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Abstract
Recent advances in NLP have led to the cre-
ation of powerful language models for many
languages including Ancient Greek and Latin.
While prior work on Classical languages unani-
mously uses BERT, in this work we create four
language models for Ancient Greek that vary
along two dimensions to study their versatility
for tasks of interest for Classical languages: we
explore (i) encoder-only and encoder-decoder
architectures using ROBERTA and T5 as
strong model types, and create for each of them
(ii) a monolingual Ancient Greek and a multi-
lingual instance that includes Latin and English.
We evaluate all models on morphological and
syntactic tasks, including lemmatization, which
demonstrates the added value of T5’s decod-
ing abilities. We further define two probing
tasks to investigate the knowledge acquired by
models pre-trained on Classical texts. Our ex-
periments provide the first benchmarking ana-
lysis of existing models of Ancient Greek. Re-
sults show that our models provide significant
improvements over the SoTA. The systematic
analysis of model types can inform future re-
search in designing language models for Clas-
sical languages, including the development of
novel generative tasks. We make all our mod-
els available as community resources, along
with a large curated pre-training corpus for An-
cient Greek, to support the creation of a larger,
comparable model zoo for Classical Philol-
ogy. Our models and resources are available
at https://github.com/Heidelberg-NLP/
ancient-language-models.

1 Introduction

Since the beginning of the creation of the Index
Thomisticus in 1946 (Busa, 1980) and the publica-
tion of the Concordance to Livy (Packard, 1968),
Classical Philology has been revitalized by the “dig-
ital revolution” (Berti, 2019). Today, numerous ef-
forts have been undertaken to make Classical texts
digitally available, annotate, and automatically pro-
cess them. E.g., the Classical Language Toolkit

(CLTK, Johnson et al., 2021) offers various tools to
process pre-modern languages, in particular Latin
and pre-modern Greek.1

Recently, we see a surge of the first pre-trained
contextualized language models (PLMs) for Classi-
cal languages: Latin BERT has been proposed by
Bamman and Burns (2020), Ancient Greek (AG)
BERT by Singh et al. (2021). Lately, a second
AG BERT has been proposed by Yamshchikov
et al. (2022). However, both AG BERT models
have been pre-trained on a comparatively small pre-
training dataset. Moreover, they have been initial-
ized from Modern Greek BERT (Koutsikakis et al.,
2020), which limits them to the modern Greek al-
phabet, ignoring the diacritics of Ancient Greek.

Although numerous richly annotated treebanks
are available for Latin and AG, systems have, by
now, not been evaluated on a shared benchmark.
Given that two popular treebanks for AG have been
integrated into Universal Dependencies (de Marn-
effe et al., 2021), it is surprising that researchers
working on AG do not compare to benchmarking
results of, e.g., Straka (2018). Hence, a thorough
assessment of the performance of the existing mod-
els is necessary in order to compare and evaluate
their effectiveness for this underexplored language.

While BERT models are known to achieve high
performance on a wide range of tasks, encoder-
decoder models or multilingual models may often
be a better choice, depending on the task. In this
work, we explore a variety of language models for
Classics in general and Ancient Greek in particular:
We introduce GRεTA, GRεBERTA, PHILBERTA,
and PHILTA, four PLMs for Classics. GRεBERTA

and GRεTA are ROBERTA (Liu et al., 2019) and
T5 (Raffel et al., 2020) models trained on An-
cient Greek texts, respectively. PHILBERTA and

1We use the term “pre-modern” and “Ancient” interchange-
ably following the convention of calling every pre-modern
language stage “Ancient”. This is in line with, e.g. Singh et al.
(2021), Yamshchikov et al. (2022), and the ISO code standard.
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PHILTA are their trilingual counterparts pre-trained
on Greek as well as Latin and English data.

We explore the advantages of (i) the two model
architectures in (ii) mono- and multilingual pre–
training for the mid-resource language Ancient
Greek on a variety of morphological, syntactic,
and semantic tasks, helping to answer questions,
such as: When to choose one architecture over
the other? or: How does multilinguality affect a
language model?

Moreover, we publish the first wide-ranging
benchmark results to compare our models for AG
and Latin to the relevant prior work, establishing
new SoTA results for both languages.

In summary, we aim to unify and push forward
the current research landscape at the intersection of
Classics and NLP with the following contributions:

(i) We introduce four pre-trained language
models for Classics: GRε(BERT|T)A and
PHIL(BERT|T)A. To our knowledge, we are
the first to develop encoder-decoder models
for Classics, and multilingual models tailored
to both Latin and Greek.

(ii) We evaluate the already existing and our pro-
posed models on several tasks, making many
of them comparable for the first time. Fur-
thermore, we outperform the existing Ancient
Greek BERT models by a notable margin.

(iii) Our evaluation sheds light on the differences
between encoders like ROBERTA and en-
coders of encoder-decoder models like T5 as
well as on the influence of multilinguality on
the mid-resource language Ancient Greek. By
offering novel model types for AG, we aim to
inspire new research and application tasks.

(iv) We develop and publish a large-scale, high-
quality pre-training corpus for AG as a contri-
bution to the community.

2 Related Work

Pre-training Data for Ancient Greek. Pre-
trained language models require large amounts of
unlabeled pre-training data. Ancient Greek and
Latin being historical languages, the number of
available texts is inherently limited, which makes
the creation of a high-quality pre-training corpus
even more important. To circumvent this problem,
Singh et al. (2021) and Yamshchikov et al. (2022)
pre-trained their AG BERT model from a Mod-
ern Greek BERT (Koutsikakis et al., 2020). But
this approach has two weaknesses: First, there is

an important cultural gap between modern and an-
cient texts that we do not want to introduce into our
models. A Modern Greek BERT is familiar with
contemporary concepts like cell phones or commu-
nism, which are unknown to antiquity, while we in-
tend to use PLMs as a “window” to ancient cultures.
Also the style of modern internet documents is fun-
damentally different from the transmitted ancient
texts. Second, and more importantly, continuing
pre-training of the Modern Greek BERT prevents
us from adapting its tokenizer. AG, however, uses
more diacritics, which host important information.
By contrast, in our work, we build a tokenizer from
scratch that is optimized for Ancient Greek.

In order to boost the data needed to train “pure”
models of Ancient Greek, we put special effort into
the curation of a large, but high-quality pre-training
corpus for AG, leveraging previously unused tex-
tual sources. Finally, we evaluate the effect of using
additional multilingual pre-training data.

Evaluating Models for Ancient Languages.
Morphological and syntactic tasks, such as PoS tag-
ging, dependency parsing, and lemmatization, have
always been of interest to researchers of Latin and
Ancient Greek. The standard tool for AG morpho-
logical analysis is Morpheus (Crane, 1991), a rule-
based system, that has also been integrated into
many more recent approaches. PoS Tagging has
also been performed by various language-agnostic
systems trained on AG data (Celano et al., 2016),
but their success depends heavily on the chosen
dataset: a winning system on one dataset (Celano
et al., 2016) achieves the worst results on another
(Keersmaekers, 2019). More recently, the CLTK
(Johnson et al., 2021) provides a variety of taggers
for many tasks. Surprisingly, although numerous
richly annotated treebanks are available, systems
have, by now, not been evaluated on a common
benchmark.2 E.g., Singh et al. (2021) test their pro-
posed AG BERT on random splits from three pop-
ular treebanks, which we cannot compare against.
The second AG BERT (Yamshchikov et al., 2022)
has only been evaluated on authorship attribution.

