
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics
Volume 1: Long Papers, pages 15109–15126

July 9-14, 2023 ©2023 Association for Computational Linguistics

CREST: A Joint Framework for Rationalization and
Counterfactual Text Generation

Marcos Treviso1,2∗, Alexis Ross3, Nuno M. Guerreiro1,2, André F. T. Martins1,2,4
1Instituto de Telecomunicações, Lisbon, Portugal

2Instituto Superior Técnico & LUMLIS (Lisbon ELLIS Unit), Lisbon, Portugal
3Massachusetts Institute of Technology

4Unbabel, Lisbon, Portugal

Abstract

Selective rationales and counterfactual exam-
ples have emerged as two effective, comple-
mentary classes of interpretability methods for
analyzing and training NLP models. However,
prior work has not explored how these meth-
ods can be integrated to combine their comple-
mentary advantages. We overcome this limita-
tion by introducing CREST (ContRastive Edits
with Sparse raTionalization), a joint framework
for selective rationalization and counterfactual
text generation, and show that this framework
leads to improvements in counterfactual quality,
model robustness, and interpretability. First,
CREST generates valid counterfactuals that
are more natural than those produced by pre-
vious methods, and subsequently can be used
for data augmentation at scale, reducing the
need for human-generated examples. Second,
we introduce a new loss function that lever-
ages CREST counterfactuals to regularize se-
lective rationales and show that this regulariza-
tion improves both model robustness and ratio-
nale quality, compared to methods that do not
leverage CREST counterfactuals. Our results
demonstrate that CREST successfully bridges
the gap between selective rationales and coun-
terfactual examples, addressing the limitations
of existing methods and providing a more com-
prehensive view of a model’s predictions.

1 Introduction

As NLP models have become larger and less trans-
parent, there has been a growing interest in devel-
oping methods for finer-grained interpretation and
control of their predictions. One class of meth-
ods leverages selective rationalization (Lei et al.,
2016; Bastings et al., 2019), which trains models to
first select rationales, or subsets of relevant input to-
kens, and then make predictions based only on the
selected rationales. These methods offer increased
interpretability, as well as learning benefits, such

∗Correspondence to: marcos.treviso@tecnico.pt

Figure 1: Our generation procedure consists of two
stages: (i) a mask stage that highlights relevant tokens
in the input through a learnable masker; and (ii) an
edit stage, which receives a masked input and uses a
masked language model to infill spans conditioned on a
prepended label.

as improved robustness to input perturbations (Jain
et al., 2020; Chen et al., 2022). Another class of
methods generates counterfactual examples, or
modifications to input examples that change their
labels. By providing localized views of decision
boundaries, counterfactual examples can be used as
explanations of model predictions, contrast datasets
for fine-grained evaluation, or new training data-
points for learning more robust models (Ross et al.,
2021; Gardner et al., 2020; Kaushik et al., 2020).

This paper is motivated by the observation that
selective rationales and counterfactual examples
allow for interpreting and controlling model be-
havior through different means: selective rational-
ization improves model transparency by weaving
interpretability into a model’s internal decision-
making process, while counterfactual examples
provide external signal more closely aligned with
human causal reasoning (Wu et al., 2021).

We propose to combine both methods to lever-
age their complementary advantages. We introduce
CREST (ContRastive Edits with Sparse raTional-
ization), a joint framework for rationalization and
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Figure 2: Overview of CREST-Rationalization. We start by passing an input x through CREST-Generation, which
yields a counterfactual edit x̃ along side two masks: z⋆ for the original input, and z̃⋆ for the counterfactual. Next,
we train a new rationalizer (masker) decomposed into two flows: a factual flow that takes in x and produces a
rationale z, and a counterfactual flow that receives x̃ and produces a rationale z̃. Lastly, we employ a regularization
term Ω(z, z̃) to encourage agreement between rationales for original and counterfactual examples.

counterfactual text generation. CREST first gener-
ates high-quality counterfactuals (Figure 1), then
leverages those counterfactuals to encourage con-
sistency across “flows” for factual and counterfac-
tual inputs (Figure 2). In doing so, CREST unifies
two key important dimensions of interpretability
introduced by Doshi-Velez and Kim (2017, §3.2),
forward simulation and counterfactual simulation.
Our main contributions are:1

• We present CREST-Generation (Figure 1), a
novel approach to generating counterfactual
examples by combining sparse rationalization
with span-level masked language modeling (§3),
which produces valid, fluent, and diverse coun-
terfactuals (§4, Table 1).

• We introduce CREST-Rationalization (Fig-
ure 2), a novel approach to regularizing ratio-
nalizers. CREST-Rationalization decomposes a
rationalizer into factual and counterfactual flows
and encourages agreement between the rationales
for both (§5).

• We show that CREST-generated counterfactuals
can be effectively used to increase model robust-
ness, leading to larger improvements on contrast
and out-of-domain datasets than using manual
counterfactuals (§6.2, Tables 2 and 3).

• We find that rationales trained with CREST-
Rationalization not only are more plausible, but
also achieve higher forward and counterfactual
simulabilities (§6.3, Table 4).

1Code at https://github.com/deep-spin/crest/.

Overall, our experiments show that CREST suc-
cessfully combines the benefits of counterfactual
examples and selective rationales to improve the
quality of each, resulting in a more interpretable
and robust learned model.

2 Background

2.1 Rationalizers
The traditional framework of rationalization in-
volves training two components cooperatively: the
generator—which consists of an encoder and an
explainer—and the predictor. The generator en-
codes the input and produces a “rationale” (e.g.,
word highlights), while the predictor classifies the
text given only the rationale as input (Lei et al.,
2016).

Assume a document x with n tokens as input.
The encoder module (enc) converts the input
tokens into d-dimensional hidden state vectors
H ∈ Rn×d, which are passed to the explainer
(expl) to generate a latent mask z ∈ {0, 1}n. The
latent mask serves as the rationale since it is used
to select a subset of the input x⊙ z, which is then
passed to the predictor module (pred) to produce
a final prediction ŷ ∈ Y , where Y = {1, ..., k}
for k-class classification. The full process can be
summarized as follows:

z = expl(enc(x;ϕ); γ), (1)

ŷ = pred(x⊙ z; θ), (2)

where ϕ, γ, θ are trainable parameters. To ensure
that the explainer does not select all tokens (i.e.,
zi = 1, ∀i), sparsity is usually encouraged in the
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rationale extraction. Moreover, explainers can also
be encouraged to select contiguous words, as there
is some evidence that it improves readibility (Jain
et al., 2020). These desired properties may
be encouraged via regularization terms during
training (Lei et al., 2016; Bastings et al., 2019), or
via application of sparse mappings (Treviso and
Martins, 2020; Guerreiro and Martins, 2021).

