally reduces the average adaptation time from over
9,800 seconds (BBTv2) to 3 seconds. (3) DecT
only requires one PTM query for each example,

while other input-side optimization methods need
about 104 calls. This advantage is vital when PTM
calls are not for free. In addition, we conduct ex-
tensive ablation studies and validate the impact of
each component of DecT.

2 Preliminaries

Given a set of training data Dtrain = {(xi, yi)}Ni=1

and PTM M, we need to predict the label y ∈
{1, . . . ,K} for sample x, where K is the number
of classes. We assume that each class has the same
amount of n training samples.

In the MaaS setting, M is a black-box infer-
ence API with fixed parameters. Therefore, we can
only query the model with input x and get corre-
sponding outputs. To better utilize the PTMs, it
has been a common practice to wrap input samples
into prompts. Specifically, we enclose each input
x into a template T with a [MASK] token (here
we assume using a masked language model). Then,
we query M with T (x) and get the final layer hid-
den states h at the [MASK] position and scores
s = SM(T (x)) ∈ RK over label words V . Take
sentiment analysis as an example, we can use

T (x) = x In summary, it was [MASK].

as the template with V = {bad, great} as label
words for negative and positive sentiment respec-
tively. The output scores on these label words fur-
ther correspond to the classes.

3 Methodology

In this section, we elaborate on our proposed De-
coder Tuning (DecT) method for the classification
task. We start with reviewing current input-side
adaptation methods, then give an overview of DecT
and finally detail it step-by-step.

3.1 Input-side Adaptation

Previous MaaS adaptation methods seek for opti-
mal prompts that stimulate PTMs to output correct
answers1. Without loss of generality, we formu-
late these methods with a transformation function
f(·) which pre-processes the input x. f(·) can
be specialized by adding demonstrations (Brown
et al., 2020), discrete prompt tokens (Deng et al.,
2022) or soft ones (Sun et al., 2022a,b). De-
note the final score as q(x) and probability as

1BBTv2 (Sun et al., 2022a) further optimizes prompt to-
kens in the intermediate layers, but we omit this here.

15073

A [MASK] question: Which team will win the Qatar World Cup?

InputTemplate

Pre-trained Model
(Only Inference API)

MLM Head sports
society

Label Words

SPORTS

SOCIETY

SCIENCE

Labels
science

hidden states
prototypes

Figure 2: Pipeline of DecT. We feed the PTM with prompts and collect model output scores over a set of label
words (Top) and hidden states at [MASK] position. The hidden states are used to train a ProtoNet to fit training
data (Bottom). We make final predictions by combining model and ProtoNet scores.

P (y|x) = Softmax(q(x)), these methods define
q(x) = SM(f(x)) and optimize f(·) for correct
predictions. Although optimizing f(·) without
model gradients is possible, we argue that it is
highly burdensome. Forwarding through a large
“black box” model M, it is rather challenging to
find corresponding inputs for specific outputs with-
out the guidance of gradient signals. As a result,
users may get suboptimal performance with ex-
pensive query costs. We empirically validate it in
experiments.

3.2 Overview of DecT

For more effective and efficient PTM adaptation,
we turn to output-side adaptation rather than input-
side. Overall, output-side adaptation can be viewed
as a post-processing of model outputs which uses
another function g(·) to process the model outputs,
and get the final scores q(x) = g(SM(T (x))). Dif-
ferent from input-side ones, output-side adaptation
is easy-to-optimize with gradient descent, and for
each sample, we only need to query the PTM once.

For DecT, as shown in Figure 2, we model the
post-processing as decoding, which refers to a
post-modification to the initial model predictions.
Specifically, we first query the PTM with prompt-
enclosed inputs to get model outputs, including
the scores for each class and hidden states. In-
tuitively, output scores contain prior knowledge
inside the PTM, so we retain them as part of the
final scores.Then, we tune an additional decoder
function on the hidden states to fit the training data
and make final predictions. Next, we describe how
we query the model and then specify the implemen-

tation of the score function.

3.3 Querying with Prompts
To get model outputs, we simply follow the proce-
dure in Section 2 and query the model with man-
ual template-wrapped inputs. We then process the
scores by calibration.

Calibration. As stated in Zhao et al. (2021),
PTMs tend to assign higher probabilities on those
frequent label words, leading to biased output
scores. To eliminate the prediction bias, we further
calibrate the output scores with empty input xc =“”
following (Zhao et al., 2021). Querying the model
with xc, we can obtain the calibaration scores sc
and normalize them by sc/mean(sc). Then we cal-
ibrate s by

ŝ = diag(sc/mean(sc))−1s. (1)

After that, the calibrated scores ŝ are balanced over
classes.

3.4 Tuning the Outputs
After getting the hidden states and calibrated scores,
we perform DecT outside the PTM to modify the
output scores fitting the training data. Denote the
final score on class k as q(x, k), we calculate it by
the following function:

q(x, k) = Dec(h, k) + λŝk, (2)

where Dec(·) is a trainable decoder function, λ is
a hyperparameter controlling the weight of PTM
scores and ŝk is the k-th logit in ŝ. By tuning
Dec(·), the final predictions incorporate training

15074

data on top of PTM outputs, which combine both
knowledge effectively.

The design choice of Dec(·) is fairly flexible.
In practice, we select Prototypical Networks (Pro-
toNet) (Snell et al., 2017) due to their simplicity
and remarkable performance in few-shot learning
and prompt-based tuning (Cui et al., 2022). For
this, we project the hidden states with a linear layer
parameterized by W and get sample representation

v = Wh. (3)

On prototypes, classical approaches model them
as points in the embedding space, which overlook
the different class characteristics. Inspired by Ding
et al. (2022a), we model prototypes as hyperspheres
with an additional radius parameter. Concretely,
the prototype for class k contains two parameters,
center position vector zk and radius scalar rk. We
randomly initialize zk and initialize rk as the av-
erage distance between zk and instances in class
k:

rk =
1

Nk

yi=k∑

i

‖vi − zk‖2. (4)

As for the score function, we calculate the Eu-
clidean distances between instances and proto-
types.

