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Abstract

Visually-rich Document Understanding
(VrDU) has attracted much research attention
over the past years. Pre-trained models on
a large number of document images with
transformer-based backbones have led to
significant performance gains in this field.
The major challenge is how to fusion the
different modalities (text, layout, and image)
of the documents in a unified model with
different pre-training tasks. This paper focuses
on improving text-layout interactions and
proposes a novel multi-modal pre-training
model, LayoutMask. LayoutMask uses local
1D position, instead of global 1D position,
as layout input and has two pre-training
objectives: (1) Masked Language Modeling:
predicting masked tokens with two novel
masking strategies; (2) Masked Position
Modeling: predicting masked 2D positions
to improve layout representation learning.
LayoutMask can enhance the interactions
between text and layout modalities in a unified
model and produce adaptive and robust multi-
modal representations for downstream tasks.
Experimental results show that our proposed
method can achieve state-of-the-art results on
a wide variety of VrDU problems, including
form understanding, receipt understanding,
and document image classification.

1 Introduction

Visually-rich Document Understanding (VrDU) is
an important research area that aims to understand
various types of documents (e.g., forms, receipts,
and posters), and it has attracted much attention
from both academia and industry. In recent years,
pre-training techniques (Devlin et al., 2019; Zhang
et al., 2019) have been introduced into this area
and self-supervised pre-training multi-modal mod-
els have demonstrated great successes in various
VrDU tasks (Xu et al., 2020, 2021; Hong et al.,
2022; Li et al., 2021a).

Figure 1: A receipt image from SROIE dataset and the
global/local 1D positions of tokens based on global/in-
segment reading orders. Local 1D positions restart with
“1” for each individual segment. Blue Arrow: When
using global 1D position, the reading order is explicitly
implied by the ascending numbers, so the word after
“Qty” is “Price”. Red Arrows: When using local 1D
position, the successor of “Qty” is not directly given
and can have more possible choices, so their semantic
relations and 2D positions will be considered during
pre-training.

However, existing document pre-training mod-
els suffer from reading order issues. Following the
idea of BERT (Devlin et al., 2019), these methods
(Xu et al., 2020, 2021; Hong et al., 2022) usually
adopt ascending numbers (e.g., 0, 1, 2,.., 511) to
represent the global reading order of tokens in the
document. Then, these numbers are encoded into
1D position embeddings to provide explicit reading
order supervision during pre-training, which are
called “global 1D position”. While such global
1D positions are widely used in NLP models for
textual data, it is not a good choice for document
data. Firstly, plain texts always have definite and
linear reading orders, but the reading order of a
document may not be unique or even linear, which
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cannot be simply encoded with monotonically in-
creasing numbers. Secondly, the global reading
order of a document is usually obtained by order-
ing detected text segments from OCR tools with
empirical rules, so it heavily relies on stable and
consistent OCR results, affecting the generalization
ability in real-world applications. Moreover, the
empirical rules to obtain reading orders (e.g., “top-
down and left-right”) may not be able to handle
documents with complex layouts, thus providing
inaccurate supervision.

Some previous studies have attempted to solve
the above reading order issues. LayoutReader
(Wang et al., 2021) proposes a sequence-to-
sequence framework for reading order detection
with supervised reading order annotations. XYLay-
outLM (Gu et al., 2022) utilizes an augmented XY
Cut algorithm to generate different proper reading
orders during pre-training to increase generaliza-
tion ability. ERNIE-Layout (Peng et al., 2022)
rearranges the order of input tokens in serialization
modules and adopts a reading order prediction task
in pre-training. While these studies propose data-
based or rule-based solutions to provide explicit
reading order supervision, we believe that the self-
supervised pre-training process on a large number
of documents without using extra supervision is
sufficient to help the model to learn reading order
knowledge, and such knowledge can be implic-
itly encoded into the pre-trained model with better
adaptiveness and robustness to various document
layouts.

We proposed a novel multi-modal pre-training
model, LayoutMask, to achieve this goal. Lay-
outMask only uses text and layout information as
model input and aims to enhance text-layout inter-
actions and layout representation learning during
pre-training. It differs from previous studies in
three aspects: choice of 1D position, masking strat-
egy, and pre-training objective.