In this work, we will focus specifically on
the SPECTRA rationalizer (Guerreiro and Mar-
tins, 2021): this model leverages an explainer
that extracts a deterministic structured mask z
by solving a constrained inference problem with
SparseMAP (Niculae et al., 2018). SPECTRA
has been shown to achieve comparable perfor-
mance with other rationalization approaches, in
terms of end-task performance, plausibility with
human explanations, and robustness to input per-
turbation (Chen et al., 2022). Moreover, it is easier
to train than other stochastic alternatives (Lei et al.,
2016; Bastings et al., 2019), and, importantly, it
allows for simple control over the properties of the
rationales, such as sparsity via its constrained in-
ference formulation: by setting a budget B on the
rationale extraction, SPECTRA ensures that the
rationale size will not exceed ⌈Bn⌉ tokens.

2.2 Counterfactuals
In NLP, counterfactuals refer to alternative texts
that describe a different outcome than what is en-
coded in a given factual text. Prior works (Verma
et al., 2020) have focused on developing methods
for generating counterfactuals that adhere to several
key properties, including:

• Validity: the generated counterfactuals should
encode a different label from the original text.

• Closeness: the changes made to the text should
be small, not involving large-scale rewriting of
the input.

• Fluency: the generated counterfactuals should
be coherent and grammatically correct.

• Diversity: the method should generate a wide
range of counterfactuals with diverse character-
istics, rather than only a limited set of variations.

While many methods for automatic counterfac-
tual generation exist (Wu et al., 2021; Robeer et al.,
2021; Dixit et al., 2022), our work is mostly re-
lated to MiCE (Ross et al., 2021), which generates
counterfactuals in a two stage process that involves

masking the top-k tokens with the highest ℓ1 gra-
dient attribution of a pre-trained classifier, and in-
filling tokens for masked position with a T5-based
model (Raffel et al., 2020). MiCE further refines
the resultant counterfactual with a binary search
procedure to seek strictly minimal edits. However,
this process is computationally expensive and, as
we show in §4.2, directly optimizing for closeness
can lead to counterfactuals that are less valid, fluent,
and diverse. Next, we present an alternative method
that overcomes these limitations while still produc-
ing counterfactuals that are close to original inputs.

3 CREST-Generation

We now introduce CREST (ContRastive Edits with
Sparse raTionalization), a framework that com-
bines selective rationalization and counterfactual
text generation. CREST has two key components:
(i) CREST-Generation offers a controlled ap-
proach to generating counterfactuals, which we
show are valid, fluent, and diverse (§4.2); and
(ii) CREST-Rationalization leverages these coun-
terfactuals through a novel regularization technique
encouraging agreement between rationales for orig-
inal and counterfactual examples. We demonstrate
that combining these two components leads to mod-
els that are more robust (§6.2) and interpretable
(§6.3). We describe CREST-Generation below and
CREST-Rationalization in §5.

Formally, let x = ⟨x1, ..., xn⟩ represent a factual
input text with a label yf . We define a counterfac-
tual as an input x̃ = ⟨x1, ..., xm⟩ labeled with yc
such that yf ̸= yc. A counterfactual generator is
a mapping that transforms the original text x to a
counterfactual x̃. Like MiCE, our approach for gen-
erating counterfactuals consists of two stages, as
depicted in Figure 1: the mask and the edit stages.

Mask stage. We aim to find a mask vector z ∈
{0, 1}n such that tokens xi associated with zi =
1 are relevant for the factual prediction ŷf of a
particular classifier C. To this end, we employ a
SPECTRA rationalizer as the masker. Concretely,
we pre-train a SPECTRA rationalizer on the task
at hand with a budget constraint B, and define the
mask as the rationale vector z ∈ {0, 1}n (see §2.1).

Edit stage. Here, we create edits by infilling the
masked positions using an editor module G, such
as a masked language model: x̃ ∼ GLM(x ⊙ z).
In order to infill spans rather than single tokens, we
follow MiCE and use a T5-based model to infill
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IMDB SNLI

Method val. ↑ fl. ↓ div. ↓ clo. ↓ #tks val. ↑ fl. ↓ div. ↓ clo. ↓ #tks

Chance baseline 50.20 - - - - 52.70 - - - -
References 97.95 66.51 - - 184.4 96.75 63.52 - - 7.5
Manual edits 93.44 72.89 81.67 0.14 183.7 93.88 65.25 35.82 0.42 7.7
PWWS 28.07 101.91 74.56 0.16 179.0 17.97 160.11 31.81 0.36 6.8
CFGAN - - - - - 34.46 155.84 68.94 0.23 7.0
PolyJuice 36.69 68.59 56.41 0.45 94.6 41.80 62.62 39.01 0.40 11.6
MiCE (bin. search) 72.13 76.72 73.76 0.20 171.3 76.17 63.94 42.18 0.35 7.9
MiCE (30% mask) 76.80 79.35 49.64 0.39 161.3 77.26 59.71 34.08 0.40 8.3
MiCE (50% mask) 83.20 89.92 20.71 0.65 115.7 84.48 68.32 24.27 0.52 7.6
CREST (30% mask) 75.82 67.29 57.58 0.33 180.9 75.45 62.00 41.36 0.29 7.4
CREST (50% mask) 93.24 50.69 23.08 0.66 193.9 81.23 62.60 30.53 0.41 7.3

Table 1: Intrinsic evaluation of counterfactuals generated by various methods. Validity is computed as the accuracy
of an off-the-shelf RoBERTa-base classifier in relation to the gold counterfactual label (not available for PWWS
and PolyJuice); fluency is determined by the perplexity score given by GPT-2 large; diversity is computed with
self-BLEU; and closeness is reported by the (normalized) edit distance to the factual input. In addition, we report
the average number of tokens in the input.

spans for masked positions. During training, we
fine-tune the editor to infill original spans of text by
prepending gold target labels yf to original inputs.
In order to generate counterfactual edits at test time,
we prepend a counterfactual label yc instead, and
sample counterfactuals using beam search.