Dec(h, k) = −‖Wh− zk‖2 + rk. (5)

According to Eq. 2, the final logit is

q(x, k) = −‖Wh− zk‖2 + rk + λŝk. (6)

From a geometric view, the score function calcu-
lates the distance from instance x to the “surface”
of the prototype, where rk+λŝk is the whole radius
acting like the bias term. With the scores, we can
calculate the predicted probability by the Softmax
function:

P (y = k|x) = exp(q(x, k))
∑K

k′=1 exp(q(x, k
′))

, (7)

and we can optimize W and rk by the cross-
entropy loss

L = − 1

N

N∑

i=1

logP (yi|xi). (8)

4 Experiments

In this section, we first introduce the experimen-
tal settings (Section 4.1), then discuss the results
for few-shot experiments (Section 4.2), efficiency
comparison (Section 4.3), and experiment results
for more training data (Section 4.4).

4.1 Experimental Settings

Datasets. We conduct experiments on four typi-
cal natural language understanding tasks. For senti-
ment analysis, we select SST2 (Socher et al., 2013),
Yelp P. (Zhang et al., 2015) and IMDB (Maas et al.,
2011). For text classification, we use AG’s News,
Yahoo (Zhang et al., 2015) and DBPedia (Lehmann
et al., 2015). For natural language inference
(NLI), we adopt RTE (Dagan et al., 2005; Haim
et al., 2006; Giampiccolo et al., 2007; Bentivogli
et al., 2009), SNLI (Bowman et al., 2015) and
MNLI (Williams et al., 2018). For entity typing,
we experiment on FewNERD (Ding et al., 2021b).
We report dataset statistics in Appendix A.1.

Splits. We randomly sample n = 1, 4, 16 data
instances for each class from the training set for
few-shot learning, and sample same amount data
for validation. For datasets in GLUE (Wang et al.,
2019) (SST2, RTE, MNLI) and SNLI, we use the
original validation sets as test sets following Zhang
et al. (2021). For other datasets, we evaluate on
their original test sets.

Baselines. We compare with representative
MaaS PTM adaptation methods. Prompt refers
to directly performing zero-shot classification with
template-wrapped examples. In-context learning
(ICL) (Brown et al., 2020) further concatenates
some exemplars before the test samples. BBT (Sun
et al., 2022b) optimizes soft prompt tokens with
an evolutionary algorithm, and BBTv2 (Sun et al.,
2022a) further inserts deep prompts to intermediate
layers for better performance. RLPrompt (Deng
et al., 2022) is another recent algorithm that opti-
mizes discrete prompts with reinforcement learn-
ing. PromptBoosting (Hou et al., 2022) is a con-
current work that applies boosting algorithm for
prompt ensembling. We report the details of base-
lines in Appendix A.2.

Environments. For all experiments, we use
NVIDIA A100 and RTX 2080 Ti GPUs. We im-
plement DecT with PyTorch (Paszke et al., 2019),
HuggingFace Tansformers (Wolf et al., 2020), and
OpenPrompt (Ding et al., 2022b).

Implementation Details. For all methods, we
use the same RoBERTaLARGE (Liu et al., 2019) as
the backbone model. For DecT, we set the repre-
sentation dimension to 128 and optimize the param-
eters for 30 epochs with Adam optimizer (Kingma
and Ba, 2015). The learning rate is 0.01. On the

15075

n Method SST2 IMDB Yelp AG DB Yahoo RTE SNLI MNLI-m/mm NERD Avg.

0 Prompt 83.3 89.4 87.1 80.9 68.4 49.9 52.4 40.7 50.8/51.7 21.1 61.4

1

ICL 81.53.7 65.611.4 81.110.6 66.74.8 71.72.6 53.26.2 45.04.7 46.15.3 53.60.5/53.90.8 34.73.3 59.44.9
BBT 83.41.3 89.00.1 89.70.1 75.40.8 59.11.7 31.22.7 52.31.4 38.50.8 43.42.5/42.93.3 14.12.3 56.31.5
BBTv2 83.32.5 89.00.2 89.90.2 74.33.2 74.25.2 34.03.5 48.25.7 38.64.0 44.23.2/44.34.5 29.00.8 59.03.0
RLPrompt 63.56.3 65.06.5 66.36.9 72.54.5 65.65.5 38.15.8 53.85.3 36.53.0 40.32.0/41.02.1 14.51.8 50.64.7
PromptBoosting 86.72.6 82.46.1 88.72.5 58.711.8 73.04.8 23.77.0 50.05.9 43.56.1 36.81.6/36.32.3 22.00.8 54.74.6
DecT 90.80.2 91.20.3 94.80.1 79.91.1 78.80.9 55.20.8 56.02.7 47.74.1 52.22.7/53.33.0 35.71.5 66.91.6

4

ICL 60.39.8 80.46.6 77.414.6 65.15.4 71.76.5 49.99.9 42.73.9 42.13.2 44.75.9/45.26.0 31.74.8 55.67.0
BBT 84.51.2 89.80.9 90.20.6 79.02.1 67.73.5 42.90.6 48.44.0 40.51.3 41.21.7/40.72.0 19.41.5 58.61.8
BBTv2 86.62.2 89.40.6 90.30.5 79.12.1 89.01.7 46.01.4 46.22.3 40.84.3 44.00.9/44.81.6 31.91.4 62.61.7
RLPrompt 80.77.5 75.810.1 78.87.3 76.14.8 76.35.9 45.03.1 53.52.9 36.32.6 44.42.9/45.53.8 16.72.4 57.44.8
PromptBoosting 88.92.3 83.05.2 92.32.1 78.26.8 90.10.7 36.45.1 53.55.9 53.43.4 39.84.5/40.35.7 40.92.5 63.44.0
DecT 87.61.6 89.60.9 94.80.7 81.92.6 89.10.6 59.92.1 56.72.7 53.22.9 52.22.3/53.42.4 46.71.7 69.51.9

16

ICL 71.515.8 80.66.0 73.714.5 64.46.0 71.89.1 52.65.7 43.87.0 42.06.3 51.43.0/52.13.3 35.12.6 58.17.2
BBT 89.6b0.3 89.30.4 91.5b0.2 81.5b0.8 87.8b3.0 48.31.4 52.6b2.2 46.6b1.3 40.02.6/39.92.9 17.81.4 62.31.5
BBTv2 90.3a1.7 88.62.1 92.9a0.6 85.3a0.5 93.6a0.7 52.01.4 56.7a3.3 57.3a2.3 50.12.4/51.73.2 33.31.0 68.31.7
RLPrompt 87.02.6 87.62.4 95.1c1.0 80.2c0.7 80.83.3 48.12.2 54.32.8 41.15.0 43.33.9/44.34.5 17.51.4 61.82.7
PromptBoosting 87.6d3.0 86.23.1 94.71.0 85.2d0.9 95.00.5 46.62.4 60.0d5.5 61.3d3.5 52.5d1.5/50.45.1 52.12.6 70.12.6
DecT 91.00.5 91.00.9 95.40.3 86.40.4 94.60.5 64.20.7 59.71.8 60.50.8 55.31.3/56.81.5 53.51.8 73.51.0

Table 1: Experiment results for MaaS adaptation methods. Some baseline results are taken from corresponding
papers (aSun et al. (2022a), bSun et al. (2022b), cDeng et al. (2022), dHou et al. (2022)). We run other experiments
over 5 random seeds and report average accuracy and standard deviation (%). Best results are in bold.

selection of λ, we directly set λ = 1/n for most
datasets based on the intuition that λ should de-
crease as the amount of training data increases. On
MNLI and FewNERD, we tune λ on the valida-
tion set and select λ = 1 and λ = 1/16 respec-
tively. We give the templates and label words in
Appendix A.3.