Instead of global 1D position, LayoutMask pro-
poses to use the in-segment token orders as 1D
position, which is referred to as “local 1D position”
(See illustration in Figure 1). As local 1D posi-
tion does not provide cross-segment orders, Layout-
Mask is supposed to infer global reading order by
jointly using 1D position, 2D position, and seman-
tic information, thus bringing in-depth text-layout
interactions. To further promote such interactions,
we equip the commonly used pre-training objec-
tive, Masked Language Modeling (MLM), with

two novel masking strategies, Whole Word Mask-
ing and Layout-Aware Masking, and design an
auxiliary pre-training objective, Masked Position
Modeling, to predict masked 2D positions during
pre-training. With the above designs, we increase
the difficulty of pre-training objectives and force
the model to focus more on layout information to
obtain reading order clues in various document lay-
outs in self-supervised learning, thus producing
more adaptive and robust text-layout representa-
tions for document understanding tasks.

Experimental results show that our proposed
method can bring significant improvements to
VrDU tasks and achieve SOTA performance with
only text and layout modalities, indicating that pre-
vious studies have not fully explored the poten-
tial power of layout information and text-layout
interactions. The contributions of this paper are
summarized as follows:

1. We propose LayoutMask, a novel multi-modal
pre-training model focusing on text-layout
modality, to generate adaptive and robust
multi-modal representations for VrDU tasks.

2. In LayoutMask, we use local 1D position in-
stead of global 1D position to promote read-
ing order learning. We leverage Whole Word
Masking and Layout-Aware Masking in the
MLM task and design a new pre-training ob-
jective, Masked Position Modeling, to en-
hance text-layout interactions.

3. Our method can produce useful multi-modal
representations for documents and signifi-
cantly outperforms many SOTA methods in
multiple VrDU tasks.

2 Related Work

The early studies in VrDU area usually use uni-
modal models or multi-modal models with shallow
fusion (Yang et al., 2016, 2017; Katti et al., 2018;
Sarkhel and Nandi, 2019). In recent years, pre-
training techniques in NLP (Devlin et al., 2019;
Zhang et al., 2019; Bao et al., 2020) and CV (Bao
et al., 2021; Li et al., 2022) have become more
and more popular, and they have been introduced
into this area. Inspired by BERT (Devlin et al.,
2019), LayoutLM (Xu et al., 2020) first improved
the masked language modeling task by using the
2D coordinates of each token as layout embed-
dings, which can jointly model interactions be-
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tween text and layout information and benefits doc-
ument understanding tasks. Following this idea,
LayoutLMv2 (Xu et al., 2021) propose to concate-
nate image patches with textual tokens to enhance
text-image interactions, and LayoutLMv3 (Huang
et al., 2022) proposed to learn cross-modal align-
ment with unified text and image masking.

While the above methods focus on text-image
interactions, some other studies have realized the
importance of layout information. StructuralLM
(Li et al., 2021a) utilizes segment-level layout fea-
tures to provide word-segment relations. Doc-
Former (Appalaraju et al., 2021) combines text,
vision, and spatial features with a novel multi-
modal self-attention layer and shares learned spa-
tial embeddings across modalities. LiLT (Wang
et al., 2022) proposes a language-independent lay-
out transformer where the text and layout infor-
mation are separately embedded. ERNIE-Layout
(Peng et al., 2022) adopts a reading order predic-
tion task in pre-training and rearranges the token
sequence with the layout knowledge.

3 Methodology

LayoutMask is a multi-modal transformer that can
encode text and layout information of documents
and produce multi-modal representations. The
pipeline of LayoutMask can be seen in Figure 2.
LayoutMask uses the transformer model with a
spatial-aware self-attention mechanism proposed
in LayoutLmv2 (Xu et al., 2021) as the backbone
and follows its preprocessing settings for text and
layout embeddings. In Section 3.1, we will dis-
cuss the different choices of layout information in
LayoutMask. In Section 3.2, we will introduce the
pre-training tasks and masking strategies used in
LayoutMask.

3.1 Selection of Layout Information

For VrDU tasks, there are two types of commonly
used layout information: 1D position and 2D po-
sition. We list the 1D and 2D positions used in
previous studies in Table 1.