Overall, our procedure differs from that of MiCE
in the mask stage: instead of extracting a mask via
gradient-based attributions and subsequent binary
search, we leverage SPECTRA to find an optimal
mask. Interestingly, by doing so, we not only
avoid the computationally expensive binary search
procedure, but we also open up new opportunities:
as our masking process is differentiable, we can
optimize our masker to enhance the quality of
both the counterfactuals (§4.2) and the selected
rationales (§6.3). We will demonstrate the
latter with our proposed CREST-Rationalization
setup (§5). All implementation details for the
masker and the editor can be found in §B.

4 Evaluating CREST Counterfactuals

This section presents an extensive comparison of
counterfactuals generated by different methods.

4.1 Experimental Setting

Data and evaluation. We experiment with
our counterfactual generation framework on two
different tasks: sentiment classification using
IMDB (Maas et al., 2011) and natural language
inference (NLI) using SNLI (Bowman et al., 2015).
In sentiment classification, we only have a single
input to consider, while NLI inputs consist of a

premise and a hypothesis, which we concatenate
to form a single input. To assess the quality of
our automatic counterfactuals, we compare them
to manually crafted counterfactuals in the revised
IMDB and SNLI datasets created by Kaushik et al.
(2020). More dataset details can be found in §A.

Training. We employ a SPECTRA rationalizer
with a T5-small architecture as the masker, and
train it for 10 epochs on the full IMDB and SNLI
datasets. We also use a T5-small architecture for
the editor, and train it for 20 epochs with early stop-
ping, following the same training recipe as MiCE.
Full training details can be found in §B.3.

Generation. As illustrated in Figure 1, at test
time we generate counterfactuals by prepending
a contrastive label to the input and passing it to
the editor. For sentiment classification, this means
switching between positive and negative labels. For
NLI, in alignment with Dixit et al. (2022), we adopt
a refined approach by restricting the generation of
counterfactuals to entailments and contradictions
only, therefore ignoring neutral examples, which
have a subtle semantic meaning. In contrast, our
predictors were trained using neutral examples, and
in cases where they predict the neutral class, we
default to the second-most probable class.

Baselines. We compare our approach with four
open-source baselines that generate counterfactu-
als: PWWS (Ren et al., 2019), PolyJuice (Wu et al.,
2021), CounterfactualGAN (Robeer et al., 2021),2

2Despite many attempts, CounterfactualGAN did not con-
verge on IMDB, possibly due to the long length of the inputs.
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Figure 3: Sparsity analysis of CREST-Generation on IMDB with different budget percentages. The original curves
show the performance of CREST without any changes, while the augmented and finetuned curves show the per-
formance of CREST when using manually crafted counterfactuals for data augmentation or finetuning, respectively.

and MiCE (Ross et al., 2021). In particular, to en-
sure a fair comparison with MiCE, we apply three
modifications to the original formulation: (i) we
replace its RoBERTa classifier with a T5-based
classifier (as used in SPECTRA); (ii) we disable its
validity filtering;3 (iii) we report results with and
without the binary search procedure by fixing the
percentage of masked tokens.

Metrics. To determine the general validity of
counterfactuals, we report the accuracy of an
off-the-shelf RoBERTa-base classifier available
in the HuggingFace Hub.4 Moreover, we mea-
sure fluency using perplexity scores from GPT-2
large (Radford et al., 2019) and diversity with self-
BLEU (Zhu et al., 2018). Finally, we quantify the
notion of closeness by computing the normalized
edit distance to the factual input and the average
number of tokens in the document.

4.2 Results

Results are presented in Table 1. As expected, man-
ually crafted counterfactuals achieve high validity,
significantly surpassing the chance baseline and
establishing a reliable reference point. For IMDB,
we find that CREST outperforms other methods
by a wide margin in terms of validity and fluency.
At the same time, CREST’s validity is comparable
to the manually crafted counterfactuals, while sur-
prisingly deemed more fluent by GPT-2. Moreover,
we note that our modification of disabling MiCE’s
minimality search leads to counterfactuals that are
more valid and diverse but less fluent and less close
to the original inputs.

For SNLI, this modification allows MiCE to
achieve the best overall scores, closely followed

3MiCE with binary search uses implicit validity filtering
throughout the search process to set the masking percentage.

4mtreviso/roberta-base-imdb,
mtreviso/roberta-base-snli.

by CREST. However, when controlling for close-
ness, we observe that CREST outperforms MiCE:
at closeness of ∼0.30, CREST (30% mask) outper-
forms MiCE with binary search in terms of fluency
and diversity. Similarly, at a closeness of ∼0.40,
CREST (50% mask) surpasses MiCE (30% mask)
across the board. As detailed in §C, CREST’s coun-
terfactuals are more valid than MiCE’s for all close-
ness bins lower than 38%. We provide examples of
counterfactuals produced by CREST and MiCE in
Appendix G. Finally, we note that CREST is highly
affected by the masking budget, which we explore
further next.

Sparsity analysis. We investigate how the num-
ber of edits affects counterfactual quality by train-
ing maskers with increasing budget constraints (as
described in §2.1). The results in Figure 3 show
that with increasing masking percentage, gener-
ated counterfactuals become less textually similar
to original inputs (i.e., less close) but more valid
and fluent. This inverse relationship demonstrates
that strict minimality, optimized for in methods like
MiCE, comes with tradeoffs in counterfactual qual-
ity, and that the sparsity budget in CREST can be
used to modulate the trade-off between validity and
closeness. In Figure 3 we also examine the benefit
of manually crafted counterfactuals in two ways:
(i) using these examples as additional training data;
and (ii) upon having a trained editor, further fine-
tuning it with these manual counterfactuals. The
results suggest that at lower budget percentages,
exploiting a few manually crafted counterfactuals
to fine-tune CREST can improve the validity of
counterfactuals without harming fluency.

Validity filtering. As previously demonstrated
by Wu et al. (2021) and Ross et al. (2022), it
is possible to filter out potentially disfluent or
invalid counterfactuals by passing all examples to
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Figure 4: Human study results for counterfactuals pro-
duced manually and automatically (CREST and MiCE).

a classifier and discarding the subset with incorrect
predictions. In our case, we use the predictor
associated with the masker as the classifier. We
found find that applying this filtering increases
the validity of IMDB counterfactuals from 75.82
to 86.36 with B = 0.3, and from 93.24 to 97.36
with B = 0.5. For SNLI, validity jumps from
75.45 to 96.39 with B = 0.3, and from 81.23 to
96.67 with B = 0.5. These results indicate that
CREST can rely on its predictor to filter out invalid
counterfactuals, a useful characteristic for doing
data augmentation, as we will see in §6.2.