4.2 Main Results

Table 1 presents the main few-shot learning results.
From the results, we have these observations:

Overall, DecT outperforms the state-of-the-
art baseline methods by a large margin (more
than 3% on average), especially under extreme
data scarcity, showing its superior performance.
Across different tasks, DecT and baselines obtain
similar results on some easy sentiment analysis
and topic classification tasks, but we highlight that
DecT is much more favorable on difficult datasets,
such as Yahoo and FewNERD. While other base-
line methods struggle to optimize well, DecT sur-
passes them significantly (about 10% on Yahoo and
20% on FewNERD under 16-shot setting compared
with BBTv2 and ICL).

On stability, DecT also has consistently low
variance and some baselines (ICL, RLPrompt and
PromptBoosting) are unstable. Given the difficulty
of few-shot PTM adaptation, it is of great signifi-
cance that the adaptation method is robust to ran-
dom seeds.

On baselines, optimization-free methods, i.e.

Method Tr. Time (s) # Query # Param. (K)

ICL 0 0 0
BBT 10,512 8,000 0.5
BBTv2 9,856 8,000 12
RLPrompt 65,579 12,000 3,100
PromptBoosting 644 10 0.4
DecT 3 1 130

Table 2: Efficiency comparison of MaaS adaptation
methods. Training time is the average wall clock time
measured in the 16-shot setting. “Tr.” stands for Train-
ing and “Param.” stands for Parameter.

zero-shot prompt and ICL are strong baselines.
However, as shown in the table, ICL gives the
best results in the 1-shot setting, and it can hardly
improve with more training data due to the input
length restriction. To compare, merely optimiz-
ing the input prompts (BBT and RLPrompt) can
hardly outperform them, showing the limitation of
input-side prompt optimization. In contrast, two
other baselines, BBTv2 and PromptBoosting, are
more powerful because they either inserts addi-
tional learnable prompt tokens inside the PTM or
ensembles the outputs of different prompts. With
the superior results of DecT, we argue that output-
side optimization is a promising way for MaaS
PTM adaptation.

4.3 Efficiency Comparison

Despite the superior performance, another major
advantage of DecT is its high efficiency. In Fig-

15076

n Method SST2 IMDB Yelp AG DB Yahoo RTE SNLI MNLI-m/mm NERD Avg.

64
Fine-tuning† 92.51.9 86.33.8 94.51.4 87.40.6 98.20.2 69.00.7 67.73.2 66.66.4 65.62.9/67.74.0 67.60.8 78.52.4
DecT 92.40.5 91.30.5 94.90.5 89.20.3 97.00.1 69.30.4 65.71.7 67.21.0 62.01.4/63.31.3 56.10.8 77.10.8

256
Fine-tuning† 92.00.9 92.10.2 94.30.3 89.60.3 98.50.2 70.20.4 79.81.0 84.40.4 77.20.2/78.70.3 71.40.5 84.40.4
DecT 92.70.2 92.10.1 95.60.1 90.30.1 97.40.1 71.30.1 69.21.0 69.70.4 68.00.3/69.40.3 56.20.3 79.30.3

Table 3: Experiment results for more training data. We run all experiments over 5 random seeds and report the
average accuracy and standard deviation (%). †: Update model parameters.

ure 1, we plot average accuracy versus training time
for each method under different shots. We also
provide detailed statistics of training time, query
numbers, and parameter numbers for 16-shot ex-
periments in Table 2.

From Figure 1 and Table 2, we clearly see that
DecT can be optimized quickly and only requires
one model query per training sample, which is
about 200×faster and queries 10×fewer than all
prompt optimization methods. For BBT, BBTv2,
and RLPrompt, users have to query the model near
104 times and spend several hours for sufficient
optimization even in the few-shot scenario. When
the inference API is not for free such as OpenAI
API 2, using these methods would be expensive,
and this further burdens their usage in the scenarios
of rich data and large models.

In terms of tunable parameters, DecT demands
130K additional parameters for the linear projection
layer, which is less than 0.04% of RoBERTaLARGE
(355M) that largely saves storage space. Although
some other methods (BBT, BBTv2 and Prompt-
Boosting) require fewer parameters, DecT is much
easier to optimize.

4.4 Beyond Few-shot

As shown in Section 4.3, the simple architecture
and high efficiency enable DecT to scale on more
training data, while baseline methods struggle to
finish training within acceptable time limits. To
explore the scalability of DecT beyond the few-shot
setting, we conduct experiments with increased
training data (n = 64 and 256). For reference,
we compare DecT with fine-tuning, the strongest
baseline which update full model parameters.

The detailed results are presented in Figure 1
and Table 3 and we have the following conclusions.
(1) DecT continually improves its performance on
more training data at a low cost. The average ac-
curacy gains 6% from 16-shot to 256-shot while
the average training time is less than 100 seconds.

2https://openai.com/api/

(2) Compared with fine-tuning, DecT is even on
par with it in the 64-shot scenario and gradually
falls behind in the 256-shot setting, which is reason-
able as we only tune a small portion of parameters
outside the model. Through further task-level ob-
servation, we find DecT still performs well on sen-
timent analysis and topic classification, but cannot
catch up with fine-tuning on NLI and entity typing,
which are identified as harder tasks as they require
complex reasoning or fine-grained semantic under-
standing. (3) In experiments, we find fine-tuning is
more sensitive to random seeds in the few-shot set-
ting due to the huge amount of trainable parameters
and relatively few loss signals, which is evidenced
by the high variance in the 64-shot setting. In such
scenario, DecT has lower variances due to most
parameters are frozen. Therefore, the stability ad-
vantage of DecT has been verified again.

