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Abstract

Recent works show the effectiveness of cache-
based neural coreference resolution models on
long documents. These models incrementally
process a long document from left to right and
extract relations between mentions and entities
in a cache, resulting in much lower memory
and computation cost compared to computing
all mentions in parallel. However, they do not
handle cache misses when high-quality entities
are purged from the cache, which causes wrong
assignments and leads to prediction errors. We
propose a new hybrid cache that integrates two
eviction policies to capture global and local
entities separately, and effectively reduces the
aggregated cache misses up to half as before,
while improving F1 score of coreference by
0.7 ∼ 5.7pt. As such, the hybrid policy can
accelerate existing cache-based models and of-
fer a new long document coreference resolu-
tion solution. Results show that our method
outperforms existing methods on four bench-
marks while saving up to 83% of inference time
against non-cache-based models. Further, we
achieve a new state-of-the-art on a long docu-
ment coreference benchmark, LitBank.

1 Introduction

Coreference Resolution (CR) is fundamental in
document-level Natural Language Processing. Its
goal is to identify mentions belonging to the same
entity. These mentions often scatter throughout the
document, but they can be linked together through
coreference resolution. CR is a building block
for common sense understanding (Levesque et al.,
2012; Sakaguchi et al., 2021; Balahur et al., 2011;
Liu et al., 2021a), reading comprehension (Dasigi
et al., 2019; Storks et al., 2019), information extrac-
tion (Yao et al., 2019; Ji and Grishman, 2008; Lu
and Ng, 2018), and text summarization (Liu et al.,
2021b; Azzam et al., 1999; Xu et al., 2020).

Conventional CR models enumerate every pair
of mentions in a document in parallel, so the com-

Maria Skłodowska was born in Warsaw, in Congress Poland in
the Russian Empire, on 7 November 1867 ...

Paragraph 1

Born in Paris on 15 May 1859, Pierre Curie was the son of
Eugène Curie (1827–1910), a doctor of French Catholic
origin from Alsace, ...

Paragraph 5

In nature, radium is found in uranium and (to a lesser
extent)  ...

Paragraph 10

She won the Nobel Prize in Chemistry, "in recognition of
her services to the advancement of chemistry by the
discovery of the elements radium and polonium... 

Paragraph 15

Marie Curie

Pierre Curie

Radium

Nobel Prize

Figure 1: For a long document, the topic switching often
happens, such as the discussion might shift from "Marie
Curie" to "Pierre Curie," followed by "Radium," and
then "Nobel Prize." These shifts in topic inevitably lead
to certain entities being temporarily excluded from the
ongoing discussion but reintroduced after a series of
topic changes.

putation and memory cost is quadratic to the num-
ber of mentions in a document (Xia et al., 2020),
where mention is a pronoun, a noun phrase, or a text
span that can be referred. This quadratic overhead
poses a challenge for long-doc CR. Recent work
(Xia et al., 2020; Toshniwal et al., 2020, 2021) pro-
poses cache-based CR models which scan mentions
in a document from left to right, storing resolved
entities in a cache and determining whether to as-
sign a new mention to an entity in the cache or push
it to the cache as a new entity. When the cache is
full, it will evict entities according to a certain evic-
tion policy, such as LRU (Least Recently Used).
We denote the cache with LRU eviction policy as
a local cache (L-cache) because it keeps the more
recent entities. Since the small cache size bounds
the number of potential coreference relations that
the model probes for each mention, it reduces the
computation and memory cost. Specifically, the
cost reduces to O(|C||D|) from O(|D|2), where
the cache size |C| ≪ |D|, |C| and |D| are cache
size and document length, respectively.

However, multiple topics are common when doc-
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Figure 2: Overview of our method. The model scans the mentions m1,m2, · · · in a document from left to right.
There are two caches whose eviction strategy follows recent usage and frequency, respectively. For each mention,
the model decides whether to push it into caches as a new entity cluster or assign it to an existing entity cluster. If
the frequency of an entity is higher than any entity in the G-cache, we will push it into the G-cache. Otherwise,
we will push it into the L-cache. Note that if an entity in the L-cache has a higher frequency than any entity in the
G-cache, we switch them as shown with the red edge in the figure. If a cache is full, it evicts the entity according to
the cache policy.

ument is long and the focus of narrative may switch
(Figure 1). This phenomenon impacts the perfor-
mance of LRU policy due to the repeated alterna-
tion of topics, causing an entity to be mentioned
after a long span of text, increasing its chance of
eviction from the cache. When processing a men-
tion that requires the evicted entity, it results in a
cache miss. Empirically, we find 11.1% mentions
encounter cache misses when adopting LRU policy
on real data (see Section 5.1).