1D Position: As we discussed in Section 1, us-
ing global 1D position will bring read order issues
and could damage the adaptiveness and robustness
of pre-trained models. Different from some pre-
vious models that leverage global 1D position as
model input, we propose to use local 1D position
in LayoutMask. Local 1D position only encodes
the token orders within each segment and always

Method Position
1D 2D

LayoutLM (Xu et al., 2020) Global Word
StructuralLM (Li et al., 2021a) Global Segment
LayoutLMv2 (Xu et al., 2021) Global Word
BROS (Hong et al., 2022) Global Segment†

LiLT (Wang et al., 2022) Global Segment
LayoutLMv3 (Huang et al., 2022) Global Segment
LayoutMask(Ours) Local Segment

Table 1: The 1D position and 2D position choices in
previous studies. Our method uses local 1D position and
segment-level 2D position. †: BROS leverages relative
2D positions instead of absolute positions.

restarts with 1 for each individual segment. Illus-
trations of the global and local 1D positions can
be seen in Figure 1 and Figure 2. Compared with
global 1D position, the major difference of using
local 1D position is the lack of cross-segment or-
ders, so the global reading order has to be inferred
with other layout and semantic clues. Besides, the
in-segment orders implied by local 1D position are
more reliable and trustworthy than cross-segment
orders when meeting complex document layouts.

2D Position: The 2D position is represented as
a 4-digit vector like [x1, y1, x2, y2], where [x1, y1]
and [x2, y2] are the normalized coordinates of
the top-left and bottom-right corners of a text
box. There are two commonly used types of
2D positions: word-level 2D position (Word-2D)
and segment-level 2D position (Segment-2D). For
Word-2D, tokens of the same word will have
the same word-level boxes as their 2D position.
While for Segment-2D, the segment coordinates
are shared by tokens within each segment.

In our model, we choose local 1D position and
segment-level 2D position as our model input,
where local 1D position can provide in-segment
orders, and segment-level 2D position can pro-
vide cross-segment reading order clues, so the pre-
trained model can learn the correct global reading
order by jointly using 1D and 2D positions. We
will compare the experimental results using differ-
ent 1D & 2D position combinations in Section 4.3.1
and provide detailed discussions.

3.2 Pre-training Objectives

3.2.1 Masked Language Modeling
The Masked Language Modeling task is the most
essential and commonly used pre-training task in
multi-modal pre-training. In this task, we randomly
mask some tokens with a given probability Pmlm

(e.g., 15%) and recover these tokens during pre-
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Figure 2: The model pipeline of LayoutMask. Red Text: Illustration of the Masked Language Modeling task. Blue
Text: Illustration of the Masked Position Modeling task.

training.
For each document, we use M to denote the

number of masked tokens. yi and ȳi represent
the ground truth and prediction of the i-th masked
token. Then the loss of this task is the average cross
entropy loss of all masked tokens:

Lmlm = − 1

M

M∑

i=1

CE(yi, ȳi). (1)

In preliminary experiments, we find that the
naive MLM task is not optimal for multi-modal pre-
training. Thus we propose to adopt two novel strate-
gies, Whole Word Masking (WWM) and Layout-
Aware Masking (LAM), to enhance this task.
Whole Word Masking: The WWM strategy was
first proposed for Chinese language models to in-
crease the task difficulty (Cui et al., 2021). Fol-
lowing this strategy, we set masks at word-level
instead of token-level, which is much more chal-
lenging. When using WWM, the semantic relations
between masked and unmasked tokens of the same
words are eliminated, so the model has to find more
context to predict masked words, which can pro-
mote text-layout interactions.
Layout-Aware Masking: As we use Local-1D and
Segment-2D as model input, the global reading or-
der should be obtained by jointly using 1D and 2D
positions, where Local-1D provides in-segment or-
ders and segment-2D provides cross-segment clues.

We find that the cross-segment orders are harder to
be learned, so we propose Layout-Aware Masking
(LAM) strategy to address this issue. Unlike naive
masking strategy where each token has an equal
masking probability Pmlm, in LAM strategy, the
first and last word of each segment has a higher
probability (i.e., 3× Pmlm) to be masked. In order
to predict such masked words, the model has to
pay more attention to finding their contexts in the
preceding or succeeding segment, thus promoting
learning cross-segment orders.