4.3 Human Study

We conduct a small-scale human study to evaluate
the quality of counterfactuals produced by MiCE
and CREST with 50% masking percentage. An-
notators were tasked with rating counterfactuals’
validity and naturalness (e.g., based on style, tone,
and grammar), each using a 5-point Likert scale.
Two fluent English annotators rated 50 examples
from the IMDB dataset, and two others rated 50
examples from SNLI. We also evaluate manually
created counterfactuals to establish a reliable base-
line. More annotation details can be found in §D.

The study results, depicted in Figure 4, show that
humans find manual counterfactuals to be more
valid and natural compared to automatically gener-
ated ones. Furthermore, CREST’s counterfactuals
receive higher ratings for validity and naturalness
compared to MiCE, aligning with the results ob-
tained from automatic metrics.

5 CREST-Rationalization

Now that we have a method that generates high-
quality counterfactual examples, a natural step is
to use these examples for data augmentation. How-
ever, vanilla data augmentation does not take advan-
tage of the paired structure of original/contrastive
examples and instead just treats them as individual
datapoints. In this section, we present CREST’s

second component, CREST-Rationalization (illus-
trated in Figure 2), which leverages the relation-
ships between factual and counterfactual inputs
through a SPECTRA rationalizer with an agree-
ment regularization strategy, described next.

5.1 Linking Counterfactuals and Rationales
We propose to incorporate counterfactuals into
a model’s functionality by taking advantage of
the fully differentiable rationalization setup. Con-
cretely, we decompose a rationalizer into two flows,
as depicted in Figure 2: a factual flow that receives
factual inputs x and outputs a factual prediction
ŷ, and a counterfactual flow that receives coun-
terfactual inputs x̃ and should output a counterfac-
tual prediction ỹ ̸= ŷ. As a by-product of using
a rationalizer, we also obtain a factual rationale
z ∈ {0, 1}n for x and a counterfactual rationale
z̃ ∈ {0, 1}m for x̃, where n = |x| and m = |x̃|.
Training. Let Θ = {ϕ, γ, θ} represent the train-
able parameters of a rationalizer (defined in §2.1).
We propose the following loss function:

L(Θ) = Lf (yf , ŷ(Θ)) + αLc(yc, ỹ(Θ)) (3)

+ λΩ(z(Θ), z̃(Θ)),

where Lf (·) and Lc(·) represent cross-entropy
losses for the factual and counterfactual flows, re-
spectively, and Ω(·) is a novel penalty term to en-
courage factual and counterfactual rationales to fo-
cus on the same positions, as defined next. α ∈ R
and λ ∈ R are hyperparameters.

Agreement regularization. To produce paired
rationales for both the factual and counterfactual
flows, we incorporate regularization terms into the
training of a rationalizer to encourage the factual
explainer to produce rationales similar to those orig-
inally generated by the masker z⋆, and the counter-
factual explainer to produce rationales that focus
on the tokens modified by the editor z̃⋆. We de-
rive the ground truth counterfactual rationale z̃⋆

by aligning x to x̃ and marking tokens that were
inserted or substituted as 1, and others as 0. The
regularization terms are defined as:

Ω(z, z̃) = ∥z(Θ)− z⋆∥22 + ∥z̃(Θ)− z̃⋆∥22 . (4)

To allow the counterfactual rationale z̃ to focus
on all important positions in the input, we adjust
the budget for the counterfactual flow based on the
length of the synthetic example produced by the
counterfactual generator. Specifically, we multiply
the budget by a factor of ∥z̃⋆∥0

∥z⋆∥0
.
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Setup IMDB rIMDB cIMDB RotTom SST-2 Amazon Yelp

F 91.1 ± 0.3 91.4 ± 0.8 88.5 ± 0.9 76.5 ± 1.6 79.8 ± 1.6 86.0 ± 0.7 88.5 ± 0.7

With data augmentation:
F + CH 90.9 ± 0.5 92.9 ± 0.9 90.4 ± 1.6 76.6 ± 1.5 80.7 ± 1.3 86.3 ± 1.0 89.1 ± 1.2
F + CS,V 91.0 ± 0.2 91.2 ± 1.0 89.3 ± 0.8 76.8 ± 0.9 79.3 ± 0.3 85.2 ± 0.9 88.0 ± 1.0
F + CS 90.8 ± 0.2 91.6 ± 1.3 89.2 ± 0.4 76.7 ± 1.0 80.6 ± 0.6 86.4 ± 0.6 89.1 ± 0.5

With agreement regularization:
F & CS,V 90.7 ± 0.5 92.2 ± 0.7 88.9 ± 1.0 76.3 ± 1.4 80.2 ± 1.3 86.3 ± 0.7 88.9 ± 0.7
F & CS 91.2 ± 0.5 92.9 ± 0.5 89.7 ± 1.1 77.3 ± 2.3 81.1 ± 2.4 86.8 ± 0.8 89.3 ± 0.7

Table 2: Accuracy of SPECTRA trained on IMDB and evaluated on in-domain, contrast, and out-of-domain datasets.
We present mean and std. values across five random seeds. Values in bold: top results; underlined: second-best.

6 Exploiting Counterfactuals for Training

In this section, we evaluate the effects of incorporat-
ing CREST-generated counterfactuals into training
by comparing a vanilla data augmentation approach
with our CREST-Rationalization approach. We
compare how each affects model robustness (§6.2)
and interpretability (§6.3).

6.1 Experimental Setting
We use the IMDB and SNLI datasets to train
SPECTRA rationalizers with and without coun-
terfactual examples, and further evaluate on
in-domain, contrast and out-of-domain (OOD)
datasets. For IMDB, we evaluate on the
revised IMDB, contrast IMDB, RottenTomatoes,
SST-2, Amazon Polarity, and Yelp. For SNLI, we
evaluate on the Hard SNLI, revised SNLI, break,
MultiNLI, and Adversarial NLI. Dataset details
can be found in §A. To produce CREST counter-
factuals, which we refer to as “synthetic”, we use
a 30% masking budget as it provides a good bal-
ance between validity, fluency, and closeness (cf.
Figure 3). We tune the counterfactual loss (α) and
agreement regularization (λ) weights on the dev set.
We report results with α = 0.01 and λ = 0.001 for
IMDB, and α = 0.01 and λ = 0.1 for SNLI.

6.2 Robustness Results
Tables 2 and 3 show results for counterfactual
data augmentation and agreement regularization
for IMDB and SNLI, respectively. We compare a
standard SPECTRA trained on factual examples
(F ) with other SPECTRA models trained on aug-
mentated data from human-crafted counterfactuals
(F + CH ) and synthetic counterfactuals generated
by CREST (F + CS), which we additionally post-
process to drop invalid examples (F + CS,V ).