Our analysis of cache miss reveals that the pat-
tern of entity usages follows the Pareto principle
(Koch, 2011) (or 80-20 rule). In other words, a
few high frequency entities are used globally (i.e.,
key concepts for each topic) and account for most
of the cache misses. In LitBank (Bamman et al.,
2019), 6% of the entities account for 97% of the
cache miss. Another example that fits this observa-
tion is that the 20 main characters are mentioned
1,722 times in Animal Farm (Orwell, 2021), a book
of 30,000 words (see Section 5.5).

Inspired by this insight, we propose a dual cache
to address different patterns of word usage. One
cache stays unchanged as before, i.e., an L-cache
using LRU policy. Another cache is devoted to
global and high frequent entities evicted from L-
cache, called G-cache. Intuitively, G-cache adopts
the classical cache policy LFU (Least Frequently
Used). We denote the proposed hybrid cache as
Dual cache. The idea is to promote a division of
labor in order to make more effective use of cache:
L-cache deals with local, clustered mentions, typi-
cally in one topic, whereas G-cache targets global

entities within a longer range, typically across top-
ics. A diagram of a model with Dual cache is
shown in Figure 2.

We conduct extensive experiments on corefer-
ence resolution benchmarks, including OntoNotes
(Pradhan et al., 2012), LongtoNotes (Shridhar et al.,
2022), LitBank (Bamman et al., 2019), and Wiki-
Coref (Ghaddar and Langlais, 2016). Results show
that a CR model with our Dual cache outperforms
the prior work (Toshniwal et al., 2020; Xia et al.,
2020) which use unbounded cache while saving
56% of the inference time. The model achieves
a new state-of-the-art on LitBank (Bamman et al.,
2019).

The results shown in Section 4 demonstrate the
effectiveness of the Dual cache on long-doc CR
benchmarks. To further explore the capability of
our Dual cache on long documents, we annotate a
book with 30,000 words, our method outperforms
the baseline by offering 10 points improvement of
F1 while saving 70% of the inference time. The
data and code are available https://github.com/
QipengGuo/dual-cache-coref.

2 Related Work

Conventional CR methods (Joshi et al., 2019; Xu
and Choi, 2020; Jiang and Cohn, 2021) are de-
signed for short documents with length less than
1,000 words. They typically encode the input docu-
ment and propose candidate mentions with a pre-
trained model. Their model enumerates all pairs
of mentions in parallel to identify coreference re-
lations, resulting in memory and computation cost
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quadratic to document length. These models also
require a post-processing to gather connected men-
tions as entities and need to compute a large tensor
of O(n × n × d), where n is the number of men-
tions, and d is the dimension of hidden states in the
relation classifier. This is often impractical for long
documents with thousands of mentions. Another
direction is to reformulate CR, Wu et al. (2020)
treats CR as a question answering problem and
achieves higher performance on some benchmarks
but costs more computation since the model needs
to do question answering repeatedly.

Cache-based Neural Coreference Resolution
Since directly applying conventional CR on long
documents suffers from heavy computation and
memory cost, recent works (Xia et al., 2020; Tosh-
niwal et al., 2020, 2021) proposed cache-based CR
models. Probing entities in the cache instead of the
whole document largely saves the computation and
memory cost but also brings errors when encoun-
tering a cache miss. Thus, the eviction policy plays
an important role. Xia et al. (2020) follow the LRU
principle, and Toshniwal et al. (2020) discuss more
eviction policies, such as a variant of LRU and a
learnable scorer to rank elements. However, these
works lack the ability to capture the topic switching
phenomena described in Figure 1.