To conclude, we take the first step to applying
MaaS methods beyond few-shot learning. The
results show that DecT is competitive against
fine-tuning on regular classification tasks, but is
limited on difficult tasks. How to adapt PTMs on
challenging tasks without parameter updates still
needs further exploration.

5 Analysis

In addition to main experiments, we further pro-
vide more analytical experiments for understand-
ing DecT. We conduct ablation study on several
components in Section 5.1. Then we evaluate the
scaling effect (Section 5.2), the impact of hyperpa-
rameter λ (Section 5.3) and templates (Section 5.4)
respectively. We further conduct transferability ex-
periments in Appendix B.

5.1 Ablation Study

To validate each component of our proposed DecT,
especially the effect of model scores s, radius pa-
rameter r, and ProtoNet, we conduct extensive ab-
lation studies. We present results in Table 4 and
Figure 4.

15077

s r
Average Accuracy

1 4 16

� � 54.06.3 66.32.5 73.01.2
� � 64.82.6 69.31.7 73.51.0
� � 54.06.2 67.22.0 73.01.1
� � 66.91.6 69.51.9 73.51.0

Table 4: Ablation study of model scores s and radius
parameter r. We run each experiment over 5 random
seeds and report average accuracy and standard devia-
tion (%). Best results are in bold.

Figure 3: Comparison between ProtoNet and MLP. We
report the average accuracy (%) and standard deviation.

Ablating model scores. Apparently, model
scores contribute largely to the few-shot perfor-
mance of DecT, especially when the training data
is extremely scarce (1-shot), which illustrates that
model scores contain beneficial prior model knowl-
edge for language understanding. Also, incorporat-
ing training data reduces the variance. When there
are more training data, model scores bring less
enhancement, which is reasonable as the relative
weights of model and ProtoNet scores change.

Ablating radius. Meanwhile, the radius is also
helpful under low-shot scenarios, which character-
izes the difference across classes. But as the num-
ber of training data increases, ProtoNet dominates
model predictions and the impact of r is weakened
as well.

Ablating decoder. As stated previously, the de-
sign choice of the decoder function is flexible.
We replace ProtoNet with a two-layer MLP and
evaluate the performance. In Figure 3 we can
see that ProtoNet significantly outperforms MLP
in the 1-shot setting, which matches the advan-
tages of ProtoNet in the few-shot setting. In 4-
shot and 16-shot experiments, ProtoNet still gets
higher scores, but with smaller margins. On stabil-

ity, ProtoNet achieves consistently lower standard
deviation scores, which serve as another advantage.
Overall, we find ProtoNet is a vital component in
DecT, and simply replacing it with MLP would
worsen the performance.

5.2 Model Scaling

In this section, we explore how DecT applies to
PTMs with different architecture and scales.
We select T5 (Raffel et al., 2020), an encoder-
decoder PTM, at different scales, from T5Small,
T5Base, T5Large to T53B. Table 5 presents the
full results of T5 models. First of all, DecT has
been successfully deployed on T5, a generative
language model, which verifies its transferability
across PTMs. Furthermore, we can observe an
apparent trend of the scaling effect where larger
models consistently perform better.
We also evaluate the DecT on CPM-Bee3, which is
a bilingual generative pre-trained language model
with 10B parameters. Table 6 presents the results
of CPM-Bee in different settings. The results show
that DecT strongly enhances the adaptation of large
PLM on downstream tasks. Moreover, CPM-Bee
achieves great performance on NLI tasks, which
flags that DecT could deal with more difficult tasks
with powerful backbone models.

5.3 Impact of λ

As a hyperparameter, λ controls the relative impor-
tance of model scores and prototype scores. Here
we examine its impact on AG’s News and SST2.
In Figure 4, we can observe that: (1) λ largely af-
fects DecT in the 1-shot settings. As λ increases,
DecT gradually performs better and stabler, which
illustrates the importance of model knowledge in
this case. (2) With the shot number increases, the
impact of varying λ is weakened, and the best prac-
tices become smaller. These observations validate
our selection strategy in Section 4.1, which effec-
tively balances model and data knowledge.

5.4 Impact of Templates

Although DecT is an output-side adaptation
method, the choice of templates also affects the
final performance. To assess the influence of tem-
plates, we conduct experiments on AG’s News and
SST2 and show results in Table 7. Overall, DecT
does not rely much on templates. While different
templates may induce fluctuant zero-shot perfor-

3https://live.openbmb.org/models/bee

15078

Model SST2 IMDB Yelp AG DB Yahoo RTE SNLI MNLI-m/mm NERD Avg.

T5Small 73.41.8 68.82.1 79.51.4 79.10.6 76.80.7 57.50.7 51.90.8 38.72.1 38.60.4/39.00.3 35.11.9 58.01.2
T5Base 83.81.1 86.30.9 91.50.6 84.30.6 93.50.4 61.10.8 54.01.6 44.91.6 47.80.6/49.40.7 50.23.0 67.91.1
T5Large 92.30.4 92.00.4 94.41.3 85.50.8 94.90.3 63.60.9 55.92.3 49.51.9 49.71.4/50.81.9 53.21.6 71.11.2
T53B 89.90.4 92.70.7 94.92.0 87.70.8 96.20.3 66.50.7 55.82.2 52.01.9 52.81.6/52.22.1 51.91.4 72.11.3

Table 5: Experiment results (16-shot) for our method on different versions of T5 (Raffel et al., 2020). We run each
experiment over 5 random seeds and report average accuracy and standard deviation (%).

Shot SST2 IMDB Yelp AG DB Yahoo RTE SNLI MNLI-m/mm NERD Avg.

0 80.5 89.1 96.6 74.6 71.3 46.7 84.1 45.4 45.6/45.6 1.6 61.9
4 91.2 96.5 97.8 80.5 81.1 56.5 82.2 77.8 66.0/66.5 52.9 77.2
16 92.7 96.2 97.5 85.5 89.8 65.2 86.0 86.4 76.3/76.3 54.6 82.4
64 94.3 96.5 98.3 88.5 93.5 68.7 87.1 88.9 78.0/79.0 59.8 84.8
256 94.5 96.7 98.4 89.7 94.2 69.9 87.7 89.4 81.7/80.6 59.1 85.6

Table 6: Experiment results for our method on CPM-Bee. We run each experiment over 5 random seeds and report
average accuracy (%).