Discussion. As shown in Table 2, CREST-
Rationalization (F &CS) consistently outperforms

vanilla counterfactual augmentation (F + CS) on
all sentiment classification datasets. It achieves
the top results on the full IMDB and on all OOD
datasets, while also leading to strong results on
contrastive datasets—competitive with manual
counterfactuals (F + CH ). When analyzing the
performance of CREST-Rationalization trained
on a subset of valid examples (F & CS,V ) versus
the entire dataset (F & CS), the models trained
on the entire dataset maintain a higher level of
performance across all datasets. However, when
using counterfactuals for data augmentation, this
trend is less pronounced, especially for in-domain
and contrastive datasets. In §E, we explore the
impact of the number of augmented examples
on results and find that, consistent with previous
research (Huang et al., 2020; Joshi and He, 2022),
augmenting the training set with a small portion
of valid and diverse synthetic counterfactuals leads
to more robust models, and can even outweigh the
benefits of manual counterfactuals.

Examining the results for NLI in Table 3, we
observe that both counterfactual augmentation and
agreement regularization interchangeably yield top
results across datasets. Remarkably, in contrast to
sentiment classification, we achieve more substan-
tial improvements with agreement regularization
models when these are trained on valid counterfac-
tuals, as opposed to the full set.

Overall, these observations imply that CREST-
Rationalization is a viable alternative to data aug-
mentation for improving model robustness, espe-
cially for learning contrastive behavior for senti-
ment classification. In the next section, we explore
the advantages of CREST-Rationalization for im-
proving model interpretability.

6.3 Interpretability Analysis
In our final experiments, we assess the benefits of
our proposed regularization method on model inter-
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Setup SNLI SNLI-h rSNLI break MNLI-m MNLI-mm ANLI

F 86.6 ± 0.2 73.7 ± 0.2 71.1 ± 0.8 69.5 ± 1.5 64.6 ± 1.1 65.9 ± 0.9 32.6 ± 0.7

With data augmentation:
F + CH 86.6 ± 0.3 74.9 ± 1.1 72.4 ± 0.3 70.1 ± 1.9 64.2 ± 0.9 65.8 ± 0.9 31.8 ± 0.4
F + CS,V 86.5 ± 0.3 75.8 ± 1.2 71.8 ± 1.0 69.1 ± 2.0 64.4 ± 0.3 65.9 ± 0.4 32.2 ± 0.2
F + CS 86.6 ± 0.3 74.7 ± 1.1 71.6 ± 0.8 71.2 ± 1.4 64.5 ± 0.4 66.4 ± 0.6 32.2 ± 1.0

With agreement regularization:
F & CS,V 86.8 ± 0.1 75.3 ± 0.8 66.8 ± 0.7 68.2 ± 2.1 64.6 ± 0.7 66.1 ± 0.6 32.8 ± 0.6
F & CS 86.6 ± 0.1 75.5 ± 1.3 67.0 ± 1.3 69.9 ± 1.7 64.2 ± 1.1 66.0 ± 0.7 32.5 ± 0.5

Table 3: Accuracy of SPECTRA trained on SNLI and evaluated on in-domain, contrast, and out-of-domain datasets.
We present mean and std. values across five random seeds. Values in bold: top results; underlined: second-best.

pretability. We evaluate effects on rationale quality
along three dimensions: plausibility, forward simu-
lability, and counterfactual simulability.

Plausibility. We use the MovieReviews (DeY-
oung et al., 2020) and the e-SNLI (Camburu et al.,
2018) datasets to study the human-likeness of ratio-
nales by matching them with human-labeled expla-
nations and measuring their AUC, which automati-
cally accounts for multiple binarization levels.5

Forward simulability. Simulability measures
how often a human agrees with a given classifier
when presented with explanations, and many works
propose different variants to compute simulability
scores in an automatic way (Doshi-Velez and Kim,
2017; Treviso and Martins, 2020; Hase et al., 2020;
Pruthi et al., 2022). Here, we adopt the framework
proposed by Treviso and Martins (2020), which
views explanations as a message between a clas-
sifier and a linear student model, and determines
simulability as the fraction of examples for which
the communication is successful. In our case, we
cast a SPECTRA rationalizer as the classifier, use
its rationales as explanations, and train a linear stu-
dent on factual examples of the IMDB and SNLI
datasets. High simulability scores indicate more
understandable and informative explanations.

Counterfactual simulability. Building on the
manual simulability setup proposed by Doshi-Velez
and Kim (2017), we introduce a new approach to
automatically evaluate explanations that interact
with counterfactuals. Formally, let C be a classifier
that when given an input x produces a prediction ŷ
and a rationale z. Moreover, let G be a pre-trained
counterfactual editor, which receives x and z and
produces a counterfactual x̃ by infilling spans on
positions masked according to z (e.g., via masking).

5We determine the explanation score for a single word by
calculating the average of the scores of its word pieces.

We define counterfactual simulability as follows:

1

N

N∑

n=1

[[C(xn) ̸= C(G(xn ⊙ zn))]], (5)

where [[·]] is the Iverson bracket notation. Intu-
itively, counterfactual simulability measures the
ability of a rationale to change the label predicted
by the classifier when it receives a contrastive edit
with infilled tokens by a counterfactual generator as
input. Therefore, a high counterfactual simulability
indicates that the rationale z focuses on the highly
contrastive parts of the input.

Results. The results of our analysis are shown
in Table 4. We observe that plausibility can sub-
stantially benefit from synthetic CREST-generated
counterfactual examples, especially for a ratio-
nalizer trained with our agreement regularization,
which outperforms other approaches by a large
margin. Additionally, leveraging synthetic counter-
factuals, either via data augmentation or agreement
regularization, leads to a high forward simulabil-
ity score, though by a smaller margin—within the
standard deviation of other approaches. Finally,
when looking at counterfactual simulability, we
note that models that leverage CREST counterfac-
tuals consistently lead to better rationales. In par-
ticular, agreement regularization leads to strong re-
sults on both tasks while also producing more plau-
sible rationales, showing the efficacy of CREST-
Rationalization in learning contrastive behavior.