Datasets for Long document Coreference Ex-
isting CR datasets are typically on short docu-
ments, such as the most commonly used corpus,
OntoNotes (Pradhan et al., 2012), whose average
document length is 487 words. However, as Bam-
man et al. (2019) have shown, text in scientific
papers and literature, which can be much longer
than OntoNotes articles, exhibit different usages
of coreference relations. Note that the original
document collected for OntoNotes is much longer,
but they split documents to lower the annotation
cost, and a recent work LongtoNotes(Shridhar
et al., 2022) attempts to recover the long document.
Besides, recent work proposes benchmarks for
long documents, such as LitBank (Bamman et al.,
2019) for literature articles, ACL-Coref (Schäfer
et al., 2012) for scholarly papers, and Wiki-Coref
(Ghaddar and Langlais, 2016) for documents in
Wikipedia. These corpora not only increase docu-
ment length against traditional coreference bench-
marks but also largely increase the spread of en-
tities (the distance between the first and the last
mention of an entity , which is defined in Tosh-

niwal et al. (2020)), which requires the model to
memorize longer history. Text books, story books,
and professional books capture much of the human
knowledge, but book-scale CR has not caught at-
tention, and we made the first attempt to address
this issue. We annotate a 30,000-word book, Ani-
mal Farm, taking the 20 characters as entities, and
annotate the 1,722 mentions of them throughout
the book.

3 Method

A common workflow of neural CR models is to
detect candidate mentions, encode them into vector
representations, and identify coreference relations
between each mention and past entities by feed-
ing their representations to an MLP classifier. We
denote candidate mentions as {m1,m2, · · · ,mn},
and an entity is defined as a set of mentions,
ek = {mk

1,m
k
2, · · · }. We use a special operator

H(·) to represent vector representations, for exam-
ple, H(m1) is the representation of the mention m1.
The key component of our method is a dual cache
which contains an L-cache CL = {e1, · · · , eNL

}
and a G-cache CG = {e1, · · · , eNG

}, where e is
an entity in the cache, NL and NG are the sizes
of the two caches respectively. Since we focus
on cache design, we adopt Longformer (Beltagy
et al., 2020) as the document encoder and mention
detection model (an MLP scorer) from Toshniwal
et al. (2021) which are described in Toshniwal et al.
(2020).

3.1 Dual Cache

When an entity is brought to use, it tends to be
reused in a local context intensively, exhibiting
clustering behavior that an LRU can effectively
capture. As mentioned above, topic switching may
cause some entities to be intensively used in cer-
tain paragraphs scattered in the document but com-
pletely not used in others. Thus, these entities are
sensitive to be purged by an LRU cache due to a
long absence, but their defining characteristic is its
high frequency, easily captured by an LFU policy.
As such, neither policy can handle both patterns,
and the integration is an intuitive way to cover both
cases.

We adopt a divide-and-conquer approach to use
two caches and adopt different eviction policies. L-
cache captures the locally active terms and follows
the LRU policy. G-cache focuses on the global
terms and follows the LFU policy. When a new
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mention comes, we first ask the model to classify
whether it is a new entity or is is assigned to an
existing entity within the cache. Next, we will
check the frequency of this new or updated entity,
and we will move it to the G-cache if its frequency
is higher than any entity in the G-cache and trigger
an eviction of the G-cache when it is full. If the
entity does not enter the G-cache, we will move
it to the L-cache and trigger an eviction of the L-
cache when it is full. L-cache will evict the least
recently used entity and G-cache will evict the least
frequently used entity.

At the beginning of processing a document, both
L-cache and G-cache are empty, and we will fill the
G-cache first since the frequency of an empty slot
equals zero and the frequency of a newly entered
entity is at least one.

3.2 Coreference Resolution with a Dual Cache
We follow Toshniwal et al. (2021) to design an in-
cremental neural coreference model, which scans
mentions one by one and computes pair-wise scores
for entities in the cache plus a placeholder vector
indicating new entity (noted as N ). As its name
implies, if this placeholder achieves the highest
prediction score, the model will create a new entity
and push it to the cache. Otherwise, the model
assigns the input mention to the entity with the
highest score and updates its representation. Note
that the cache structure is transparent to the coref-
erence resolution model, and the model will access
all entities in the Dual cache.

The score between a mention m, an entity e in
the Dual cache C = {CL, CG}, and a placeholder
vector N can be computed as,

s(m,N ) = fc(H(m),N ), (1)

s(m, e) = fc(H(m),H(e)), e ∈ C (2)

where H(m), H(e) are representations of a men-
tion and an entity output by a pre-trained language
model, respectively. fc means an MLP classifier.