3.2.2 Masked Position Modeling
To further promote the representation learning of
layout information in the MLM task, we design an
auxiliary task, Masked Position Modeling (MPM),
which has a symmetric pre-training objective: re-
covering randomly masked 2D positions during
pre-training (See illustration in Figure 2). Inspired
by WWM, we also apply the MPM task at word-
level instead of token-level. For each pre-training
document, we randomly choose some unduplicated
words with a given probability Pmpm. Then, for
each selected word, we mask their 2D positions
with the following two steps:
Box Split: We first split the selected word out of
its segment so the original segment box becomes 2
or 3 segment pieces (depending on if the word is at
the start/end or in the middle). The selected word
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Method #Parameters Modality FUNSD(F1↑) CORD(F1↑) SROIE(F1↑)
BERTBase (Devlin et al., 2019) 110M T 60.26 89.68 90.99
RoBERTABase (Liu et al., 2019) 125M T 66.48 93.54 -
UniLMv2Base (Bao et al., 2020) 125M T 68.90 90.92 94.59
BROSBase (Hong et al., 2022) 110M T+L 83.05 95.73 95.48
LiLTBase (Wang et al., 2022) - T+L 88.41 96.07 -
LayoutLMBase (Xu et al., 2020) 160M T+L+I 79.27 - 94.38
LayoutLMv2Base (Xu et al., 2021) 200M T+L+I 82.76 94.95 96.25
TILTBase (Powalski et al., 2021) 230M T+L+I - 95.11 97.65†

DocFormerBase (Appalaraju et al., 2021) 183M T+L+I 83.34 96.33 -
LayoutLMv3Base (Huang et al., 2022) 133M T+L+I 90.29 96.56 -
LayoutMaskBase (Ours) 182M T+L 92.91±0.34 96.99±0.30 96.87±0.19
BERTLarge (Devlin et al., 2019) 340M T 65.63 90.25 92.00
RoBERTALarge (Liu et al., 2019) 355M T 70.72 93.80 -
UniLMv2Large (Bao et al., 2020) 355M T 72.57 92.05 94.88
LayoutLMLarge (Xu et al., 2020) 343M T+L 77.89 - 95.24
BROSLarge (Hong et al., 2022) 340M T+L 84.52 97.40 -
LayoutLMv2Large (Xu et al., 2021) 426M T+L+I 84.2 96.01 97.81
TILTLarge (Powalski et al., 2021) 780M T+L+I - 96.33 98.10†

DocFormerLarge (Appalaraju et al., 2021) 536M T+L+I 84.55 96.99 -
LayoutLMv3Large (Huang et al., 2022) 368M T+L+I 92.08 97.46 -
ERNIE-LayoutLarge (Peng et al., 2022) - T+L+I 93.12 97.21 97.55
LayoutMaskLarge (Ours) 404M T+L 93.20±0.29 97.19±0.20 97.27±0.32

Table 2: F1 scores (%) of different methods on FUNSD, CORD, and SROIE .The best results are denoted in
boldface. †: TILT utilized supervised datasets during pre-training, so the scores are not directly comparable.

becomes a one-word segment piece with just itself.
Then we update the local 1D positions (restarting
with 1) and segment 2D positions for each new
segment piece. With the above operations, we can
eliminate the local reading order clues implied by
original 1D and 2D positions, so the model has to
focus on semantical clues and new 2D positions.
Box Masking: For each selected word, we mask its
2D position with pseudo boxes: [0, 0, 0, n] where
n ∈ [0, 1, 2, ...] is a random number. Notice that
segment 2D position is shared among tokens in
the same segment, so the pseudo boxes will act
as identifiers to distinguish identical tokens from
different masked boxes, thus avoiding ambiguity.

During pre-training, our model is supposed to
predict the masked 2D positions with GIoU loss
(Rezatofighi et al., 2019):

Lmpm = − 1

N

N∑

i=1

(
|Bi ∩ B̄i|
|Bi ∪ B̄i|

− |Ci\(Bi ∪ B̄i)|
|Ci|

). (2)

Here, i ∈ [1, 2, ..., N ] is the index of N masked
2D positions. Bi is the ground truth box normalized
to [0,1], and B̄i denotes the predicted 2D position.
Ci is the smallest convex shapes that covers Bi and
B̄i. Lmpm is the average GIoU loss of N masked
2D positions.