7 Related Works

Generating counterfactuals. Existing ap-
proaches to generating counterfactuals for NLP
use heuristics (Ren et al., 2019; Ribeiro et al.,
2020), leverage plug-and-play approaches to
controlled generation (Madaan et al., 2021), or,
most relatedly, fine-tune language models to
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Sentiment Classification Natural Language Inference

Setup Plausibility F. sim. C. sim. Plausibility F. sim. C. sim.

F 0.6733 ± 0.02 91.70 ± 0.92 81.18 ± 2.79 0.7735 ± 0.00 59.26 ± 0.41 70.01 ± 0.44

With data augmentation:
F + CH 0.6718 ± 0.04 91.44 ± 1.46 80.53 ± 4.17 0.7736 ± 0.01 59.51 ± 0.86 69.90 ± 0.57
F + CS 0.6758 ± 0.01 91.68 ± 0.59 84.54 ± 1.09 0.7779 ± 0.00 59.54 ± 0.08 70.76 ± 0.54

With agreement regularization:
F & CS 0.6904 ± 0.02 91.93 ± 0.83 86.43 ± 1.56 0.7808 ± 0.00 59.31 ± 0.20 70.69 ± 0.29

Table 4: Interpretability analysis of rationalizers trained with CREST-generated counterfactuals, either with data
augmentation or agreement regularization. Plausibility represents matching with human rationales, whereas F. sim.
and C. sim. represent forward and counterfactual simulability. Bold: top results; underlined: second-best.

generate counterfactuals (Wu et al., 2021; Ross
et al., 2021, 2022; Robeer et al., 2021). For
instance, PolyJuice (Wu et al., 2021) finetunes a
GPT-2 model on human-crafted counterfactuals
to generate counterfactuals following pre-defined
control codes, while CounterfactualGAN (Robeer
et al., 2021) adopts a GAN-like setup. We show
that CREST-Generation outperforms both methods
in terms of counterfactual quality. Most closely
related is MiCE (Ross et al., 2021), which also uses
a two-stage approach based on a masker and an
editor to generate counterfactuals. Unlike MiCE,
we propose to relax the minimality constraint and
generate masks using selective rationales rather
than gradients, resulting not only in higher-quality
counterfactuals, but also in a fully-differentiable
set-up that allows for further optimization of the
masker. Other recent work includes Tailor (Ross
et al., 2022), a semantically-controlled generation
system that requires a human-in-the-loop to
generate counterfactuals, as well as retrieval-based
and prompting approaches such as RGF (Paranjape
et al., 2022) and CORE (Dixit et al., 2022).

Training with counterfactuals. Existing ap-
proaches to training with counterfactuals predom-
inantly leverage data augmentation. Priors works
have explored how augmenting with both man-
ual (Kaushik et al., 2020; Khashabi et al., 2020;
Huang et al., 2020; Joshi and He, 2022) and
automatically-generated (Wu et al., 2021; Ross
et al., 2022; Dixit et al., 2022) counterfactuals
affects model robustness. Unlike these works,
CREST-Rationalization introduces a new strategy
for training with counterfactuals that leverages
the paired structure of original and counterfactual
examples, improving model robustness and inter-
pretability compared to data augmentation. Also
related is the training objective proposed by Gupta

et al. (2021) to promote consistency across pairs of
examples with shared substructures for neural mod-
ule networks, and the loss term proposed by Teney
et al. (2020) to model the factual-counterfactual
paired structured via gradient supervision. In con-
trast, CREST can be used to generate paired ex-
amples, can be applied to non-modular tasks, and
does not require second-order derivatives.

Rationalization. There have been many modifi-
cations to the rationalization setup to improve task
accuracy and rationale quality. Some examples
include conditioning the rationalization on
pre-specified labels (Yu et al., 2019), using an
information-bottleneck formulation to ensure infor-
mative rationales (Paranjape et al., 2020), training
with human-created rationales (Lehman et al.,
2019), and replacing stochastic variables with deter-
ministic mappings (Guerreiro and Martins, 2021).
We find that CREST-Rationalization, which is fully
unsupervised, outperforms standard rationalizers in
terms of model robustness and quality of rationales.

8 Conclusions

We proposed CREST, a joint framework for selec-
tive rationalization and counterfactual text genera-
tion that is capable of producing valid, fluent, and
diverse counterfactuals, while being flexible for
controlling the amount of perturbations. We have
shown that counterfactuals can be successfully in-
corporated into a rationalizer, either via counterfac-
tual data augmentation or agreement regularization,
to improve model robustness and rationale quality.
Our results demonstrate that CREST successfully
bridges the gap between selective rationales and
counterfactual examples, addressing the limitations
of existing methods and providing a more compre-
hensive view of a model’s predictions.
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Limitations

Our work shows that CREST is a suitable frame-
work for generating high-quality counterfactuals
and producing plausible rationales, and we hope
that CREST motivates new research to develop
more robust and interpretable models. We note,
however, two main limitations in our framework.
First, our counterfactuals are the result of a large
language model (T5), and as such, they may carry
all the limitations within these models. Therefore,
caution should be exercised when making state-
ments about the quality of counterfactuals beyond
the metrics reported in this paper, especially if
these statements might have societal impacts. Sec-
ond, CREST relies on a rationalizer to produce
highlights-based explanations, and therefore it is
limited in its ability to answer interpretability ques-
tions that go beyond the tokens of the factual or
counterfactual input.
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A Datasets

The revised IMDB and SNLI datasets, which we
refer to as rIMDB and rSNLI respectively, were cre-
ated by Kaushik et al. (2020). They contain coun-
terfactuals consisting of revised versions made by
humans on the Amazon’s Mechanical Turk crowd-
sourcing platform. For both datasets, the authors
ensure that (a) the counterfactuals are valid; (b) the
edited reviews are coherent; and (c) the counter-
factuals do not contain unnecessary modifications.
For SNLI, counterfactuals were created either by
revising the premise or the hypothesis. We refer to
(Kaushik et al., 2020) for more details on the data
generation process. Table 5 presents statistics for
the datasets used for training models in this work.

Train Val. Test

Dataset docs tks docs tks docs tks

IMDB 22.5K 6M 2.5K 679K 25K 6M
rIMDB 3414 629K 490 92K 976 180K
SNLI 549K 12M 10K 232K 10K 231K
rSNLI 4165 188K 500 24K 1000 48K

Table 5: Datasets statistics.