As for lemmatization, Vatri and McGillivray
(2020) provide an evaluation of three different lem-
matizers. However, one of the evaluated candidates
was partly trained on test data, which may have
influenced its performance. It is noteworthy that,

2Cf. also Johnson et al. (2021): “The CLTK lacks formal
evaluations of its models’ accuracies. [...] Unfortunately, [out-
side] benchmarks do not yet exist for pre-modern languages.”
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Form: τὸν δ᾿ ἄῤ ὑπόδρα ἰδὼν προσέφη πόδας ὠκὺς Ἀχιλλεύς ·
Lemma: ὁ δέ ἄρα ὑπόδρα εἶδον πρόσφημι πούς ὠκύς Ἀχιλλεύς ·
UPoS: PRON PART PART ADV VERB VERB NOUN ADJ NOUN PUNCT
XPoS: p-s---ma- g-------- g-------- d-------- v-sapamn- v3siia--- n-p---ma- a-s---mn- n-s---mn- u--------
Gloss: him but then from-below watching spoke-to of-foot swift Achilles .

ROOT

obj

cc

advmod

advmod advcl nmod amod

nsubj

punct

Figure 1: Example sentence (Hom. Il. 1.148) with corresponding dependency, lemma, UPoS, and XPoS labels.
Translation: “Then watching him grimly from under his brows, swift-footed Achilles spoke to him.”

despite the integration of two popular treebanks for
AG into Universal Dependencies (UD, de Marneffe
et al., 2021), many groups working on AG systems
have not compared their models against the results
of models benchmarked on UD data, such as Straka
(2018). We remedy these issues by evaluating our
systems and existing AG BERT models on the
two authoritative treebanks covered by UD. The
tasks we consider – dependency parsing, lemmati-
zation, coarse, universal (UPoS) PoS tagging and
fine-grained, language-specific (XPoS) tagging –
are visualized in Figure 1.

For Latin, the issue does not arise thanks to the
EvaLatin 2022 campaign (Sprugnoli et al., 2022),
which has enabled direct comparison of models
and has engendered strong models for Latin. Yet,
despite the impressive results achieved in EvaLatin,
our trilingual models outperform the existing sys-
tems on PoS tagging and lemmatization.

Language Model Architectures. Language
models can be categorized into three classes:
encoder-only, decoder-only, and encoder-decoder
models. Encoder-only models such as BERT (De-
vlin et al., 2019) and ROBERTA (Liu et al., 2019)
are best suited for tasks that aim to analyze com-
plete sequences by sequence or token classifica-
tion. Encoder-decoder models, on the other hand,
are typically employed for conditional generation
tasks, such as machine translation. Currently, all
three models for ancient languages are BERT and
thus encoder-only architectures.

We argue that an encoder-decoder model, such
as T5 (Raffel et al., 2020), is a useful addition
to this encoder-only landscape. First, it enlarges
the space of possible NLP tasks for AG, enabling
us, e.g., to cast lemmatization as a sequence-to-
sequence task and to explore machine translation
for ancient languages. Second, it allows us to com-

pare the encoder of an encoder-only model with
that of an encoder-decoder architecture, as they are
both trained on the same data with a similar pre-
training objective. Finally, commonly used multi-
lingual encoder-decoder models like MT5 (Xue
et al., 2021) and BYT5 (Xue et al., 2022) are not
pre-trained on Ancient Greek texts.

As we aim for optimally trained encoder-only
models, we chose ROBERTA over BERT: its dy-
namic masking strategy exploits the pre-training
data better, and it has been shown that BERT’s
NSP objective can be detrimental (Liu et al., 2019).

3 Pre-trained Language Models for
Ancient Greek and Latin

3.1 GRε(BERT|T)A and PHIL(BERT|T)A

GRεBERTA and PHILBERTA are ROBERTAbase-,
GRεTA and PHILTA are T5base-sized models. Both
models are pre-trained using a masked language
modeling (MLM) objective. Specifically, in the
case of ROBERTA, wordpieces are masked during
the pre-training process, while for T5, spans are
masked. Although it has been shown that multilin-
gual pre-training can lead to gains for low-resource
languages through cross-lingual transfer, it remains
an open question when exactly it is preferable to
use a multilingual instead of a monolingual model
(Doddapaneni et al., 2021). To explore the impli-
cations of multilinguality for AG language models,
we test different capabilities and possible interfer-
ences by comparing the different model types.

3.2 PLM Fine-tuning for Downstream Tasks3

PoS Tagging. PoS tagging for Ancient Greek typ-
ically aims for a complete morphological analysis:

3The following descriptions remain neutral to different
PLM types by referring to basic transformer components.
Where necessary, we will distinguish specific PLM types.
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Next to the word class, the model has to predict
eight fine-grained morphological attributes.4 We
frame this sequence labeling task as a multi-task
classification problem applied to each token, with
nine different classification heads per token on top
of one shared encoder: We denote a sequence of
tokens S of length n as S = w1, w2, . . . , wn and
refer to the contextualized embedding of each token
as ei = Encoder(w1:n, i). As Byte Pair Encoding
(Sennrich et al., 2016) splits words into subword
units, we represent each token using its first sub-
word embedding in the encoder. Each of the nine
attributes is predicted using a feed-forward network
applied to the last encoding layer, followed by a
softmax function. The total loss is calculated as:

Ltotal =
8∑

m=0

1

9
Lm

We use this approach for the Perseus XPoS dataset.
For the other, less-detailed tagsets, we employ a
single classification head.

Dependency Parsing. We follow Zhang et al.
(2017) who cast dependency parsing as head se-
lection. The model predicts a unique head for
each token considered as a dependent. Since the
model makes independent predictions, the obtained
dependency graph can (in a few cases) be un-
connected and is then completed by the Chu-Liu-
Edmonds algorithm (Chu and Liu, 1965; Edmonds,
1967) for building non-projective trees – given that
AG allows free word order. While Zhang et al.’s
(2017) DENSE parser was based on a bi-directional
LSTM, we define the model on top of the final hid-
den states of the transformer encoders.

Following Zhang et al. (2017), we add an artifi-
cial ROOT token w0 and calculate the probability of
the word wj ∈ {w0, w1, . . . , wN} being the head
of the word wi ∈ {w1, w2, . . . , wn} in S as:

phead(wj |wi, S) =
exp(f(ej , ei))∑N
k=0 exp(f(ek, ei))

where f predicts the score of an edge (wj , wi) as
follows:

f(ej , ei) = v⊤ · tanh(U · ej +W · ei)

Here, v is a weight vector and U, W weight matri-
ces. Dependency labels are predicted in a similar

4Person, number, tense, mood, voice, gender, case, and
degree. Usually, many of these attributes are left empty. E.g.,
only adjectives have the attribute “degree”.

fashion: Let g be a single hidden-layer rectifier net-
work that takes as input the concatenation [ei; ej ].
The probability for the label l is then computed as:

plabel(l|wj , wi, S) =
exp(g(ej , l, ei))∑

l′∈L exp(g(ej , l′, ei))

While Zhang et al. (2017) use the representations
of their trained DENSE model as input for the label
classifier, we resort to the pre-trained embeddings.

Lemmatization. Current systems for lemmati-
zation of AG, such as UDPIPE (Straka, 2018) or
GLEM (Bary et al., 2017), are rule-based or use
a classifier to predict editing rules that modify a
token’s pre- and suffixes. However, these complex
scripts are not well-suited for a language like AG,
which has many irregular forms that involve modi-
fications of the word stem. An alternative approach
is to utilize an encoder-decoder model that receives
the inflected form, the PoS tag, and (optionally)
additional information such as morphological fea-
tures, as demonstrated for different languages by
Schmid (2019) or Wróbel and Nowak (2022).