Figure 4: Accuracy (%) with 85% confidence interval
on 5 runs for different λ on AG’s News and SST2.

mance, DecT largely moderates the gaps between
them. Additionally, we try two templates searched
from RLPrompt (Deng et al., 2022) and they both
achieve satisfying results. On SST2, the template
from RLPrompt is even better than manually de-
signed ones. Therefore, we highlight that DecT
is complementary with input-side adaptation al-
gorithms, and they can work together for better
performance.

6 Related Work

Our work explores how to efficiently adapt large
PTMs. In this section, we review three lines of
research for prompt-based tuning (data efficiency),
parameter-efficient tuning (parameter efficiency),
and MaaS adaptation methods respectively.

6.1 Prompt-based Tuning

Prompt-based tuning aims to bridge the gap be-
tween pre-training and downstream tasks for data-

Template Prompt DecT

SST2

x In summary, it was [MASK]. 83.3 91.0
x It was [MASK]. 73.3 88.4
x AgentMediaGrade
Officials Grade [MASK].c

90.4 92.2

AG’s News

[Topic : [MASK]] x 80.9 86.4
[Category : [MASK]] x 78.6 86.8
[MASK] Alert Blog Dialogue
Diary Accountability x c 78.8 86.0

Table 7: Accuracy of prompt (zero-shot) and DecT (16-
shot) across different templates. Templates marked with
c are taken from Deng et al. (2022).

efficient model adaptation. The major practice for
prompt-based tuning (Liu et al., 2021) is wrapping
text pieces into human-designed templates. By this
means, prompt-based tuning converts downstream
tasks to pre-training tasks (e.g. masked language
modeling) and greatly enhances the zero/few-shot
learning ability of PTMs. Prompt-based tuning
is first applied in knowledge probing (Trinh and
Le, 2018; Petroni et al., 2019), and it has been
adopted broadly in NLP (Schick and Schütze, 2021;
Hu et al., 2022b; Ding et al., 2021a; Han et al.,
2021; Cui et al., 2022). Despite manually designed
prompts, other works also investigate automatic
and learnable prompts (Shin et al., 2020; Gao et al.,
2021; Hambardzumyan et al., 2021; Schick et al.,

15079

2020; Lester et al., 2021) to alleviate the prompt
engineering efforts. However, the optimization of
prompts is a non-trivial problem (Ding et al., 2022c;
Lester et al., 2021) which sometimes leads to more
computation costs and suboptimal performance.
Thus in our work, we adopt manual prompts to
stimulate model knowledge and help data-efficient
model adaptation.

6.2 Parameter-efficient Tuning

Another line of work explores tuning a small
fraction of model parameters to reduce compu-
tation and storage budgets, namely parameter-
efficient tuning (PET) (Ding et al., 2022c). Typ-
ical PET methods include inserting tunable mod-
ules (Houlsby et al., 2019; Li and Liang, 2021; Hu
et al., 2022a), adding soft prompt tokens (Lester
et al., 2021) and specifying certain parameters (Za-
ken et al., 2022). Although PET methods achieve
remarkable performance with few parameter up-
dates, they still require model gradients, which are
unavailable in the MaaS setting.

6.3 MaaS Adaptation

With inference-only APIs, there are also works that
adapt models without tuning any model parameters.
Brown et al. (2020) present in-context learning,
which concatenates test inputs with several exem-
plars. Further improvements focus on reliving the
instability issues caused by model biases (Zhao
et al., 2021; Han et al., 2022) and examplar or-
ders (Lu et al., 2022). PromptBoosting (Hou et al.,
2022) employs boosting algorithm for prompt en-
sembling, giving strong performance. Other ap-
proaches try to optimize prompts with either black-
box optimization methods (Sun et al., 2022a,b) or
reinforcement learning (Deng et al., 2022). How-
ever, due to the lack of gradient signals, they need
thousands of model queries, resulting in high costs
when the model is large and API calls are not for
free. Different from the abovementioned methods,
we adapt models at the output side, which need not
optimize the distant input prompts. We demand
only one API call for each training sample and
achieve better results across tasks.

7 Conclusion

In this paper, we present DecT, which performs
both data and parameter-efficient adaptation with
off-shelf PTMs. By fusing prior model knowledge
and posterior data knowledge, DecT achieves su-

perior performance on ten language understanding
tasks. Meanwhile, DecT exceeds existing baselines
by three orders of magnitude in terms of training
time and the number of queries, highlighting its
advantages in real-world deployment. In future
works, we are eager to explore how to combine
input and output-side adaptation methods for better
PTM adaptation, and how to extend this line of
research to more challenging scenarios.

Limitation

DecT explores how to adapt black-box PTMs on
downstream tasks. As we show in Section 4.4, our
method is not comparable to fine-tuning on hard
tasks with increased data points. Moreover, we
only focus on classification tasks in this work and
do not testify DecT on free-form generation tasks.
In the future, we will work toward more general
MaaS adaptation strategies across tasks.

Ethical Statement

As large language models are getting more and
more popular in NLP research and application,
DecT provides a cost-efficient way to adapt these
large models. However, we need also to be cau-
tious about the improper adaptation of large lan-
guage models, such as generating toxic and biased
speeches.

Acknowledgements

This work is supported by the National Key R&D
Program of China (No.2022ZD0116312), Institute
Guo Qiang at Tsinghua University and sponsored
by Tsinghua-Toyota Joint Research Fund.

Ganqu Cui made the original research proposal
and wrote the paper. Ganqu Cui and Wentao Li
conducted experiments. Ning Ding revised the
paper and participated in the discussion. Longtao
Huang, Zhiyuan Liu and Maosong Sun advised the
project.

References
Luisa Bentivogli, Peter Clark, Ido Dagan, and Danilo

Giampiccolo. 2009. The fifth pascal recognizing
textual entailment challenge. In TAC.

Samuel R. Bowman, Gabor Angeli, Christopher Potts,
and Christopher D. Manning. 2015. A large anno-
tated corpus for learning natural language inference.
In Proceedings of EMNLP.

15080

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu,
Clemens Winter, Christopher Hesse, Mark Chen, Eric
Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess,
Jack Clark, Christopher Berner, Sam McCandlish,
Alec Radford, Ilya Sutskever, and Dario Amodei.
2020. Language models are few-shot learners. In
Proceedings of NeurIPS.

Ganqu Cui, Shengding Hu, Ning Ding, Longtao Huang,
and Zhiyuan Liu. 2022. Prototypical verbalizer for
prompt-based few-shot tuning. In Proceedings of
ACL.

Ido Dagan, Oren Glickman, and Bernardo Magnini.
2005. The pascal recognising textual entailment chal-
lenge. In Machine learning challenges workshop.