Additionally, we incorporate various contrastive
and out-of-domain datasets to evaluate our mod-
els. For IMDB, we use the contrast IMDB (Gardner
et al., 2020), RottenTomatoes (Pang and Lee, 2005),
SST-2 (Socher et al., 2013), Amazon Polarity and
Yelp (Zhang et al., 2015). For SNLI, we evalu-
ate on the Hard SNLI (Gururangan et al., 2018),
break (Glockner et al., 2018), MultiNLI (Williams
et al., 2018), and Adversarial NLI (Nie et al., 2020).
We refer to the original works for more details.

B CREST Details

B.1 Masker
For all datasets, the masker consists of a SPEC-
TRA rationalizer that uses a T5-small encoder as
the backbone for the encoder and predictor (see
§2.1). Our implementation is derived directly from
its original source (Guerreiro and Martins, 2021).
We set the maximum sequence length to 512, trun-
cating inputs when necessary. We employ a con-

tiguity penalty of 10−4 for IMDB and 10−2 for
SNLI. We train all models for a minimum of 3
epochs and maximum of 15 epochs along with
early stopping with a patience of 5 epochs. We
use AdamW (Loshchilov and Hutter, 2019) with a
learning rate of 10−4 and weight decay of 10−6.

B.2 Editor

For all datasets, CREST and MiCE editors con-
sist of a full T5-small model (Raffel et al., 2020),
which includes both the encoder and the decoder
modules. We use the T5 implementation available
in the transformers library (Wolf et al., 2020) for
our editor. We train all models for a minimum of
3 epochs and maximum of 20 epochs along with
early stopping with a patience of 5 epochs. We
use AdamW (Loshchilov and Hutter, 2019) with
a learning rate of 10−4 and weight decay of 10−6.
For both CREST and MiCE, we generate counter-
factuals with beam search with a beam of size 15
and disabling bigram repetitions. We post-process
the output of the editor to trim spaces and repeti-
tions of special symbols (e.g., </s>).

B.3 SPECTRA rationalizers

All of our SPECTRA rationalizers share the same
setup and training hyperparameters as the one used
by the masker in §4, but were trained with distinct
random seeds. We tuned the counterfactual loss
weight α within {1.0, 0.1, 0.01, 0.001, 0.0001},
and λ within {1.0, 0.1, 0.01, 0.001} for models
trained with agreement rationalization. More
specifically, we performed hyperparameter tuning
on the validation set, with the goal of maximiz-
ing in-domain accuracy. As a result, we obtained
α = 0.01 and λ = 0.001 for IMDB, and α = 0.01
and λ = 0.1 for SNLI.

C Validity vs. Closeness

To better assess the performance of CREST and
MiCE by varying closeness, we plot in Figure 5
binned-validity scores of CREST and MiCE with
30% masking on the revised SNLI dataset. Al-
though CREST is deemed less valid than MiCE
overall (cf. Table 1), we note that CREST gener-
ates more valid counterfactuals in lower minimality
ranges. This provides further evidence that CREST
remains superior to MiCE on closeness intervals of
particular interest for generating counterfactuals in
an automatic way.

15121

https://doi.org/10.1145/3209978.3210080
https://doi.org/10.1145/3209978.3210080


[0.0, 0.125] (0.125, 0.25] (0.25, 0.375] (0.375, 0.5] (0.5, 0.625]
Closeness

0.0

0.2

0.4

0.6

0.8

1.0
Va

lid
ity

CREST
MiCE

Figure 5: Validity by binned closeness ranges for MiCE
(30% masking) and CREST (30% masking). At lower
closeness ranges, CREST produces more valid counter-
factuals than does MiCE.

D Human Annotation

The annotation task was conducted by four distinct
individuals, all of whom are English-fluent PhD stu-
dents. Two annotators were employed for IMDB
and two for SNLI. The annotators were not given
any information regarding the methods used to cre-
ate each counterfactual, and the documents were
presented in a random order to maintain source
anonymity. The annotators were presented with
the reference text and its corresponding gold label.
Subsequently, for each method, they were asked
to assess both the validity and the naturalness of
the resulting counterfactuals using a 5-point Lik-
ert scale. We provided a guide page to calibrate
the annotators’ understating of validity and natu-
ralness prior the annotation process. We presented
hypothetical examples with different levels of va-
lidity and naturalness and provided the following
instructions regarding both aspects:

• “If every phrase in the text unequivocally sug-
gests a counterfactual label, the example is
deemed fully valid and should receive a top score
of 5/5.”

• “If the counterfactual text aligns with the style,
tone, and grammar of real-world examples, it’s
considered highly natural and deserves a score of
5/5.“

We measure inter-annotator agreement with a
normalized and inverted Mean Absolute Difference
(MAD), which computes a “soft” accuracy by aver-
aging absolute difference ratings and normalizing
them to a 0-1 range. We present the annotation
results in Table 6. Our results show that humans
agreed more on manual examples than on auto-
matic approaches. On the other hand, for SNLI,

IMDB SNLI

Method v n ro v n ro

Manual 4.60 4.36 0.83 4.89 4.90 0.95
MiCE 2.76 2.29 0.71 4.35 4.71 0.94
CREST 4.06 3.44 0.76 4.89 4.89 0.96
Overall 3.81 3.36 0.77 4.71 4.83 0.95

Table 6: Annotation statistics. v and n represent the
averaged validity and naturalness scores, whereas ro
is the relative observed agreement computed with a
normalized and inverted MAD.

Setup Data size RotTom SST-2 Amazon Yelp

F 100% 76.5 ± 1.6 79.8 ± 1.6 86.0 ± 0.7 88.5 ± 0.7

With data augmentation:
F + CH +8% 76.6 ± 1.5 80.7 ± 1.3 86.3 ± 1.0 89.1 ± 1.2
F + CS,V +1% 77.2 ± 1.1 80.5 ± 0.5 86.1 ± 0.2 88.8 ± 0.3
F + CS,V +2% 76.2 ± 1.2 80.8 ± 0.8 86.7 ± 0.5 89.6 ± 0.5
F + CS,V +4% 77.7 ± 0.8 80.8 ± 0.7 87.0 ± 0.6 89.8 ± 0.6
F + CS,V +8% 76.6 ± 2.2 80.2 ± 1.7 86.1 ± 0.9 88.2 ± 1.0
F + CS,V +85% 76.8 ± 0.9 79.3 ± 0.3 85.2 ± 0.9 88.0 ± 1.0
F + CS +100% 76.7 ± 1.0 80.6 ± 0.6 86.4 ± 0.6 89.1 ± 0.5

With agreement regularization:
F & CS,V 85% 76.3 ± 1.4 80.2 ± 1.3 86.3 ± 0.7 88.9 ± 0.7
F & CS 100% 77.3 ± 2.3 81.1 ± 2.4 86.8 ± 0.8 89.3 ± 0.7

Table 7: OOD accuracy of SPECTRA rationalizers with
different portions of augmented counterfactuals. Bold:
top results; underlined: second-best.

annotators assigned similar scores across all meth-
ods. In terms of overall metrics, including validity,
naturalness, and agreement, the scores were lower
for IMDB than for SNLI, highlighting the difficulty
associated with the generation of counterfactuals
for long movie reviews.