The MPM task is very similar to the cloze test,
where a group of randomly selected words is sup-
posed to be refilled at the right positions in the

original document. To predict the masked 2D posi-
tions of selected words, the model has to find the
context for each word based on semantic relations
and then infer with 2D position clues from a spa-
tial perspective. The joint learning process with
both semantic and spatial inference can promote
text-layout interactions and help the model to learn
better layout representations.

With the above two pre-training objectives, the
model is pre-trained with the following loss:

Ltotal = Lmlm + λLmpm, (3)

where λ is a hyper-parameter that controls the bal-
ance of the two pre-training objectives.

4 Experiments

4.1 Pre-training Settings

LayoutMask is pre-trained with IIT-CDIP Test Col-
lection (Lewis et al., 2006). It contains about 42
million scanned document pages, and we only use
10 million pages. We use a public OCR engine,
PaddleOCR1 to obtain the OCR results.

We train LayoutMask with two parameter sizes.
LayoutMaskBase has 12 layers with 16 heads, and
the hidden size is 768. LayoutMaskLarge has 24
layers with 16 heads where the hidden size is
1024. LayoutMaskBase and LayoutMaskLarge are

1https://github.com/PaddlePaddle/PaddleOCR
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Method Modality Accuracy↑
Base Large

VGG-16 (Afzal et al., 2017) I 90.97
Ensemble (Das et al., 2018) I 93.07
LadderNet (Sarkhel and Nandi, 2019) I 92.77
BERT (Devlin et al., 2019) T 89.81 89.92
RoBERTA (Liu et al., 2019) T 90.06 90.11
UniLMv2 (Bao et al., 2020) T+L 90.06 90.20
LayoutLM (Xu et al., 2020) T+L 91.78 91.90
StructuralLM (Li et al., 2021a) T+L - 96.08
SelfDoc (Li et al., 2021b) T+L+I 92.81 -
TITL (Powalski et al., 2021) T+L+I 95.25 95.52
LayoutLMv2 (Xu et al., 2021) T+L+I 95.25 95.64
DocFormer (Appalaraju et al., 2021) T+L+I 96.17 95.50
LiLT (Wang et al., 2022) T+L+I 95.68 -
LayoutLMv3 (Huang et al., 2022) T+L+I 95.44 95.93
ERNIE-Layout (Peng et al., 2022) T+L+I - 96.27
LayoutMask (Ours) T+L 93.26 93.80

Table 3: The accuracies (%) of different methods on
RVL-CDIP dataset. For transformer-based models, we
provide results for both base and large versions.

initialized with pre-trained XLM-RoBERTa mod-
els (Conneau et al., 2020).

For hyper-parameters, we have Pmlm=25% and
Pmpm=15% (See ablation study in Section A of the
Appendix). The weight of MPM loss λ is set to be
1.

4.2 Comparison with the State-of-the-Art

In this section, we compare LayoutMask with
SOTA models on two VrDU tasks: form & receipt
understanding and document image classification.

4.2.1 Form and Receipt Understanding
In this task, we conduct entity extraction task on
three document understanding datasets: FUNSD
(Jaume et al., 2019), CORD (Park et al., 2019), and
SROIE (Huang et al., 2019). The FUNSD dataset
is a form understanding dataset, which contains
199 documents (149 for training and 50 for test)
and 9707 semantic entities. The CORD dataset is a
receipt understanding dataset, and it contains 1000
receipts (800 for training, 100 for validation, and
100 for test) with 30 semantic labels in 4 categories.
The SROIE dataset is another receipt understanding
dataset with four types of entities, containing 626
receipts for training and 347 receipts for test.

For evaluation, we adopt the word-level F1 score
as the evaluation metric for FUNSD and CORD and
use the entity-level F1 score for SROIE. Since these
datasets are quite small, in order to provide stable
and reliable results, we repeat our experiments ten
times for each test and report the average F1 scores
and standard errors as the final results.

The results of previous methods and Layout-
Mask on these datasets are listed in Table 2. We
have categorized them by the modalities used in

pre-training: “T” for text, “L” for layout, and “I”
for image. Notice that LayoutMask is a “T+L”
model that does not use image modality.