Yet, these earlier encoder-decoder-based lemma-
tization models are purely word-based and rely on
pre-computed PoS tags or morphological features
in a pipeline setting. By contrast, we propose a
novel T5-based lemmatization model that is (i)
contextualized, so that relevant morphological indi-
cators can be inferred by the model on the fly from
the token’s surrounding context. (ii) The model
works end-to-end: it receives the surface form of
the word to be lemmatized in its full sentence con-
text and predicts its lemma without receiving or
predicting PoS tags or morphological features.5

We mark the t(arget) token to be lemmatized in
its context using delimiter tokens <t_tok_beg>
and <t_tok_end>. For instance, for the input sen-
tence ξύνοιδα <t_tok_beg> ἐμαυτῷ <t_tok_-
end> οὐδὲν ἐπισταμένῳ with the marked inflected
t(arget) token ἐμαυτῷ, we expect as output the
lemma ἐμαυτοῦ. We also experiment with provid-
ing, in addition, the target word as a sequence of in-
dividual characters, delimited by an additional sep-
arator token <t_tok_sep>: ξύνοιδα <t_tok_-
beg> ἐμαυτῷ <t_tok_sep> ἐ μ α υ τ ῷ <t_-
tok_end> οὐδὲν ἐπισταμένῳ.

Semantic and World Knowledge Probing Tasks.
So far, we considered only morphological and syn-

5However, multi-task learning for joint morphological ana-
lysis and lemmatization is an interesting option that we did
not pursue here.
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tactic tasks. However, to evaluate the models more
comprehensively, it is necessary to also test their
semantic and world knowledge. Since such bench-
marks do not exist for AG or Latin, we create
two small datasets to evaluate these aspects. In-
spired by Talmor et al. (2020), we test whether
the language models can distinguish synonyms
from antonyms. For this task, we input a sentence,
e.g., τὸ χρήσιμον καὶ τὸ ἀγαθόν: <mask> ὁμοῖά
ἐστιν (“the useful and the good: they are <mask>
similar”), and the model has to predict either οὐχ
(“not”) or πάντως (“very”). Talmor et al. (2020)
cast a similar task for English as a zero-shot MLM
prediction problem using BERT and ROBERTA.
However, with our prompt, the models always pre-
dict οὐχ (“not”), regardless of the provided word
pairs. Experiments with variations of the prompt
have led to similar difficulties. Hence, we evalu-
ate this task in a few-shot setting, fine-tuning the
MLM-head on 10 to 50 shots of synonyms and
antonyms each, to prepare them for the task.

Similarly, we construct a dataset of family re-
lationships between (mythical) heroes and gods.
Here, the model is given a phrase, such as Τηλέ-
μαχος ὁ τοῦ <mask> παῖς (“Telemachus, son of
<mask>”), and has to predict the correct entity
(in this case, Odysseus). For this task, we test the
models in a zero-shot setting. However, this task
cannot be solved by most encoder-only models, as
the masked names typically consist of more than a
single wordpiece. Thus, for this task, we evaluate
only GRεTA and PHILTA, which can predict full
entity names. By comparing the mono- and multi-
lingual variants, we assess the models’ acquired
world knowledge as well as potential effects that
may be induced by multilingual training: Given
that Greek and Roman mythology share many of
these gods, yet by different names, the multilingual
model may be able to acquire additional knowledge
from the Latin pre-training data, to solve the task
formulated in Ancient Greek. We describe both
datasets in Appendix B.2.

3.3 Acquisition of Pre-training Data

Ancient Greek. To cover a wide range of di-
alects, topics, and time periods of Ancient Greek,
we make use of four different data sources: (the
Greek part of) the Open Greek & Latin Project,6

the CLARIN corpus Greek Medieval Texts,7 the

6https://opengreekandlatin.org/.
7https://inventory.clarin.gr/corpus/890.

Patrologia Graeca,8 and the Internet Archive (IA).9

While the first three sources contain born-digital
textual data, the IA online library provides books
in the public domain along with their OCR tran-
scriptions.

However, we found the partition of texts labeled
as Ancient Greek in the IA to be incomplete and
noisy: only a small fraction of the books contain-
ing AG text was labeled as such, and only few of
them were transcribed with OCR settings support-
ing Greek characters. We hence extracted a novel
data partition from the IA that was then fully re-
OCRed by the Internet Archive to ensure correct
transcription. To select a large number of high-qua-
lity texts, we applied a complex retrieve and filter
procedure, focusing not only on (i) text quality, but
also on (ii) collecting purely Ancient Greek texts,
avoiding inclusion of texts in different languages,
such as Latin, English, or German that can co-occur
in the same book, and on (iii) filtering duplicates.

Latin and English. Acquiring pre-training data
for Latin was facilitated by the Corpus Corporum
project,10 a meta-repository of Latin corpora that
offers a comprehensive representation of the Latin
language. All this data was kindly offered to us.

For English, we collect pre-training data from
various sources, aiming for texts that are related to
antiquity, by being focused on the same topics that
we find in ancient texts – as opposed to modern
themes. To this end, we utilize English translations
of Latin and Ancient Greek texts as pre-training
data. Furthermore, we ensure that the amount of
English data is of similar size as the ancient texts,
to prevent the models from being overwhelmed by
a large number of English texts.

Statistics of pre-training data in Table 1. More
details on corpus creation and statistics in Ap-
pendix C.

3.4 Pre-training Process

Even though our filtering of the IA corpus re-
sulted in high-quality texts, the corpus is neces-
sarily noisier than the born-digital texts. We there-
fore start pre-training on the IA data, and continue
with the born-digital texts. Our tokenizers and the
multilingual variants are trained on the born-digital
texts only. For further pre-training details, see Ap-
pendix A.

8https://patristica.net/graeca/.
9https://archive.org/.

10https://www.mlat.uzh.ch/.
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Language Dataset Number of Tokens

Ancient Greek

Open Greek & Latin 30.0 million
Greek Medieval Texts 3.3 million
Patrologia Graeca 28.5 million
Internet Archive 123.3 million
Overall 185.1 million

Latin Corpus Corporum 167.5 million
English Overall 212.8 million

Table 1: Statistics of the pre-training datasets. Only
Open Greek & Latin is used by Singh et al. (2021) and
Yamshchikov et al. (2022) for their AG BERT models.
Token counts determined by UNIX command wc -w.

4 Experiments

We run the experiments outlined in Section 3.2 to
provide insight into the performances achieved by
different model types and in relation to prior SoTA.

4.1 Datasets

Ancient Greek. For the PoS tagging, dependency
parsing, and lemmatization tasks, we evaluate the
PLMs for AG on the data provided by the Perseus
and the PROIEL datasets, which are both integrated
into Universal Dependencies 2.10 (de Marneffe
et al., 2021).

To probe our models for semantic and world
knowledge (see Section 3.2), we use our newly
constructed datasets, described in Appendix B.2.