For the dataset that requires the model to dis-
tinguish singletons, we record the s(m,N ) as a
measure. For an entity only contains one men-
tion after processing the whole document, if the
recorded score exceeds the threshold (set to 0 in
this work), the model determines it as a singleton.
Otherwise, it will not be considered as entity and
dropped from the prediction results.

When the model assigns a new mention to an ex-
isting entity, the entity representation gets updated

by a gated sum aggregator.

Update(e,m) = αH(m) + (1− α)H(e), (3)

where α = fg(H(e),H(m)), (4)

where α is the aggregation coefficient and fg is an
MLP module with sigmoid function. For a new
created entity, its representation is set with the first
mention’s representation.

3.3 Learning and Inference
There are three learnable components in our
method, a mention-level representation extractor,
which consists of a pre-trained language model
and an MLP classifier and is the same as Toshni-
wal et al. (2021), a pair-wise scoring module eq.
(2) to classify coreference relations, and an update
function eq. (3) used to update clusters’ represen-
tation when assigning new mentions to an entity.
Since we only introduce a new cache policy, we
can reuse other cache-based models’ parameters
like Xia et al. (2020) and Toshniwal et al. (2021)
to perform coreference resolution without further
training.

We can also retrain or finetune the model with
the Dual cache for long documents, which has
two potential advantages: 1) the Dual cache has
a higher cache hit ratio so that it contains more
ground-truth entities, which means the model can
see more positive relations during training; 2) it
avoids feature space shift since we get the represen-
tation of entities by merging mentions sequentially.
Different cache polices lead to different merging
orders of mentions so that affect the entities’ repre-
sentation.

We follow Toshniwal et al. (2021) to adopt Cross
Entropy as the loss function and take the ground-
truth of coreference relations and mention bound-
aries as labels.

4 Experiments

We conduct experiments on four CR benchmarks
and compare with prior cache-based CR methods.

4.1 Datasets
The four datasets for our experiments are:
OntoNotes and its extension LongtoNotes for
longer documents; WikiCoref with only testing
documents; LitBank which provides an official
split of ten-fold cross-validation and we follow
prior work (Toshniwal et al., 2021) to report the
result of the first fold in this work. The statistics of
the datasets are listed in Table 1.
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Dataset Train Val Test Avg. Length
OntoNotes 2,802 343 348 487
LongtoNotes 1,959 234 222 674
WikiCoref - - 30 1,996
LitBank 80 10 10 2,105
Animal Farm - - 1 37,000

Table 1: Statistics of the datasets for experiments, in-
cluding the numbers of documents in each split and the
average number of tokens of documents.

4.2 Baselines

Xia et al. (2020) proposed a simple cache-based CR
model built on SpanBERT (Joshi et al., 2020) with
an L-cache. The model architecture is inherited
from a strong baseline of conventional CR model
(Joshi et al., 2019) and is finetuned based on their
released model. They freeze SpanBERT during
finetuning and only report results on OntoNotes
instead of benchmarks with longer documents.

Toshniwal et al. (2021) 1 provided more results
of cache-based CR models for long documents,
including results on OntoNotes, LitBank, and Wi-
kiCoref. They replace the backbone encoder with
Longformer (Beltagy et al., 2020) for better perfor-
mance and update all parameters during finetuning.
We follow their training scripts and hyperparame-
ters 2 to train our model.

Thirukovalluru et al. (2021) largely accelerates
the model by changing span-level CR to token-level
CR, which considers the relations between token
pairs first, and then maps them as relations between
mentions and entities. However, looking at the
tokens in two mentions is not enough to identify a
coreference relation, especially for long mentions.
Their code 3 was not released when writing this
paper. Thus, we only compare the F1 score with
them. They report the result on a book of 2M
tokens. Since their predictions are not released, we
plan to compare with them on book-scale document
in the future.

4.3 Setup

We initialize our model with the parameters re-
leased by Toshniwal et al. (2021), including a docu-
ment encoder, a mention proposer, and a CR model.
We also use a unified mention detection strategy

1We do not compare with their previous work (Toshniwal
et al., 2020) since the experiment setting is slight difference,
and the compared one is an upgrade version in terms of both
performance and methodology.