For the base version, LayoutMaskBase out-
performs other methods, including “T+L+I”
models, on all three datasets (FUNSD+2.62%,
CORD+0.43%, SROIE+0.62%). For the large ver-
sion, LayoutMaskLarge ranks first on FUNSD and
has comparable results on CORD and SROIE.

These results show that LayoutMask has com-
petitive performance with SOTA methods, demon-
strating the effectiveness of our proposed modules.
Since LayoutMask only uses text and layout in-
formation, we believe that the potential power of
layout information has not been fully explored in
previous studies.

4.2.2 Document Image Classification
In the document image classification task, we aim
to classify document images in RVL-CDIP dataset
(Harley et al., 2015). This dataset is a subset of
the IIT-CDIP collection with 400,000 labeled doc-
ument images (320,000 for train, 40,000 for valida-
tion, and 40,000 for test) in 16 categories. We use
PaddleOCR to extract text and layout information
as model input. We compare different methods
with the overall classification accuracies on RVL-
CDIP, and the results are in Table 3.

It is observed that LayoutMask has beaten all uni-
modality models (“I” and “T”). For “T+L” models,
LayoutMaskBase outperforms other base models
with a margin of 1.48%, while LayoutMaskLarge
takes the second place in large models. Compared
with “T+L+I” models where image modality is
utilized, LayoutMask falls behind due to the lack
of visual features from image modality. We have
found that the image modality plays an important
role in this task because RVL-CDIP images contain
many elements that cannot be recognized by OCR
engines (e.g., figures, table lines, and handwritten
texts) and have orientation issues (See examples
in Figure 5 of the Appendix). So the lack of im-
age modality will bring difficulties that cannot be
solved with only text and layout information.

4.3 Ablation Study on LayoutMask
4.3.1 Comparison of Layout Information
We first compare the performance of LayoutMask
using different layout information. To make a
fair comparison, we use LayoutMask with only
the MLM task and the WWM strategy during pre-
training. For each test, LayoutMask is pre-trained
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Position Settings Datasets
1D 2D FUNSD (F1↑) CORD (F1↑) SROIE (F1↑)

Global Word 82.17±0.45 95.95±0.43 96.02±0.34
Global Segment 91.61±0.42 96.69±0.24 96.20±0.26
Local Word 91.65±0.36 95.86±0.22 96.54±0.23
Local Segment 92.30±0.24 96.68±0.12 96.56±0.21

Table 4: The average F1 scores (%) with different 1D position and 2D position combinations. The best results are
denoted in boldface.

# Position Settings
1D & 2D

Swap
Probability

SROIE (F1↑)
Address Company Date Total Overall

1 Local+Segment - 96.69±0.37 95.88±0.28 99.66±0.13 94.02±0.49 96.56±0.21
2

Global+Segment

- 96.54±0.51 95.84±0.59 99.69±0.26 92.73±0.57 96.20±0.26
3 10 91.73±2.00 95.22±0.61 99.65±0.34 91.87±1.33 94.62±0.69
4 20 90.03±3.77 94.93±0.53 99.60±0.32 91.67±1.35 94.06±1.02
5 30 88.12±4.59 94.88±0.82 99.55±0.28 91.19±1.38 93.44±1.14

Table 5: F1 scores (%) on SROIE dataset with difference 1D positions and increasing segment swap probabilities
(%). We report both entity-level scores (“Address”, “Company”, “Date”, and “Total”) and overall results (“Overall”)
for detailed comparison.

and fine-tuned with a specific 1D and 2D position
combination. The results are listed in Table 4.

Performance of 1D Position: For 1D position,
Local-1D outperforms Global-1D on both FUNSD
(+9.48%/+0.69% with Word-2D/Segment-2D) and
SROIE (+0.52%/+0.36%) and falls a little behind
on CORD (-0.07%/-0.01%).

To understand the benefits of using Local-
1D, we provide entity-level F1 score on SROIE
dataset in Table 5 (#1 for Local+Segment and
#2 for Global+Segment). It is obvious that the
performance gap between Local+Segment and
Global+Segment mainly comes from entity “To-
tal” (from 94.02% to 92.72%), while other entities
have similar F1 scores. We illustrate two example
images of SROIE and their entities annotations in
Figure 3. The right image, which contains entity
“Total”, has both vertical layout (first two lines) and
horizontal layout and has multiple misleading num-
bers with the same content as ground truth (i.e.,
“193.00”). So it is hard to recognize the entity “To-
tal” by using the ordinary reading order implied by
Global-1D. Therefore, using Local-1D can perform
better since it is more adaptive to such cases.