Latin. For Latin, we resort to the treebank used
in EvaLatin 2022 (Sprugnoli et al., 2022), which
covers three tasks: PoS tagging, lemmatization, and
feature identification. Since no data for dependency
parsing is provided, we restrict our evaluation to
PoS tagging and lemmatization. In EvaLatin, in-
stead of constructing test data by drawing samples
from the initial data set, the test data exhibits dif-
ferent degrees of distribution differences in rela-
tion to the training data. For each task, three test
sets are provided: The Classical set belongs to the
same genre and time period as the training data, but
comes from an author not included in the training
data. The Cross-genre data includes two works
that belong to different genres, yet being written
during roughly the same time period. The Cross-
time test set is based on text written in the 15th
century, which is significantly later than the texts
of the training data.

In Table 2, we summarize the diverse tasks un-
der consideration with their corresponding metrics,
the used evaluation datasets, the model architec-
tures, and the pre-trained language models that

are applicable to the respective task. Further de-
tails, including dataset statistics, are provided in
Appendix B.1.

4.2 Models and Baselines

Ancient Greek. To showcase the capabilities of a
recent system tailored to AG, we report the results
of the taggers provided by the Classical Language
Toolkit (Johnson et al., 2021).11 As a baseline, we
use the currently best-performing system, UDPIPE

(Straka et al., 2019), a transformer-based multi-
task architecture that utilizes multilingual BERT,
trainable word embeddings, and character embed-
dings.12 In addition, to directly assess the benefits
of using our monolingual model, we replace this
multilingual BERT with our GRεBERTA model.

For PoS tagging and dependency parsing, we fur-
ther compare to both prior encoder models trained
on AG texts. We use the PoS tagger and DENSE

(Section 3.2) to evaluate both AG BERT models as
well as our GRεBERTA and PHILBERTA models.
We apply the same approach to GRETA’s encoder
(GRETA-ENC) to investigate its behavior.

For lemmatization, we compare the performance
of CLTK and UDPIPE with that of our full-fledged
T5 models. To predict a lemma during inference,
we use beam search with a width of 20.

Latin. For Latin, we report the results of both
teams that participated in the EvaLatin 2022 com-
petition: Team KRAKÓW (Wróbel and Nowak,
2022) utilizes the XLM-ROBERTAlarge (Conneau
et al., 2020) model for PoS tagging, team KU-
LEUVEN (Mercelis and Keersmaekers, 2022) em-
ploys an ELECTRA model. For lemmatization,
Wróbel and Nowak (2022) use BYT5small (Xue
et al., 2022), a multilingual encoder-decoder model
similar to MT5 (Xue et al., 2021) that operates
on UTF-8 bytes instead of subwords. Mercelis
and Keersmaekers (2022) implement a cascaded
approach that resembles the Greek lemmatizer
GLEM (Bary et al., 2017): If a rule-based lookup

11 From the multiple taggers offered by the CLTK we
choose the one that achieved best performance on the valida-
tion set. For the Perseus dataset, this is a TnT tagger (Brants,
2000), while for PROIEL, it is Stanza (Qi et al., 2020). Note,
however, that it is not possible to directly compare the results
to those of the other models, as they were trained on differ-
ent data splits and using an older version of the dataset (cf.
https://github.com/cltk/greek_treebank_perseus).

12We report scores of the most recent, unpublished
version of UDPIPE (https://ufal.mff.cuni.cz/udpipe/
2/models#universal_dependencies_210_models) and the
scores obtained when training UDPIPE ourselves.
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PoS Tagging Dependency Parsing Lemmatization
UPoS XPoS Unlabeled Labeled

Task Description PoS tagging with univer-
sally applicable, coarse
PoS tags

PoS tagging with
language-specific, fine-
grained tags; complete
morphological analysis
in the case of Perseus

predicting the head
of each token in text

predicting the head
and relation type of
each token in text

predicting the lemma
of each token in text

Metric Accuracy Accuracy UAS LAS Accuracy
Datasets Perseus ✓

PROIEL ✓

EvaLatin ✓

Perseus ✓

PROIEL ✓

EvaLatin ✗

Perseus ✓

PROIEL ✓

EvaLatin ✗

Perseus ✓

PROIEL ✓

EvaLatin ✗

Perseus ✓

PROIEL ✓

EvaLatin ✓

Model Architecture Encoder + Classification
Head

Encoder + Classification
Head(s)

Encoder + DENSE Encoder + DENSE Encoder-decoder

PLM Instances (GRε|PHIL)BERTA,
(GRε|PHIL)TA-ENC

(GRε|PHIL)BERTA,
(GRε|PHIL)TA-ENC

(GRε|PHIL)BERTA,
(GRε|PHIL)TA-ENC

(GRε|PHIL)BERTA,
(GRε|PHIL)TA-ENC

(GRε|PHIL)TA

Table 2: Summary of the tasks under consideration.

returns multiple lemmata, the system tries to disam-
biguate between these possibilities by means of the
predicted PoS tag. To further clarify any remain-
ing ambiguities, a classifier is trained to select the
correct lemma from the available options.

5 Results

Ancient Greek. We present the results for PoS
tagging and dependency parsing for Ancient
Greek on the Perseus dataset in Table 3. The
PROIEL dataset seems to be easier to solve, as all
models achieve performances that are much closer
to each other (see Appendix D). Since the overall
trends are consistent across both datasets, we focus
our discussion on the results on the Perseus dataset.

As seen in Table 3, the CLTK performs clearly
below all other models on both tasks. While the
CLTK is not directly comparable to the other mod-
els (see fn. 11), the evaluation still provides a per-
spective on the capabilities of the de facto only
available framework for processing AG text.

UDPIPE provides a strong baseline, which AG
BERT (Yamshchikov et al., 2022) is unable to
consistently outperform. By contrast, all other
PLMs show clear gains over UDPIPE. The mono-
lingual, encoder-only GRεBERTA model consis-
tently performs best on all tasks. Interestingly, the
performance of GRETA-ENC on PoS tagging is
slightly worse than that of PHILBERTA, while
it achieves better results for dependency parsing.
This trend has also been observed in initial exper-
iments. We elaborate on the behavior of GRεTA-
ENC and PHILBERTA in Section 6.

Results for Lemmatization are shown in Table 4.
Here, augmenting UDPIPE with GRεBERTA’s pre-
trained embeddings does not lead to better scores.
We attribute this to the tokenization process and
refer to our discussion in Section 6. GRεTA, on the
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Figure 2: Synonym/antonym disambiguation accuracy
for growing few-shot sizes: GRεBERTA and PHIL-
BERTA vs. AG BERT models. We use equal amounts
of synonyms and antonyms (a run with 20 samples in-
cludes 10 synonyms and 10 antonyms). We use k-fold
cross-validation. Error bars show standard deviation.

other hand, demonstrates strong encoder-decoder
capabilities and significantly outperforms UDPIPE.
Providing GRεTA with the individidual characters
of the target word leads to a small gain.

The results of the Synonym/antonym disam-
biguation task are visualized in Figure 2. Again,
GRεBERTA and PHILBERTA demonstrate higher
scores compared to the AG BERT models. We
observe the same for GRεTA and PHILTA (cf. Fig-
ure 4 in Appendix D). Our monolingual models
and their multilingual counterparts perform almost
equally, especially taking into account the overlap-
ping standard deviation bands. We see a minimal
trend for PHILTA to gain over GRεTA in Figure 4,
but our small datasets do not allow drawing firm
conclusions on their relative performance.