Mingkai Deng, Jianyu Wang, Cheng-Ping Hsieh, Yihan
Wang, Han Guo, Tianmin Shu, Meng Song, Eric P
Xing, and Zhiting Hu. 2022. Rlprompt: Optimizing
discrete text prompts with reinforcement learning. In
Proceedings of EMNLP.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of NAACL-HLT.

Ning Ding, Yulin Chen, Ganqu Cui, Xiaobin Wang, Hai-
Tao Zheng, Zhiyuan Liu, and Pengjun Xie. 2022a.
Few-shot classification with hypersphere modeling
of prototypes. arXiv preprint arXiv:2211.05319.

Ning Ding, Yulin Chen, Xu Han, Guangwei Xu,
Pengjun Xie, Hai-Tao Zheng, Zhiyuan Liu, Juanzi
Li, and Hong-Gee Kim. 2021a. Prompt-learning
for fine-grained entity typing. arXiv preprint
arXiv:2108.10604.

Ning Ding, Shengding Hu, Weilin Zhao, Yulin Chen,
Zhiyuan Liu, Hai-Tao Zheng, and Maosong Sun.
2022b. Openprompt: An open-source framework
for prompt-learning. In Proceedings of ACL.

Ning Ding, Yujia Qin, Guang Yang, Fuchao Wei, Zong-
han Yang, Yusheng Su, Shengding Hu, Yulin Chen,
Chi-Min Chan, Weize Chen, Jing Yi, Weilin Zhao,
Zhiyuan Liu, Hai-Tao Zheng, Jianfei Chen, Yang Liu,
Jie Tang, Juanzi Li, and Maosong Sun. 2022c. Delta
tuning: A comprehensive study of parameter efficient
methods for pre-trained language models. In arXiv.

Ning Ding, Guangwei Xu, Yulin Chen, Xiaobin Wang,
Xu Han, Pengjun Xie, Haitao Zheng, and Zhiyuan
Liu. 2021b. Few-nerd: A few-shot named entity
recognition dataset. In Proceedings of ACL, pages
3198–3213.

Tianyu Gao, Adam Fisch, and Danqi Chen. 2021.
Making pre-trained language models better few-shot
learners. In Proceedings of ACL, pages 3816–3830.

Danilo Giampiccolo, Bernardo Magnini, Ido Dagan, and
William B Dolan. 2007. The third pascal recognizing
textual entailment challenge. In Proceedings of the
ACL-PASCAL workshop on textual entailment and
paraphrasing.

R Bar Haim, Ido Dagan, Bill Dolan, Lisa Ferro, Danilo
Giampiccolo, Bernardo Magnini, and Idan Szpektor.
2006. The second pascal recognising textual entail-
ment challenge. In Proceedings of the Second PAS-
CAL Challenges Workshop on Recognising Textual
Entailment, volume 7.

Karen Hambardzumyan, Hrant Khachatrian, and
Jonathan May. 2021. WARP: word-level adversar-
ial reprogramming. In Proceedings of ACL, pages
4921–4933.

Xu Han, Weilin Zhao, Ning Ding, Zhiyuan Liu,
and Maosong Sun. 2021. Ptr: Prompt tuning
with rules for text classification. arXiv preprint
arXiv:2105.11259.

Zhixiong Han, Yaru Hao, Li Dong, Yutao Sun, and
Furu Wei. 2022. Prototypical calibration for few-
shot learning of language models. arXiv preprint
arXiv:2205.10183.

Nikolaus Hansen and Andreas Ostermeier. 2001. Com-
pletely derandomized self-adaptation in evolution
strategies. Evolutionary computation, 9(2):159–195.

Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long
short-term memory. Neural computation, 9(8):1735–
1780.

Bairu Hou, Joe O’Connor, Jacob Andreas, Shiyu Chang,
and Yang Zhang. 2022. Promptboosting: Black-box
text classification with ten forward passes. arXiv
preprint arXiv:2212.09257.

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski,
Bruna Morrone, Quentin de Laroussilhe, Andrea Ges-
mundo, Mona Attariyan, and Sylvain Gelly. 2019.
Parameter-efficient transfer learning for NLP. In Pro-
ceedings of ICML.

Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and
Weizhu Chen. 2022a. Lora: Low-rank adaptation of
large language models. In Proceedings of ICLR.

Shengding Hu, Ning Ding, Huadong Wang, Zhiyuan
Liu, Juanzi Li, and Maosong Sun. 2022b. Knowl-
edgeable prompt-tuning: Incorporating knowledge
into prompt verbalizer for text classification. In Pro-
ceedings of ACL.

Diederik P. Kingma and Jimmy Ba. 2015. Adam: A
method for stochastic optimization. In Proceedings
of ICLR.

Jens Lehmann, Robert Isele, Max Jakob, Anja Jentzsch,
Dimitris Kontokostas, Pablo N Mendes, Sebastian
Hellmann, Mohamed Morsey, Patrick Van Kleef,

15081

Sören Auer, et al. 2015. Dbpedia–a large-scale, mul-
tilingual knowledge base extracted from wikipedia.
Semantic web, 6(2):167–195.

Brian Lester, Rami Al-Rfou, and Noah Constant. 2021.
The power of scale for parameter-efficient prompt
tuning. In Proceedings of EMNLP.

Quentin Lhoest, Albert Villanova del Moral, Yacine
Jernite, Abhishek Thakur, Patrick von Platen, Suraj
Patil, Julien Chaumond, Mariama Drame, Julien Plu,
Lewis Tunstall, Joe Davison, Mario Šaško, Gun-
jan Chhablani, Bhavitvya Malik, Simon Brandeis,
Teven Le Scao, Victor Sanh, Canwen Xu, Nicolas
Patry, Angelina McMillan-Major, Philipp Schmid,
Sylvain Gugger, Clément Delangue, Théo Matus-
sière, Lysandre Debut, Stas Bekman, Pierric Cis-
tac, Thibault Goehringer, Victor Mustar, François
Lagunas, Alexander Rush, and Thomas Wolf. 2021.
Datasets: A community library for natural language
processing. In Proceedings of the 2021 Conference
on Empirical Methods in Natural Language Process-
ing: System Demonstrations.

Xiang Lisa Li and Percy Liang. 2021. Prefix-tuning:
Optimizing continuous prompts for generation. In
Proceedings of ACL-IJCNLP.