Performance of 2D Position: For 2D position, us-
ing segment-level 2D position brings better results
on all three datasets, regardless of the 1D position
types. An important reason is that the segment
information is highly indicative of recognizing en-
tities. For example, every entity in FUNSD and
CORD exactly shares the same segment. Therefore,
although Word-2D contains more layout details, it
will break the alignments between 2D positions

and entities, thus bringing performance drops. A
typical result of such phenomenon2 can be seen
on FUNSD, where replacing Global+Segment to
Global+Word will result in a significant decrease
of 9.44%.
Robustness Comparison: Besides performance
superiority, another important reason to choose the
local 1D position is its robustness to layout distur-
bance. In real-world cases, a typical layout distur-
bance is “Segment Swap”, where segments in the
same line are indexed with wrong orders due to
document rotation or OCR issues. In such scenar-
ios, the incorrect cross-segment order will lead to
incorrect global 1D positions and can be harmful to
model inference. Fortunately, the local 1D position
is naturally immune to such disturbance since it
does not rely on cross-segment orders, making it
more robust than global 1D position.

To quantify such differences in robustness, we
demonstrate how the segment swap will influence
the performance of using global 1D position by
simulating it on test datasets. For each test docu-
ment, we randomly choose some lines with a given
probability Pswap and then swap the segments in
it. We conduct experiments on LayoutMaskBase

(MLM+WWM) in Global+Segment setting with
different Pswap (i.e., 10%, 20%, and 30%) and the
results are reported in Table 5 (#3-5).

During our experiments, we have found that the
segment swap does not bring significant perfor-

2Similar phenomenon can also be observed in the Lay-
outLM series models, where using Segment-2D increase F1
scores for about 8% on FUNSD dataset.
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# Pre-training Setting Datasets
MLM WWM LAM MPM FUNSD (F1↑) CORD (F1↑) SROIE (F1↑) RVL-CDIP (ACC↑)

1
√

89.73±0.50 96.32±0.15 95.76±0.34 92.17
2

√ √
92.30±0.24 96.68±0.12 96.56±0.21 92.89

3
√ √ √

92.66±0.26 96.89±0.24 96.64±0.22 93.03
4

√ √ √
92.77±0.30 96.84±0.17 96.66±0.32 93.11

5
√ √ √ √

92.91±0.34 96.99±0.30 96.87±0.19 93.26

Table 6: Performance analysis with different pre-training objectives and masking strategies.

Figure 3: Two images from SROIE dataset. Colored
boxes denote the ground truth of entities. The left im-
age contains two cross-line and cross-segment entities
(“Address” and “Company”). The right image, with a
mixture of vertical and horizontal layouts, contains the
“Total” entity.

mance changes on FUNSD and CORD datasets (so
these results are not listed due to the limited space).
A possible reason is that FUNSD and CORD do
not contain cross-segment entities, so the segment
swap can not break the order of words in each
entity. Evidence for this explanation is that the
SROIE dataset is significantly affected by segment
swap, and its cross-segment entities (“Address” and
“Company”) have obvious performance drops. In
SROIE, the majority of “Address” entities and a few
“Company” entities are printed in multiple lines
(See examples in Figure 3), so the segment swap
can change the in-entity orders of entity words.
The results show that the “Address” entity has the
largest drop among all entities (-4.81%, -6.51%,
and -8.42% for Pswap=10%, 20%, 30%). Besides,
the “Total” entity has the second largest decrease
(-0.86%, -1.06%, and -1.54%). As aforementioned,
the “Total” entities are usually surrounded by com-
plex layouts and misleading numbers, so the seg-
ment swap will bring extra difficulties in recogniz-
ing the correct entities.

The above performance decreases of using
global 1D position prove the superiority of using
local 1D position since it is not affected by such
layout disturbance and can have more robust per-
formance in real-world scenarios.

4.3.2 Effectiveness of Proposed Methods
In Table 6, we provide results using different pre-
training tasks and masking strategies to demon-
strate the effectiveness of our proposed modules.