Finally, we report zero-shot results for the Fam-
ily relationship task in Table 5. As the T5-based
models have been pre-trained to predict multiple
masked spans at once, they tend to predict, for each
sample, more than a single entity. We interpret the
output as a ranked list and report recall@k, evalu-
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Model PoS Tagging Dependency Parsing
UPoS XPoS UAS LAS

CLTK 68.83 47.21 59.21 43.24
UDPIPE (official) 92.88 85.60 80.32 74.53
UDPIPE (ours) 92.36 (0.09) 84.72 (0.06) 78.74 (0.04) 73.14 (0.06)
UDPIPE + GRεBERTA 95.74 (0.06) 90.95 (0.07) 86.30 (0.14) 82.15 (0.14)
AG BERT (Singh et al., 2021) 94.92 (0.18) 88.27 (0.27) 84.03 (0.12) 78.80 (0.37)
AG BERT (Yamshchikov et al., 2022) 92.50 (0.03) 84.56 (0.13) 80.34 (0.11) 74.22 (0.21)
GRεTA-ENC 94.44 (0.14) 89.03 (0.13) 87.32 (0.04) 83.06 (0.07)
PHILBERTA 95.60 (0.21) 90.41 (0.18) 86.99 (0.06) 82.69 (0.06)
GRεBERTA 95.83 (0.10) 91.09 (0.02) 88.20 (0.11) 83.98 (0.21)

Table 3: PoS tagging and dependency parsing results on the Ancient Greek Perseus dataset. The results are averaged
over three runs with different random seeds, and the standard deviation is indicated in parentheses, except for the
CLTK and UDPIPE (reported results). Note also that the CLTK is not trained on exactly the same data as the other
models and therefore not strictly comparable.

Model Accuracy
CLTK 76.10
UDPIPE (official) 86.70
UDPIPE (ours) 84.50 (0.09)
UDPIPE + GRεBERTA 85.56 (0.06)
PHILTA 90.02 (0.02)
PHILTA + Chars 90.66 (0.01)
GRεTA 90.80 (0.10)
GRεTA + Chars 91.14 (0.10)

Table 4: Lemmatization results for Ancient Greek on
the Perseus dataset. Results are averaged over three
runs, with standard deviation in parentheses, except for
the CLTK and UDPIPE (reported results).

Model k = 1 k = 5 k = 10 k > 10

GRεTA 4.39 9.65 10.53 10.96
PHILTA 3.07 8.33 11.40 11.84

Table 5: Zero-shot family relationships task (recall@k).

ating whether the correct entity is contained in the
first 1, 5, 10, and >10 predictions, restricting the
maximum sequence length to 50 wordpieces.

Latin. The PoS tagging and lemmatization scores
on EvaLatin 2022 are reported in Table 6. While
the performance scores of all models are rather
close to each other, our trilingual models consis-
tently outperform the EvaLatin 2022 participant
systems across all three subtasks. PHILBERTA

reaches even higher scores than KRAKÓW-OPEN

on PoS tagging, which leverages additional an-
notated data. On lemmatization, PHILTA simi-
larly outperforms KRAKÓW-CLOSED on the Classi-
cal, Cross-genre, and Cross-time subtasks by 2.25,
1.78, and 0.23 percentage points, respectively, but
does not outperform KRAKÓW-OPEN on the Cross-
genre and the Cross-time subtask.

Model Classical Cross-genre Cross-time

U
Po

S

KRAKÓW-OPEN 97.99 96.06 92.97
KRAKÓW-CLOSED 97.61 94.62 92.70
KU-LEUVEN 96.33 92.31 92.11
PHILBERTA 98.23 (0.06) 96.59 (0.15) 93.25 (0.12)

L
em

m
at

iz
. KRAKÓW-OPEN 97.26 96.45 92.15

KRAKÓW-CLOSED 95.08 91.62 91.68
KU-LEUVEN 85.44 86.48 84.60
PHILTA + Chars 97.33 (0.04) 93.40 (0.13) 91.91 (0.04)

Table 6: PoS tagging and lemmatization results
(EvaLatin 2022 dataset). KRAKÓW-OPEN uses addi-
tional data.

6 Analyses and Discussion

Training Behavior of GRεTA-ENC. While
GRETA-ENC and GRεBERTA are of similar size
(Table 7) and pre-trained with comparable objec-
tives, GRεTA-ENC performs slightly worse than
GRεBERTA. One reason may be that in a T5
model, some important information is distributed
across encoder and decoder. This raises the ques-
tion of whether encoders in encoder-decoder mod-
els are trained suboptimally, and whether improve-
ments may be obtained by combining separately
pre-trained encoders and decoders, or by pre-
training the encoder before adding the decoder. An-
other reason may be that the encoder is not accus-
tomed to using its classification head. Here again,
it may be advantageous to pre-train the encoder be-
fore extending it to encoder-decoder pre-training.

In Figure 3 we compare the PoS tagging valida-
tion accuracy of GRεTA-ENC to that of a randomly
initialized T5 encoder (same size). GRεTA-ENC

performs much worse than the randomly initial-
ized model after one epoch, reaching only approx-
imately 6%. However, while the randomly initial-
ized model stagnates, GRεTA-ENC outperforms
the randomly initialized model after two epochs,
significantly improving its performance thereafter.
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Figure 3: Validation accuracy (AG XPoS Tagging on
Perseus) for GRεTA-ENC and GRεBERTA and random-
ly initialized counterparts over various training epochs.

By contrast, GRεBERTA reaches a high validation
accuracy already after one epoch. We see the same
trend with different random seeds and for depen-
dency parsing, but it is most apparent in Perseus
XPoS tagging.

Lemmatization as a Character-based Task. As
seen in Table 4, augmenting UDPIPE with GRε-
BERTA does not lead to significant improvement
for lemmatization. This we attribute to the tokeniza-
tion process. GRεBERTA uses wordpieces, which
contain little information about individual charac-
ters. We hypothesize that UDPIPE ignores the
GRεBERTA embeddings for lemmatization and in-
stead relies on its own additional character embed-
dings. Accordingly, explicitly providing GRεTA

with the individual characters of the inflected word
form leads to a slight increase in performance.

This explanation can also shed light on the suc-
cess of the UTF-8 bytes-based BYT5 model for
lemmatization in Latin. This model was chosen by
Wróbel and Nowak (2022), after initial experiments
with the wordpiece-based MT5 (Xue et al., 2021)
had underperformed. Future work on (AG) lemma-
tization could therefore investigate whether Byte
Pair Encoding-based models can be augmented
with character embeddings as additional input.

Effect of Multilinguality. Table 3 shows that
PHILBERTA consistently performs slightly worse
compared to monolingual GRεBERTA on morpho-
logical and syntactic tasks. We attribute this to the
curse of multilinguality (Conneau et al., 2020): the
capacity of the trilingual models is split between
three languages. Still, both models achieve strong
results on AG and Latin tasks and can be especially
useful in tasks that require multilingual knowledge,
as in MT or glossing tasks. Our small-sized knowl-
edge probing tasks show very similar performance
for both model types. While the size of our data
does not allow for firm conclusions, this is in line

with Kassner et al. (2021), who find no improved
knowledge representation in multilingual PLMs.

7 Conclusion

We introduce four strong language models for Clas-
sical Philology, including the first encoder-decoder
PLMs for Ancient Greek and Latin. We rigorous-
ly benchmark our models and prior work on vari-
ous tasks, demonstrating strong improvement over
the SoTA. We showcase the versatility of encoder-
decoder models, (i) by offering a novel end-to-end
contextualized lemmatization model for AG and
Latin, with a greatly simplified architecture that
clearly outperforms prior work; (ii) while MLM in
encoder-only models is restricted to single-token
predictions, our T5-based models exhibit great flex-
ibility for formulating probing tasks, which help
exploring what models learn from pre-training data.
Considering the two investigated model dimen-
sions, our work (iii) sheds light on differences be-
tween the encoders of T5 vs. ROBERTA, where
the former tends to exhibit slower learning curves;
(iv) our monolingual models outperform the multi-
lingual ones in monolingual morphological and
syntactic tasks, without clear trends on small-scale
semantic and knowledge probing tasks.