Pengfei Liu, Weizhe Yuan, Jinlan Fu, Zhengbao Jiang,
Hiroaki Hayashi, and Graham Neubig. 2021. Pre-
train, prompt, and predict: A systematic survey of
prompting methods in natural language processing.
ACM Computing Surveys.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach. arXiv preprint arXiv:1907.11692.

Ilya Loshchilov and Frank Hutter. 2019. Decoupled
weight decay regularization. In Proceedings of ICLR.

Yao Lu, Max Bartolo, Alastair Moore, Sebastian Riedel,
and Pontus Stenetorp. 2022. Fantastically ordered
prompts and where to find them: Overcoming few-
shot prompt order sensitivity. In Proceedings of ACL.

Andrew Maas, Raymond E Daly, Peter T Pham, Dan
Huang, Andrew Y Ng, and Christopher Potts. 2011.
Learning word vectors for sentiment analysis. In
Proceedings of ACL.

Adam Paszke, Sam Gross, Francisco Massa, Adam
Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca
Antiga, Alban Desmaison, Andreas Köpf, Edward Z.
Yang, Zachary DeVito, Martin Raison, Alykhan Te-
jani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang,
Junjie Bai, and Soumith Chintala. 2019. Pytorch: An
imperative style, high-performance deep learning li-
brary. In Proceedings of NeurIPS, pages 8024–8035.

Fabio Petroni, Tim Rocktäschel, Sebastian Riedel,
Patrick S. H. Lewis, Anton Bakhtin, Yuxiang Wu,
and Alexander H. Miller. 2019. Language models

as knowledge bases? In Proceedings of EMNLP-
IJCNLP.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, Ilya Sutskever, et al. 2019. Language
models are unsupervised multitask learners. OpenAI
blog, 1(8):9.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, Peter J Liu, et al. 2020. Exploring the limits
of transfer learning with a unified text-to-text trans-
former. J. Mach. Learn. Res., 21(140):1–67.

Timo Schick, Helmut Schmid, and Hinrich Schütze.
2020. Automatically identifying words that can serve
as labels for few-shot text classification. In Proceed-
ings of COLING.

Timo Schick and Hinrich Schütze. 2021. Exploiting
cloze-questions for few-shot text classification and
natural language inference. In Proceedings of EACL.

Taylor Shin, Yasaman Razeghi, Robert L. Logan IV,
Eric Wallace, and Sameer Singh. 2020. Autoprompt:
Eliciting knowledge from language models with au-
tomatically generated prompts. In Proceedings of
EMNLP.

Jake Snell, Kevin Swersky, and Richard S. Zemel. 2017.
Prototypical networks for few-shot learning. In Pro-
ceedings of NIPS.

Richard Socher, Alex Perelygin, Jean Wu, Jason
Chuang, Christopher D Manning, Andrew Y Ng, and
Christopher Potts. 2013. Recursive deep models for
semantic compositionality over a sentiment treebank.
In Proceedings of EMNLP.

Tianxiang Sun, Zhengfu He, Hong Qian, Yunhua Zhou,
Xuanjing Huang, and Xipeng Qiu. 2022a. BBTv2:
Towards a gradient-free future with large language
models. In Proceedings of EMNLP.

Tianxiang Sun, Yunfan Shao, Hong Qian, Xuanjing
Huang, and Xipeng Qiu. 2022b. Black-box tuning
for language-model-as-a-service. In Proceedings of
ICML.

Trieu H Trinh and Quoc V Le. 2018. A simple
method for commonsense reasoning. arXiv preprint
arXiv:1806.02847.

Alex Wang, Amanpreet Singh, Julian Michael, Felix
Hill, Omer Levy, and Samuel R. Bowman. 2019.
GLUE: A multi-task benchmark and analysis plat-
form for natural language understanding. In Proceed-
ings of ICLR.

Adina Williams, Nikita Nangia, and Samuel R. Bow-
man. 2018. A broad-coverage challenge corpus for
sentence understanding through inference. In Pro-
ceedings of NAACL-HLT.

15082

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Remi Louf, Morgan Funtowicz,
Joe Davison, Sam Shleifer, Patrick von Platen, Clara
Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven
Le Scao, Sylvain Gugger, Mariama Drame, Quentin
Lhoest, and Alexander Rush. 2020. Transformers:
State-of-the-art natural language processing. In Pro-
ceedings of EMNLP, pages 38–45, Online.

Elad Ben Zaken, Yoav Goldberg, and Shauli Ravfogel.
2022. Bitfit: Simple parameter-efficient fine-tuning
for transformer-based masked language-models. In
Proceedings of ACL.

Tianyi Zhang, Felix Wu, Arzoo Katiyar, Kilian Q Wein-
berger, and Yoav Artzi. 2021. Revisiting few-sample
bert fine-tuning. In Proceedings of ICLR.

Xiang Zhang, Junbo Zhao, and Yann LeCun. 2015.
Character-level convolutional networks for text clas-
sification. In Proceedings of NIPS.

Zihao Zhao, Eric Wallace, Shi Feng, Dan Klein, and
Sameer Singh. 2021. Calibrate before use: Improv-
ing few-shot performance of language models. In
Proceedings of ICML.

15083

A Experiment Details

A.1 Dataset Statistics

We provide dataset statistics in Table 8. We obtain
AG’s News, Yahoo, and Yelp P. from https://
github.com/zhangxiangxiao/Crepe un-
der the BSD-3-Clause license. We get FewN-
ERD from https://ningding97.github.
io/fewnerd/ with CC BY-SA 4.0 license.
Other datasets are downloaded using Huggingface
Datasets (Lhoest et al., 2021).

Task Dataset # Class # Test

Sentiment
Analysis

SST2 2 872
Yelp 2 38,000

IMDB 2 25,000

Topic
Classification

AG’s News 4 7,600
Yahoo 10 60,000

DBPedia 14 70,000

NLI
RTE 2 277
SNLI 3 9,842

MNLI-m/mm 3 9,815/9,832

Entity Typing FewNERD 66 96,853

Table 8: The dataset information of our experiments. #
Class column represents the number of classes, # Test
column represents the number of examples for testing.

A.2 Baselines

In-context Learning (ICL). To guarantee mean-
ingful results, we randomly permute the demonstra-
tions and prepend them before input prompts. Due
to the input length limit, we truncate the demon-
strations which exceed input length.

BBT and BBTv2. We reproduce BBT and
BBTv2 using the official codes4. For datasets
adopted in their work, we follow the original imple-
mentations including templates, label words, and
hyperparameters. For other datasets, we reproduce
with our templates, label words, and default hyper-
parameters. We take existing 16-shot experiment
results from the paper and run other experiments
with 5 random seeds for a fair comparison.