2github.com/shtoshni/fast-coref
3github.com/raghavlite/Scalable-Coreference

Test set S-subset
Method Cache Size F1 F1

Toshniwal et al. (2021) Unbound 77.8 76.4

Toshniwal et al. (2021) 50 72.6 71.0
Dual cache 25+25 76.2 74.8

Toshniwal et al. (2021) 200 77.2 75.4
Dual cache 100+100 77.7 76.3

Toshniwal et al. (2021) 500 77.7 76.0
Dual cache 250+250 77.9 76.3

Table 2: Results on LongtoNotes. "Test set" refers to
the normal test set and "S-subset" refers to the long-doc
subset, LongtoNotesS . Due to the limited space, we
report the variance of three runs in the Appendix C.

and keep the top 0.4|D| candidate mentions as
Toshniwal et al. (2021) did for a fair comparison
except the one on Animal Farm, where |D| is the
document length. We focus on CR model and re-
port its computation cost and inference time, as
the document encoder and mention proposer en-
able plug-and-play. All experiments are conducted
on NVIDIA T4 GPU (16GB). We report MAC
(Multiply Accumulate operations) to measure the
computation cost. 4

4.4 Main Results

Table 3 compares our method and prior method on
three benchmarks. We denote the size of the Dual
cache as “A+B", meaning there are A slots in the
L-cache and B slots in the G-cache. We report the
F1 score and inference time as measurements of
performance and efficiency, respectively. We list
more metrics like MUC (Vilain et al., 1995), B-
CUBED (Bagga and Baldwin, 1998), and CEAFE
(Luo, 2005) in the Appendix C.

Besides the overall performance, we compare
with the strongest baseline (Toshniwal et al., 2021)
under the setting of different cache sizes. Results
demonstrate that our method consistently outper-
forms previous approaches, albeit with a slightly
higher time consumption for a given cache size.
Furthermore, our method achieves comparable per-
formance in less inference time. In particular, our
Dual cache with 50 slots outperforms the previous
SOTA approach that utilizes an unbounded cache
on LitBank, while only requiring 48% of the infer-
ence time.

Additionally, we provide results on LongtoNotes,
a recent extension of OntoNotes that combines pas-

4The script for calculating MAC is adapted from https:
//github.com/Lyken17/pytorch-OpCounter/
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LitBank OntoNotes WikiCoref Avg
Method Cache Size F1 Time F1 Time F1 Time F1 Time

Thirukovalluru et al. (2021)† Unbound 75.9 - 78.0 - - - - -
Xia et al. (2020) Unbound 76.7 5.72s 79.6 0.98s 58.7 12.35s 71.6 6.35s

Toshniwal et al. (2021) Unbound 78.6 5.17s 80.6 0.66s 63.5 13.72s 74.2 6.52s

Toshniwal et al. (2021) 50 72.9 2.14s 75.1 0.40s 53.0 2.10s 67.0 1.55s
Dual cache 25+25 78.8 ± 0.33 1.95s 79.6 ± 0.21 0.41s 59.9 2.20s 72.7 ± 0.18 1.52s

Toshniwal et al. (2021) 200 78.2 3.32s 79.8 0.53s 61.4 3.96s 73.1 2.60s
Dual cache 100+100 79.3 ± 0.32 3.53s 81.0 ± 0.18 0.61s 62.4 4.17s 74.3 ± 0.17 2.77s

Toshniwal et al. (2021) 500 78.5 4.77s 80.0 0.55s 62.8 6.63s 73.8 3.98s
Dual cache 250+250 79.5 ± 0.37 5.09s 81.1 ± 0.19 0.63s 63.0 7.15s 74.5 ± 0.18 4.29s

Table 3: Results on three benchmarks. “Cache size" means the maximum number of entities in the cache, and
“Unbound" means the cache stores all the entities. “F1" is the F1 score, and “Time" is the inference time. Since
WikiCoref only has the test set, we report the result of integrating Toshniwal et al. (2021) with our Dual cache. We
report the standard deviation of three runs and omit the inference time variance since it is less than 0.01s. † means
the work that does not publicly release the code, so we only report the F1 score here.