Limitations

While we aim for a comprehensive analysis of ex-
isting methods (such as lemmatization) and model
types for Ancient Greek and other Classical lan-
guages, there are limits to exhaustively exploring
the full space of variations and rigorously eval-
uating their impact on model performance. For
example, we could not comprehensively evaluate
the effects of (i) the pre-training corpora, as we did
not re-train a BERT model for Ancient Greek, to
pin down the exact difference between prior BERT
models (which were trained on smaller data before)
and our own models, which are based on inherently
stronger model types; similarly, we did not induce
Latin ROBERTA and T5 models, to confirm the
differences between mono- and multilingual mod-
els for language-specific Latin tasks. (ii) In a simi-
lar vein, we did not compare different model sizes.
However, we studied prior work and scaling laws
and believe that the base model is appropriate for
the size of our training data. Further factors of this
type concern (iii) hyperparameter settings and (iv)
other factors in isolation.

Not only do we miss sufficient computational
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resources to perform such manifold ablations and
comparative assessments, we also considered the
carbon footprint that such experiments cause and
which does not stand up to the insights that could
possibly be gained from more experiments.

For these reasons, we focused on two selected di-
mensions of variants that we believe to be valuable
for a community interested in Classical languages:

(i) We tried to answer questions as to when
multilingual models can be profitably used, and
(ii) aimed to showcase various potential advantages
of encoder-decoder models, which by now have not
been considered in studies on Classical languages.

Another clear limitation lies in the size of the
demonstrated semantic and knowledge probing
tasks. (i) They are of small size, and we cannot,
therefore, draw firm conclusions as to, e.g., the ef-
fect of multilinguality. Also, the synonym/antonym
disambiguation task is presumably the most diffi-
cult one. As a counter-balance, we used a more
tangible task for knowledge probing, by choosing
family relationships, which we expect to be fre-
quently found in the pre-training corpora.

(ii) A further limitation we find for the knowl-
edge probing tasks resides in the size of our trained
models and the underlying pretraining data. This
limitation could be one that is not easy to over-
come. But we still encourage the community to
create similar probing task datasets. Future work
may find appropriate ways of data augmentation,
or transfer learning methods that are applicable to
historical languages so that further progress and
insight will be possible.

Ethics Statement

It is a computationally demanding task to pre-train
large language models. However, transfer learning
opens the possibility to fine-tune our pre-trained
models, which showed strong performances, in a
reasonable amount of time.

The texts utilized for pre-training the models
may well exhibit biases related to ancient perspec-
tives of the world. We do not view this as an issue,
as the proposed language models for historical lan-
guages are intended for academic use and do not
have practical, everyday applications.
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Hyperparameter GRεBERTA PHILBERTA GRεTA PHILTA
Adam ϵ 1 · 10−8 1 · 10−8 1 · 10−8 1 · 10−8

Adam β1 0.9 0.9 0.9 0.9
Adam β2 0.999 0.999 0.999 0.999
Attention Dropout 0.1 0.1 0.1 0.1
Attention Heads 12 12 12 12
Batch Size 128 256 512 512
dff — — 2048 2048
dkv — — 64 64
dmodel — — 768 768
Hidden Dropout 0.1 0.1 0.1 0.1
Hidden Size 768 768 — —
Learning Rate (LR) 5 · 10−5 5 · 10−5 5 · 10−3 5 · 10−3

LR Scheduler linear linear linear linear
Nb. of Layers 12 12 2 · 12 2 · 12
Nb. of Parameters 126 mill. 135 mill. 223 mill. 247 mill.
Train Epochs 50, 100 0, 100 50, 100 0, 100
Warmup Steps 0 0 10000 10000
Weight Decay 0 0 0.01 0.01

Table 7: Pre-training hyperparameters.

A Training Details

A.1 Pre-training Details

We pre-train the monolingual models for 50 epochs
on the Internet Archive corpus and continue pre-
training for 100 epochs on the born-digital texts, the
trilingual models were trained for 100 epochs on
the born-digital texts. The tokenizers were trained
on the born-digital data only. GRεBERTA and
PHILBERTA were trained on an NVIDIA A100-
PCIE-40GB, GRεTA and PHILTA on a Google
TPU v2-8. Training took between 3 and 7 days.
Further details in Table 7.

A.2 Fine-tuning Details

We train every Greek model for 50 epochs on an
NVIDIA GeForce GTX 1080 Ti, evaluating the
model after every epoch on the validation set and
using early stopping with a stopping patience of
5. As the EvaLatin dataset does not provide a val-
idation set, we use 2% of the training data as the
validation set. Furthermore, since the EvaLatin
dataset is larger than the Greek datasets, we set
the maximum number of training epochs to 20 for
the Latin models. Depending on the treebank and
the task, training the models took approximately 1
hour (PoS tagging), 5–7 hours (dependency pars-
ing), and 1–3 days (lemmatization). Further details
in Table 8. We did not experiment with different
hyperparameter settings, as our main goal was to
provide comparable and wide-ranging benchmark-
ing results.

Hyperparameter
Adam ϵ 1 · 10−8

Adam β1 0.9
Adam β2 0.999
Batch Size 32
Early Stopping Patience 5
Learning Rate 1 · 10−4

Learning Rate Scheduler linear
Random Seeds 42, 1, 2
Train Epochs 50
Weight Decay 1 · 10−5

Table 8: Fine-tuning hyperparameters.

Perseus PROIEL EvaLatin
Sentences (train) 11 476 15 014 15 785
Sentences (dev) 1137 1019 —
Sentences (test) 1306 1047 1960
Sentences (total) 13 919 17 080 17 745
Tokens (train) 159 895 187 033 316 573
Tokens (dev) 22 135 13 652 —
Tokens (test) 20 959 13 314 45 544
Tokens (total) 202 989 213 999 362 117
Lemmata 13 413 9348 10 357
Forms 41 304 32 591 54 133
UPoS Tags 14 14 16
XPoS Tags 847 27 —
Dependency Relations 25 33 —

Table 9: Statistics of the Perseus, PROIEL, and
EvaLatin datasets.

B Downstream Task Details

B.1 Universal Dependencies and EvaLatin
2022

For PoS tagging, UD provides universal PoS tags
(UPoS) and language-specific PoS tags (XPoS).
UPoS consists of 17 tags used for all languages cov-
ered by UD.13 XPoS tags, on the other hand, can
follow a dataset-specific annotation scheme. While
the XPoS tags of the PROIEL dataset are similar
to the UPoS tags, the Perseus dataset aims for a
complete morphological analysis (cf. Section 3.2).