Comparing #1 and #2 in Table 6, we observe that
WWM brings significant performance improve-
ments on all datasets. The reason is that it in-
creases the difficulty of the MLM task, so we can
obtain a stronger language model. We also find that
LAM can also brings consistent improvements on
all dataset because LAM can force the model to
learn better representations for layout information,
which is beneficial to downstream tasks.

Comparing #2 to #4 and #3 to #5, it is observed
that the MPM task also brings considerable im-
provements on all datasets. MPM works as an aux-
iliary task to help the MLM task and can increase
the pre-training difficulty, contributing to learning
better and more robust layout representations.

Moreover, the full-version LayoutMask (#5) out-
performs the naive version (#1) by a large margin
(FUNSD+3.18%, CORD+0.67%, SROIE+1.11%,
and RVL-CDIP+1.09%), demonstrating the effec-
tiveness of our proposed modules when working
together. To better illustrate the effectiveness of
our model design, we list category-level accuracy
improvements on RVL-CDIP dataset and provide
detailed discussions in Section B of the Appendix.

5 Conclusion

In this paper, we propose LayoutMask, a novel
multi-modal pre-training model, to solve the read-
ing order issues in VrDU tasks. LayoutMask
adopts local 1D position as layout input and can
generate adaptive and robust multi-modal represen-
tations. In LayoutMask, we equip the MLM task
with two masking strategies and design a novel pre-
training objective, Masked Position Modeling, to
enhance the text-layout interactions and layout rep-
resentation learning. With only using text and lay-
out modalities, our method can achieve excellent
results and significantly outperforms many SOTA
methods in VrDU tasks.
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Limitations

Our method has the following limitations:
Datasets: In multi-modal pre-training, we rely on
downstream datasets to evaluate the performance
of pre-trained models. The commonly used entity
extraction datasets are relatively small and lack di-
versity, so the proposed method may not generalize
well to real word scenarios.
Lack of Image Modality: In LayoutMask, we fo-
cus on text-layout interactions, leaving the image
modality unexplored. However, documents in the
real world contain many elements that can not be
described by text and layout modalities, like fig-
ures and lines, so incorporating image modality
is important in building a universal multi-modal
pre-training model for document understanding.
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Figure 4: The F1 scores on FUNSD, CORD, and SROIE
with different masking probabilities. FUNSD dataset
uses the x-axis on the right side.

Figure 5: RVL-CDIP images from different categories.
(1) Advertisement; (2) News article; (3) Presentation
(with incorrect orientations).

A Ablation Study of Masking
Probabilities

We compare LayoutMask using different Pmlm and
Pmpm, and the results are in Figure 4. We first find
the best Pmlm without using the MPM task, and the
optimal value is 25%. Then we fix such optimal
Pmlm to find the best Pmpm, which is 15% as the
results show.

B Ablation Study on RVL-CDIP

To further understand the effectiveness of our
model design, we list the detailed classification
results on RVL-CDIP dataset with the naive ver-
sion and the full version in Table 7. It is observed
that the major performance improvements come
from three categories: presentation (+3.36%), ad-

Category Model Settings Diff. (%)Naive Full
letter 90.30 90.86 0.56
form 85.71 86.77 1.07
email 98.17 98.33 0.15
handwritten 93.96 94.26 0.30
advertisement 88.47 91.40 2.93
sci-report 87.87 89.38 1.51
sci-publication 93.08 93.73 0.65
specification 95.91 96.56 0.64
file folder 91.29 92.71 1.42
news article 90.09 92.44 2.35
budget 94.01 94.96 0.95
invoice 94.02 94.54 0.52
presentation 86.14 89.50 3.36
questionnaire 92.44 92.88 0.44
resume 98.31 98.70 0.39
memo 94.93 95.12 0.19
Overall 92.17 93.26 1.09

Table 7: The category-level accuracies (%) on RVL-
CDIP dataset of LayoutMask on the naive version and
the full version. Categories with top-3 accuracy im-
provements are denoted in boldface.

vertisement (+2.93%), and news article (+2.35%).
We find these categories have more diverse lay-
outs (See examples in Figure 5), so classifying
these documents requires a better understanding
of the document structure, which also indicates
the effectiveness of our methods in helping layout
understanding.
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