(a) Inference Time vs. F1 score (b) Cache size and Computation Cost vs. F1 score

Figure 3: Efficiency vs. Performance on WikiCoref, where computation cost and inference time are reported on the
test set. The two regions of Dual caches are half-and-half allocated.

sages into longer documents. Table 2 exhibits the
same trend, where our Dual cache outperforms the
baselines on both the complete test set and a subset
of long documents. Notably, the performance gain
is more significant in the long document subset,
highlighting the effectiveness of the Dual cache
structure in processing such documents.

To better illustrate the effectiveness and effi-
ciency, we report more results on WikiCoref in
Figure 3. In this setting, we adopt a CR model
trained with unbounded memory, so it does not
have a preference of the cache structure. The curves
show that the Dual cache always has the highest
performance/cost ratio among different methods
and outperforms both the L-cache and the G-cache
either using a fixed cache size or consuming a fixed
amount of time, demonstrating the benefit of inte-
grating the L-cache and G-cache.

5 Analysis

5.1 Cache Miss Ratio

By comparing the performance gain when using
different cache sizes in Table 3 and Table 2, we find
that the improvement of the Dual cache is more sig-
nificant for a small cache, such as the performance
gain for 50 slots is 5.7pt F1 and the gain for 200
slots is 1.2pt F1. The reason is that the cache miss
ratio decreases rapidly as the cache gets larger, so
the absolute improvement of our method is also
getting smaller.

In this section, we quantitatively discuss how the
Dual cache reduces the cache miss ratio. We adopt
an off-the-shelf mention detection model (Toshni-
wal et al., 2021) to detect mentions and use ground
truth to replace the relation classifier to get rid of
the model difference, except the cache structure.
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Figure 4: Heatmap of entities’ occurrences in a document. Each entity is labeled based on its first appearance in
the document. Regions where an L-cache would evict an entity due to insufficient cache size (less than 300) are
highlighted with red boxes. These regions indicate potential cache misses. In contrast, the Dual cache can avoid
such errors.

Figure 5: Results on different benchmarks with different cache sizes. We use “L" for LitBank, “O" for OntoNotes,
and “W" for WikiCoref. All models’ parameters used here are loaded from the baseline without finetuning.

Cache Size
Model 10 30 50 70 100

OntoNotes
L-cache 7.4% 2.8% 1.5% 0.98% 0.54%
G-cache 6.4% 3.7% 2.5% 1.8% 1.1%

Dual cache 5.0% 1.5% 0.82% 0.51% 0.27%

LitBank
L-cache 7.2% 3.1% 1.9% 1.4% 0.98%
G-cache 3.9% 2.3% 2.0% 1.9% 1.5%

Dual cache 3.5% 1.2% 0.69% 0.48% 0.33%

WikiCoref
L-cache 11.1% 6.3% 4.8% 4.0% 3.2%
G-cache 8.4% 5.8% 4.8% 4.2% 3.5%

Dual cache 7.8% 4.1% 3.0% 2.4% 1.8%

Table 4: Cache miss ratio on three benchmarks.

Table 4 gives the cache miss ratio for different
caches on three benchmarks. Results show that
the Dual cache reduces the chance of cache miss
significantly, especially in the case of 10 slots and
30 slots. A cache miss will lead to an inevitable
prediction error since the groundtruth does not lie
in the solution space, which means the model only
considers assigning the mention to clusters within
the cache, but the groundtruth cluster is not in the
cache. Figure 5 illustrates the impact of cache miss
ratio, indicating a lower cache miss ratio and sug-
gesting a higher performance.

Figure 6: Entity spread vs. F1 score on WikiCoref. We
report models with a 50 slots L-cache, a 50 slots G-
cache, and a 25+25 slots Dual cache.

In addition, we provide case studies of four en-
tities in Figure 4, which shows the heatmap of an
entity’s occurrences. The color reveals the density
of occurrences. A light color means the entity is
frequently used there, and a dark color means no
usage. We highlight regions with long periods of
an entity’s absence by red boxes. The region length
can reach 500 words, meaning the L-cache will
evict it unless the cache has more than 500 slots.
The second case (“Katharine Hilbery") contains
multiple relatively long periods (>100 words) of
absence. If the cache size is less than 100, it will
encounter the cache miss 5 times and cause errors.