See Table 9 for further details and Table 2 for
an overview. In line with common convention,
we report the accuracy for both PoS tag sets. For
dependency parsing, we report the unlabeled at-
tachment score (UAS) and the labeled attachment
score (LAS). The UAS indicates the percentage of
tokens that have been assigned the correct head,
whereas for the LAS, both the predicted head and
the dependency label have to be correct. All results
are obtained from the official evaluation script.14

13In the case of AG, 3 of these 17 tags are not used.
14https://universaldependencies.org/conll18/

conll18_ud_eval.py and https://github.com/CIRCSE/
LT4HALA/blob/master/2022/data_and_doc/conll18_
ud_eval_EvaLatin_2022_rev2.py.
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B.2 Semantic and World Knowledge

Semantic Knowledge. We asked a graduate stu-
dent and a doctoral candidate in the field of Classics
to gather synonym and antonym pairs. Such word
pairs can be nouns and substantivized adjectives
or substantivized infinitives. We then utilized a
predefined template to generate sentences that in-
corporate the collected pairs. As this template does
not ensure grammaticality, the annotators manually
edited the sentences. Subsequently, the sentences
were independently reviewed by both annotators,
deduplicated, and then verified by a professor of
Ancient Greek. All three annotators participated
on a voluntary basis and were not compensated for
their contributions. One of the annotators is also a
co-author of this paper.

141 synonym and 146 antonym pairs were col-
lected. While we publish all 287 examples, we
drop 5 randomly selected antonym pairs in our ex-
periments to ensure that the number of synonym
and antonym pairs is equal. We train all language
models for 10 epochs using a batch size of 4 and
report the averaged, cross-validated results.

World Knowledge. This dataset was compiled
by one of the previous annotators who is not a
co-author of this paper. The annotator gathered
228 examples with 11 different relations by read-
ing through Hesiod’s Theogony and by drawing
inspiration from Kern et al. (2003), a lexicon that
contains comprehensive information about mythi-
cal figures.

C Acquisition of Pre-training Data

C.1 Ancient Greek Pre-training Data

Open Greek & Latin Project.15 The Open
Greek & Latin Project is an umbrella project cover-
ing various subprojects that aim toward the devel-
opment of open-access corpus linguistic resources
for Latin and Classical Greek. Two of them, the
Perseus Digital Library and the First Thousand
Years of Greek project, contain Ancient Greek
texts, mostly covering texts that are typically as-
sociated with classical antiquity, such as Homer,
Plato, Herodotus, Euripides, and Plutarch. Already
in this corpus, we find a wide variety of dialects and
language stages. The Open Greek & Latin Project
contains approximately 30 million tokens.

15https://opengreekandlatin.org/.

Greek Medieval Texts.16 The Greek Medieval
Texts corpus offered by CLARIN covers writings
from the fourth to the sixteenth century AD. It
contains religious, poetical-literary and political-
historical texts as well as hymns and epigrams.
Strictly speaking (and as the name suggests) the
corpus contains texts of late antiquity, and in par-
ticular, Medieval Greek. We argue, however, that
Ancient Greek and Medieval Greek, although dif-
ferent language stages, are strongly connected to
each other and that our language models benefit
from seeing more diverse data during pre-training.
This corpus contains about 3.3 million tokens and
is licensed under the CC BY-NC 4.0 license.

Patrologia Graeca.17 The Patrologia Graeca is a
large collection of important Christian texts written
in Greek, dating from the first until the fifteenth cen-
tury AD. Since not all texts are machine-readable
and available, we are restricted to those out of copy-
right texts that are made accessible (around 28.5
million tokens).

Internet Archive.18 The Internet Archive is an
online library that provides texts obtained from pub-
lic domain books via OCR. We found out that only
a small fraction of the books containing Ancient
Greek text was labeled as such. Moreover, we dis-
covered that even less books were transcribed with
OCR settings that allowed Greek characters. As a
result, many high-quality scans of Ancient Greek
texts were transcribed into incomprehensible se-
quences of non-Greek characters. For example,
the verse ὦ γύναι ἦ μάλα τοῦτο ἔπος νημερτὲς
ἔειπες19 is transcribed as & yvvai, ff pdXa
tovto Sttoˆ vrjpepTeˆ e=C/.7r=C9∗.

Even though transcriptions of this nature may
seem useless at first glance, they are nevertheless
helpful in identifying documents that have been in-
correctly treated as non-Greek texts, for many com-
mon words are relatively consistently transcribed.
τοῦτο (“this”), for example, is often transcribed
into tovto. By searching for all books that contain
the word tovto, we can identify potential Greek
texts. This approach allows us to avoid the com-
putationally intensive task of applying Greek OCR
to every book in the Internet Archive, and instead
focus our efforts on a more targeted search. All
candidates are then filtered more aggressively: If

16https://inventory.clarin.gr/corpus/890.
17http://patristica.net/graeca/.
18https://archive.org/.
19Hom. Il. 3.204.
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a candidate contains the five (presumably) Greek
stopwords tovto (τοῦτο), kal (καί), tov (τόν), to
(τό), and yap (γάρ) more than ten times, the candi-
date is considered to contain Greek text.

We argue that this method effectively mini-
mizes false positives while retaining a high recall:
Since Greek stopwords like τοῦτο (“this”) and καί
(“and”) should be present often enough in every
book with a significant amount of text, our ap-
proach should correctly classify them as Greek.
Non-Greek texts, on the other hand, should hardly
contain all five stopwords more than ten times.

This procedure yields 25378 books, on which
the Internet Archive applies OCR with Ancient
Greek as a target language. While our method reli-
ably detects Greek texts, it does not ensure a high
scan (and therefore also text) quality. In order to
use solely high-quality data, we keep only lines in
which more than 90% of tokens are also present in
the born-digital vocabulary. A similar approach is
used by Bamman and Burns (2020), who use Latin
texts from the Internet Archive as pre-training data
for Latin BERT. They “retain only those books
where at least 40% of tokens are present in a vocab-
ulary derived from born-digital texts”. We argue
that it is more sensible to include or disregard indi-
vidual lines instead of whole books: Almost every
Greek text contains a Latin or English introduction,
and many books are equipped with a translation.
Thus, our method not only ensures high-quality
data but also removes non-Greek text parts.

Finally, to ensure that our dataset does not con-
tain any significant duplications, we remove all
instances of repeated text exceeding 300 characters.
After this aggressive filtering, we have approxi-
mately 123.3 million tokens left. To demonstrate
its quality, we show 40 samples randomly drawn
from the dataset in Table 10.

C.2 English Pre-training Data
By collecting English translations of ancient texts,
we focus on texts that are strongly connected to an-
tiquity. We gather these texts from various sources:
The Perseus Digital Library20 and the Internet Clas-
sics Archive21 provide born-digital open-access
translations of Classical Greek and Latin texts. Sim-
ilarly, the Documenta Catholica Omnia database22

contains a large amount of primarily catholic texts
in many languages, of which we select the English

20http://www.perseus.tufts.edu/hopper/.
21http://classics.mit.edu/.
22http://www.documentacatholicaomnia.eu/.