Annotation interface. Figure 6 shows a snap-
shot of the interface used for the annotation, which
is publicly available at https://www.github.com/

mtreviso/TextRankerJS.

E Counterfactual Data Augmentation
Analysis

Previous studies on counterfactual data augmen-
tation have found that model performance highly
depends on the number and diversity of augmented
samples (Huang et al., 2020; Joshi and He, 2022).
To account for this, we investigate the effect of
adding increasingly larger portions of CREST
counterfactuals for data augmentation on the IMDB
dataset. Our findings are summarized in Table 7.

Discussion. We find that incorporating human-
crafted counterfactuals (F + CH ) improves SPEC-
TRA performance on all OOD datasets. On top
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Figure 6: Snapshot of the annotation interface.

of that, we note that using a small proportion
(4% of the full IMDB) of valid CREST coun-
terfactuals (F + CS,V ) through data augmenta-
tion also leads to improvements on all datasets
and outweighs the benefits of manual counterfac-
tuals. This finding confirms that, as found by
PolyJuice (Wu et al., 2021), synthetic counterfac-
tuals can improve model robustness. Conversely,
as the number of augmented counterfactuals in-
creases (85%), the performance on OOD datasets
starts to decrease, which is also consistent with
the findings of Huang et al. (2020). When aug-
menting the entire training set we obtain an in-
crease of accuracy, suggesting that the counterfac-
tual loss weight (α) was properly adjusted on the
validation set. Finally, we observe that while ap-
plying CREST-Rationalization only on valid ex-
amples (F & CS,V ) degrades performance, apply-
ing CREST-Rationalization on all paired examples
(F & CS) maintains a high accuracy on OOD
datasets and concurrently leads to strong results
on in-domain and contrast datasets (see Table 2).

F Computing infrastructure

Our infrastructure consists of four machines with
the specifications shown in Table 8. The machines
were used interchangeably and all experiments
were carried in a single GPU.

GPU CPU

4 × Titan Xp - 12GB 16 × AMD Ryzen - 128GB
4 × GTX 1080Ti - 12GB 8 × Intel i7 - 128GB
3 × RTX 2080Ti - 12GB 12 × AMD Ryzen - 128GB
3 × RTX 2080Ti - 12GB 12 × AMD Ryzen - 128GB

Table 8: Computing infrastructure.

G Examples of Counterfactuals

Table 9 shows examples of counterfactuals pro-
duced by MiCE and CREST with 30% masking.
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Sentiment Classification:
Input: If you haven’t seen this, it’s terrible. It is pure trash. I saw this about 17 years ago, and I’m still screwed up from it.

MiCE: If you haven’t seen this, it’s a great movie. I saw this about 17 years ago, and I’m still screwed up from it.

CREST: If you haven’t seen this movie, it’s worth seeing. It’s very funny. I saw it about 17 years ago, and I’m still screwed up from it.

Input: Touching; Well directed autobiography of a talented young director/producer. A love story with Rabin’s assassination in the
background. Worth seeing !

MiCE: Watching abiography of a very young writer/producer. A great story of Rabin’s assassination in the background! Worth seeing!!

CREST: This is the worst film of a talented young director/producer. And Rabin’s assassination in the background is even worse!

Input:
A solid, if unremarkable film. Matthau, as Einstein, was wonderful. My favorite part, and the only thing that would make me
go out of my way to see this again, was the wonderful scene with the physicists playing badmitton, I loved the sweaters and the
conversation while they waited for Robbins to retrieve the birdie.

MiCE: This is an unremarkable, if unremarkable .hau, as steinstein, is the worst part of the movie, and the only thing that would make me
go out of my way to see this again is the physicists /mitt ists and the wait wait till they waited for binbins to re-release.

CREST:
This is a very unremarkable and unwatchable film. The acting is unhau, the plot, and the acting. My favorite thing about this film,
and the only thing that made me go out of my mind, was the ending with the physic nerves of Symitton, I watched the zombies
and thought they waited for Robbins to retrieve the junkie.

Input:
I saw this film earlier today, and I was amazed at how accurate the dialog is for the main characters. It didn’t feel like a film - it
felt more like a documentary (the part I liked best). The leading ladies in this film seemed as real to me as any fifteen year-old girls
I know. All in all, a very enjoyable film for those who enjoy independent films.

MiCE: I saw this film earlier today, and I was amazed at how bad the film is for the sake of a film - it feels more like thanthe part I played
in this film. To me - fifteen year-old s I don’t know. All in all this is a bad film for those who like independent films :

CREST:
I saw this movie earlier today, and I was surprised at how bad it is for the first time. It’s not a good movie - it’s just a bad movie
(the only thing I can say about it). The acting is awful to me as any fifteen year-old as I can. All in all, the movie is a waste of time
for me.

Natural Language Inference:
Prem: A large group of people walking in a busy city at night.
Hyp: People are outside in a park.

MiCE: People are walking in a city at night

CREST: People walking in a city.
Prem: Players from two opposing teams wearing colorful cleats struggle to gain control over a ball on an AstroTurf field.
Hyp: The players are playing a sport.

MiCE: The players are playing chess at home

CREST: The players are sitting on a couch.
Prem: A woman is in the middle of hitting a tennis ball.
Hyp: A woman is playing tennis.

MiCE: A woman is playing basketball at home

CREST: A woman is playing basketball.
Prem: Two boys with blond-hair, wearing striped shirts on a bed.
Hyp: Children playing in the park.

MiCE: Children are on the bed.

CREST: Boys are on the bed.
Prem: Bubbles surround a statue in the middle of a street.
Hyp: There are bubbles around the statue.

MiCE: There are bubbles surround the statue.

CREST: Bubbles are in the ocean.
Prem: A young girl is standing in a kitchen holding a green bib.
Hyp: A boy is playing with a firetruck.

MiCE: A child is in a fire place

CREST: A girl is holding a bib.

Table 9: Examples of original inputs from the IMDB and SNLI datasets followed by synthetic counterfactuals
produced by MiCE and CREST with 30% masking.
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