RLPrompt. We also use the official codes5 for re-
production and take some experiment results from
their original paper. It is worth noting that RL-
Prompt adopts the test set of SST2 and we use the

4https://github.com/txsun1997/
Black-Box-Tuning

5https://github.com/mingkaid/rl-prompt

Figure 5: Accuracy heatmap of DecT transferred across
different sentiment analysis tasks under 16-shot setting.
The backbone model is RoBERTaLARGE

validation set, so we report the reproduced results
on the SST2 validation set.

PromptBoosting. We follow the official codes6

for reproduction. Since the number of additional
parameters is related to number of classes, we com-
pute the average numbers across datasets.

Fine-tuning. We adopt prompt-based fine-tuning
which uses the same templates and label words
with DecT. We tune the whole model for 5 epochs
with AdamW optimizer (Loshchilov and Hutter,
2019) using a 3× 10−5 learning rate.

A.3 Templates and Label Words
We report the used prompt templates and label
words in Table 9. Most of them are taken from
OpenPrompt (Ding et al., 2022b).

B Transferability

We conduct transferability experiments on senti-
ment analysis and present the results in Figure 5.
We see that DecT is highly transferable across
datasets. On SST2 and IMDB, DecT trained on
other datasets even surpasses the original perfor-
mance. More surprisingly, we find DecT trained
on Yelp, a restaurant review dataset, performs best
on SST2 and IMDB, which are two movie review
datasets. This result further shows the great domain
generalization ability of DecT.

6https://github.com/UCSB-NLP-Chang/
PromptBoosting

15084

Dataset Template Label Words

SST2
x In summary, it was [MASK]. bad, greatYelp

IMDB

AG’s News [Topic : [MASK]] x
politics, sports,
business, technology

Yahoo [Topic : [MASK]] x
society, science, health, education,
computers, sports, business,
entertainment, family, politics

DBPedia x1 x2 The category of x1 is [MASK].

company, school, artist, athlete,
politics, transportation, building,
river, village, animal, plant,
album, film, book

RTE
x1 ? [MASK], x2

No, Yes
SNLI No, Maybe, Yes
MNLI-m/mm No, Maybe, Yes

FewNERD x [ENT] is [MASK].

actor, director, artist, athlete, politician,
scholar, soldier, person, show, religion,
company, team, school, government, media,
party, sports, organization, geopolitical, road,
water, park, mountain, island, location,
software, food, game, ship, train, plane, car,
weapon, product, theater, facility, airport,
hospital, library, hotel, restaurant, building,
championships, attack, disaster, election,
protest, event, music, written, film,
painting, broadcast, art, biology, chemical,
living, astronomy, god, law, award, disease,
medical, language, currency, educational

Table 9: The templates and label words used in our experiments. For each dataset, x, x1, and x2 represent the input
sentences or sentence pairs. [ENT] copies the entity mentioned in the input sentence.

15085

ACL 2023 Responsible NLP Checklist

A For every submission:
�3 A1. Did you describe the limitations of your work?

In the last section

� A2. Did you discuss any potential risks of your work?
Not applicable. Left blank.

�3 A3. Do the abstract and introduction summarize the paper’s main claims?
Left blank.

�7 A4. Have you used AI writing assistants when working on this paper?
Left blank.

B �3 Did you use or create scientific artifacts?
In experiments we use datasets

�3 B1. Did you cite the creators of artifacts you used?
Section 4.1

�3 B2. Did you discuss the license or terms for use and / or distribution of any artifacts?
Appendix A.1

�3 B3. Did you discuss if your use of existing artifact(s) was consistent with their intended use, provided
that it was specified? For the artifacts you create, do you specify intended use and whether that is
compatible with the original access conditions (in particular, derivatives of data accessed for research
purposes should not be used outside of research contexts)?
Section 4.1

� B4. Did you discuss the steps taken to check whether the data that was collected / used contains any
information that names or uniquely identifies individual people or offensive content, and the steps
taken to protect / anonymize it?
Not applicable. Left blank.

� B5. Did you provide documentation of the artifacts, e.g., coverage of domains, languages, and
linguistic phenomena, demographic groups represented, etc.?
Not applicable. Left blank.

�3 B6. Did you report relevant statistics like the number of examples, details of train / test / dev splits,
etc. for the data that you used / created? Even for commonly-used benchmark datasets, include the
number of examples in train / validation / test splits, as these provide necessary context for a reader
to understand experimental results. For example, small differences in accuracy on large test sets may
be significant, while on small test sets they may not be.
Appendix A.1

C �3 Did you run computational experiments?
Section 4

�3 C1. Did you report the number of parameters in the models used, the total computational budget
(e.g., GPU hours), and computing infrastructure used?
Section 4

The Responsible NLP Checklist used at ACL 2023 is adopted from NAACL 2022, with the addition of a question on AI writing
assistance.

15086

https://2023.aclweb.org/
https://2022.naacl.org/blog/responsible-nlp-research-checklist/
https://2023.aclweb.org/blog/ACL-2023-policy/
https://2023.aclweb.org/blog/ACL-2023-policy/

�3 C2. Did you discuss the experimental setup, including hyperparameter search and best-found
hyperparameter values?
Section 4.1

�3 C3. Did you report descriptive statistics about your results (e.g., error bars around results, summary
statistics from sets of experiments), and is it transparent whether you are reporting the max, mean,
etc. or just a single run?
Section 4

�3 C4. If you used existing packages (e.g., for preprocessing, for normalization, or for evaluation), did
you report the implementation, model, and parameter settings used (e.g., NLTK, Spacy, ROUGE,
etc.)?
Section 4.1

D �7 Did you use human annotators (e.g., crowdworkers) or research with human participants?
Left blank.

� D1. Did you report the full text of instructions given to participants, including e.g., screenshots,
disclaimers of any risks to participants or annotators, etc.?
No response.

� D2. Did you report information about how you recruited (e.g., crowdsourcing platform, students)
and paid participants, and discuss if such payment is adequate given the participants’ demographic
(e.g., country of residence)?
No response.

� D3. Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? For example, if you collected data via crowdsourcing, did your instructions to
crowdworkers explain how the data would be used?
No response.

� D4. Was the data collection protocol approved (or determined exempt) by an ethics review board?
No response.

� D5. Did you report the basic demographic and geographic characteristics of the annotator population
that is the source of the data?
No response.

15087