τῆς Μασίστεω γυναικός, ἐούσης καὶ ταύτης ἐν-
θαῦτα. ὡς
πίστις ὑμῶν· φοβηθέντες δὲ ἐθαύμαζον, λέγοντες
πρὸς ἀλλήλους,
ὑποληπτέον’ ἡ γὰρ πέψις τοῖς μὲν ἐν τῷ ἄνθει μᾶλ-
λον
ἀνέπαυσαν γὰρ τ. ἐμὸν πνεῦμα κ. τὸ ὑμῶν
εἰ Σατανᾶς ἀνέστη ἐφ᾿ ἑαυτόν
πρόσωπον ναοῦ Κυρίου, μετὰ τὸ ἀποικίσαι
Ναβουχοδονόσορ
ἐκείνοις δὲ ὄντος ἀεὶ τοῦ ἐπιχειρεῖν καὶ ἐφ ἡμῖν εἶναι
δεῖ τὸ προαμύνασθαι.
ἑξακοσίους ὁπλίτας εἰς τὴν πόλιν ἄ ἄγει. ἐν τῷ
στρατεύματι
ἔχοντι τοῦ Γερμανικοῦ συναγορεύειν μέλλοντος,’
νοοῦν εἴη, ὅτι ἄλλου τὴν νόησιν λαμβάνον οὐ τὸ
ἐὰν δὲ μὴ τούτοις δύνῃ χρῆσθαι,
μου- ἐφ᾿ ὑμᾶς’ ὑμεῖς.δὲ καθίσατε ἐν τῇ πόλει Υ ῾Ιερ-
ουσαλὴμ
καὶ νοητῆς τελειότητος.
μένον οὐκ ἐπίστευσαν.
τίον ἀράτω ᾿Ιησοῦς
διδόντα ὑετὸν ἐπὶ τὴν γῆν, ἀποστέλλοντα ὕδωρ
ταρασσέσθω ὑμῶν ἡ καρδία, μηδὲ δευλιάτω.
ἠκούσατε ὅτι ἐγὼ
τὴν ξημίην ἐπέθηκαν. Ζυώδεκα δέ μοι δοκέουσι
πόλιας ποιή-
ἐστι’ τὰ δὲ γενητὰ, ἔξωθεν ὄντα, πρόσκειται, ὡς τῇ
ὁ δὲ Κλεομένης τὸν ἱρέα ἐκέλευε τοὺς εἵλωτας ἀπὸ
τοῦ
ἅπαξ ἀλλὰ πολλάκις.
ἐλθόντος. καὶ αὖθις ἔδοξε τούτου χάριν καὶ
κερματίξῃς αὐτό, ἐκεῖνοι πολλαπλασιοῦσιν,
εὐλαβούμενοι
καὶ προλάμψαν τὸ ἐραστὸν αὐτοῦ καὶ τὸν κρυπτό-
μενον
πεντακοσίας, οὺς πάντας ἡ τοῦ δεσπότου χάρις καὶ
φιλανθρωπία διατρέφει.
ταύτης ἰδίᾳ προετρέπετο τὸν Σικόπαν κοινωνῆσαι
οὐδὲ παναρμονίου ἡμῖν δεήσει ἐν ταῖς ὠδαῖς τε καὶ
σημεῖα τοῦ τοῦτον συχοφαντεῖν ἐγχαλοῦντ᾿ ἀφορ-
μήν.
συμπεριλαμβανομένων καὶ ψυχῆς καὶ τῶν ἐν
πλὴν ἐξ ὠκυβόλων εἴ ποτε τόξων
σφι ἄρτισις περὶ τὸ σῶμα ἐστί.
μὴ πέσῃς κατέναντι ἐνεδρεύοντος
ο Εἰς τοῦτο ἐσυνέργησαν οἱ πρῶτοι τῆς γενεᾶς τῆς,
χωρίων ἢ οἰκιῶν ὑπῆρχον, πωλοῦντες ἔφερον τὰς
τιμὰς
ᾧ δὲ περὶ ἑκάστην μεθοδον¨) φιλοσοφοῦντι καὶ μὴ’
τῶν τῆς. παιδὸς γάμων, Ζεὺς διαλύσας ἐπέτρεψεν
ὑμῶν. πόλεις αἱ πρὸς νότον συνεκλείσθησαν, καὶ
οὐκ ἦν ὁ ἀνοίγων: ἀπῳκίσθη Ιουδας,
πειρασμούς. Περὶ ταύτης ἡ Γραφὴ (ά. Κορ,
ἔπεσεν ἐπὶ πρόσωπον αὐτοῦ προσευχόμενος
ζητεῖ’ οἷδεν. γὰρ ὁ-πατὴριὑμῶν ὁ οὐράνιος

Table 10: 40 randomly drawn lines of the Internet
Archive pre-training dataset.

partition for our use. Finally, we utilize Lexun-
dria,23 Loebulus,24 and the Project Gutenberg to
add (often proofread) scans of books in the pub-
lic domain. While Lexundria and Loebulus are

23https://lexundria.com/.
24https://ryanfb.xyz/loebolus/.
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restricted to providing translations of Latin and
Greek texts, the Project Gutenberg offers a more
diverse range of literature. Therefore, we use only
books from Project Gutenberg that are tagged with
the keyword “Latin”. We report detailed statistics
in Table 11.

Language Dataset Number of Tokens

Ancient Greek

Open Greek & Latin 30.0 million
Greek Medieval Texts 3.3 million
Patrologia Graeca 28.5 million
Internet Archive 123.3 million
Overall 185.1 million

Latin Corpus Corporum 167.5 million

English

Perseus 10.8 million
Classics Archive 4.9 million
Lexundria 2.8 million
Loebulus 14.0 million
Project Gutenberg 28.7 million
Documenta Catholica Omnia 151.7 million
Overall 212.8 million

Table 11: Statistics of the pre-training datasets. Only
Open Greek & Latin is used by Singh et al. (2021) and
Yamshchikov et al. (2022) for their AG BERT models.
Token counts determined by UNIX command wc -w.

D Further Results

Model Accuracy
CLTK 96.51
UDPIPE (official) 94.71
UDPIPE (ours) 93.87 (0.05)
UDPIPE + GRεBERTA 94.17 (0.05)
GRεTA 97.40 (0.02)
GRεTA + Chars 97.48 (0.02)

Table 12: Lemmatization results on the Ancient Greek
PROIEL dataset. The results are averaged over three
runs with different random seeds, and the standard devi-
ation is indicated in parentheses, except for the CLTK
and UDPIPE (reported results).
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Figure 4: Synonym/antonym disambiguation accuracy
scores for different few-shot training set sizes, for
GRεTA and PHILTA against AG BERT models. The
models are always given equal amounts of synonyms
and antonyms, e.g., when using 20 training instances,
the models are given 10 synonyms and 10 antonyms.
We evaluate all models using k-fold cross-validation
and report standard deviation as error bars.
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Model PoS Tagging Dependency Parsing
UPoS XPoS UAS LAS

CLTK 97.10 97.47 76.81 73.39
UDPIPE (official) 97.77 98.05 86.05 82.14
UDPIPE (ours) 97.99 (0.05) 97.68 (0.06) 85.64 (0.17) 81.70 (0.25)
UDPIPE + GRεBERTA 98.56 (0.02) 98.70 (0.03) 89.75 (0.16) 86.59 (0.15)
AG BERT (Singh et al., 2021) 97.98 (0.02) 98.14 (0.05) 88.50 (0.09) 84.72 (0.18)
AG BERT (Yamshchikov et al., 2022) 97.19 (0.06) 97.42 (0.08) 86.61 (0.21) 82.12 (0.15)
GRεTA-ENC 98.16 (0.02) 98.31 (0.03) 89.93 (0.08) 86.48 (0.08)
PHILBERTA 98.15 (0.16) 98.45 (0.05) 90.32 (0.13) 86.43 (0.61)
GRεBERTA 98.60 (0.03) 98.70 (0.04) 90.28 (0.03) 86.84 (0.12)

Table 13: PoS tagging and dependency parsing results on the Ancient Greek PROIEL dataset. The results are
averaged over three runs with different random seeds, and the standard deviation is indicated in parentheses, except
for the CLTK and UDPIPE (reported results). Note also that the CLTK is not trained on exactly the same data as
the other models and therefore not directly comparable.
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