5.2 Impact of Entity Spread

As we have shown in Figure 4, an entity may spread
in a long range in a document, and this type of en-
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Figure 7: F1 score on LitBank for different cache sizes.
The X-axis represents the size of the G-cache, and the
Y-axis represents the size of the L-cache.

tities is challenging for cache mechanisms. One
basic measurement is the Entity Spread, which de-
scribes how an entity scatters throughout a doc-
ument. A large spread means the entity spans a
large text area, which is likely to be missed by an
L-cache if the L-cache is not large enough and the
entity is absent for a while.

Figure 6 reports models’ results on different en-
tity spread scales. We show that the Dual cache
helps the model resolve entities with a large spread,
resulting in nearly a 30 F1 gain. The reason is that
an entity with a large spread is often frequently
used, which can be captured by G-cache easily. We
can also see that L-cache is good at entities with
small spreads while G-cache is good at entities with
large spreads, and the results also demonstrate that
neither of them could solve the coreference alone.
The dual cache achieves better results by taking
advantage of both L-cache and G-cache.

5.3 Impact of Cache Size

Cache size is an essential factor for a cache de-
sign, and there are two caches in our Dual Cache
structure, so we study the influence of total cache
size and the allocation of L-cache and G-cache and
discuss them in this section.

We test our method with the cache size varying
from 10 to 100. We report the results of the models
without finetuning to avoid the potential noise of
introducing new parameters and training processes.
Figure 5 shows results on three benchmarks, and
we can see the Dual cache outperforms both the
L-cache and the G-cache, especially for a small
cache.

Since the Dual cache consists of two caches, it is

Cache Size
Model 10 30 50 70 100

OntoNotes
L-first 5.1% 1.5% 0.80% 0.53% 0.28%
G-first 5.0% 1.5% 0.82% 0.51% 0.27%

LitBank
L-first 3.4% 1.2% 0.71% 0.50% 0.34%
G-first 3.5% 1.2% 0.69% 0.48% 0.33%

WikiCoref
L-first 7.8% 4.0% 2.9% 2.4% 1.9%
G-first 7.8% 4.1% 3.0% 2.4% 1.8%

Table 5: Cache miss ratio of Dual cache using different
priorities on OntoNotes, LitBank, and WikiCoref.

Method F1 Time Memory

Toshniwal et al. (2021) 25.8 1284s 5.2 GB
Dual cache 36.3 375s 4.5 GB

Table 6: Results on Animal Farm.

valuable to discuss how their allocation affects the
performance. We provide a heatmap in Figure 7,
where the X-axis is the size of G-cache and the
Y-axis is the size of L-cache. We enumerate all
their combinations (200 settings) when varying the
size from 1 to 20. Results show the G-cache is
more important when the total size is less than 20
(the lower triangle). The allocation of two caches
becomes less matter when the total size exceeds 20
(the upper triangle).

5.4 Priority of two caches

The positions of the L-cache and the G-cache are
not equivalent in our Dual cache. What we have
described in this work is actually a G-first Dual
cache, which means the priority of the G-cache
is higher than the L-cache. Particularly, it means
we will push an entity to the G-cache when both
the G-cache and L-cache has empty slots. We also
tried the L-first version and report it in Table 5. The
results show that the difference between G-first and
L-first is around 0.1%, which is negligible.

5.5 Results on Book-Scale CR

The proposed Dual cache structure is for long-doc
CR. However, the maximum length of documents
in the four benchmarks is fewer than 10,000 words.
To test our approach on a more challenging sce-
nario, we annotate a book of approximately 30,000
words, Animal Farm. We choose the 20 characters
in this book as entities and annotate all their 1,722
mentions across the book. Appendix A describes
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the details of the book annotation. We compare our
model and the baseline trained on LitBank since
its documents are also from books. We tokenize
the book into 37,000 tokens and split them into 11
segments so that we can feed them into the docu-
ment encoder. We set the cache size to 500 for the
baseline and 250+250 for the Dual cache for a fair
comparison.

Our model can parse the entire book in 10 min-
utes when selecting 0.4|D| top-scored mentions,
but the baseline can not finish the inference pro-
cess in an hour. Thus, we reduce the number of
mentions to 0.3|D| without changing other settings.
We report F1 score, inference time, and inference
memory in Table 6. The results reveal that the
model with a Dual cache significantly outperforms
the baseline in both efficiency and effectiveness on
a book-scale document.

6 Conclusion

We proposed a new cache structure, Dual cache,
to tackle long document coreference resolution. It
contains two caches governed by different eviction
polices. The local cache follows LRU policy to
deal with local, clustered mentions, whereas the
global cache follows LFU policy to target global
entities within a long span. Empirical results show
that the Dual cache lowers the cache miss up to half
as before and improves the F1 score consistently
on four benchmarks by offering an average gain
of 5.7 F1 score for small caches while taking the
same inference time. We also achieve a new state-
of-the-art, 79.5 F1 score, on LitBank.

Limitations

This work is motivated by the intuition that a men-
tion is more likely to refer to an entity that occurs
shortly earlier and refers to a high frequency entity
but has not recently used. For the latter pattern,
we show examples of topic switching to explain
why these phenomena happened, but we have not
found a rigorous linguistic explanation to support
this finding. We provide empirical results on four
benchmarks plus a book. However, the scarcity of
long-doc CR benchmarks hinders us from verifying
on a larger scale.

Our major contribution is a new cache design,
but we also find the cache design becomes less mat-
ter when using a huge cache. NVIDIA A100 has
80G memory, which means it can handle a doc-
ument of 100,000 words with a conventional CR

model. As the GPU becomes larger and cheaper,
the importance of studying cache design is weaker.

Ethics Statement

We comply with the ACL Ethics Policy. Corefer-
ence resolution is fundamental in NLP, which often
serves as a component of other NLP applications.
Since it does not directly interact with users, there
are no additional ethics concerns. All the data used
in this paper is public. We confirm that the scien-
tific artifacts used in this paper comply with their
license and intended use. We list the licenses in
Table 7.
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A Annotation of Animal Farm

The text of Animal Farm is accessed from the site
of Project Gutenberg Australia.5 We describe the
annotation process as follows.

Preprocessing We append the chapter titles in
front of the texts of the chapters as the first sen-
tences of the chapters, and concatenate the texts
of the chapters into a single document. Before the
annotation, we adopt a character list containing the
20 characters as the 20 entities,6 and first extract
the their mentions with string matching.

Annotation Tool We developed a web-based an-
notation tool with a server developed with Flask7

as shown in Figure 8. The entities are listed in the
top of the web page, shown in the blue boxes with
the texts from the character list. The text of the
book are splitted into multiple segments so we can
view each segment in one page, and the annota-
tor can switch the segment by the “Previous” and
“Next” buttons. In each page, the segment of text
is splitted into multiple paragraphs to avoid getting
lost in the long text. When we click one entity in
the blue box, e.g. “Mr. Jones”, it means we are now
annotating this entity now, and the mentions of this
entity in the text gets gray colored. We annotate the
mentions by clicking the words in the text. Once
the word is clicked, it gets gray colored (e.g. “his”,
“he”, “himeself”). Consecutive words are treated
as one span of mention. When finished annotation
for the current page, we click the “Save” button to
save the annotation to server.

Annotation Standard The mentions of the enti-
ties include pronouns (e.g. “he”, “she”, “I” “they”,
etc), possessive pronouns (e.g. “his”, “her”, “my”,
“their”, etc) as the case in Ontonotes 5.0, and other
noun phrases (e.g. “Jones”, “Major”, “the three
dogs”, etc).

The annotation is done by a human expert for 5
hours and there are totally 1,722 mentions anno-
tated.

B Data and Model license

Following the instruction of ACL, we list the sci-
ence artifacts used in this work in Table 7.

5The book is available at https://gutenberg.net.au/
ebooks01/0100011h.html

6We adapt the character list from https://www.
litcharts.com/lit/animal-farm/characters

7https://flask.palletsprojects.com/en/2.1.x/

Dataset License

OntoNotes LDC
LongtoNotes CC 4.0 + LDC

LitBank CC 4.0
WikiCoref No license stated

Toshniwal et al. (2021) No license stated
Longformer Apache-2.0

Table 7: License of science artifacts.

C More Metrics

Besides the F1 score that we reported in the main
text, we give results that are evaluated by com-
monly used metrics for the comparison with others,
including MUC (Vilain et al., 1995), B-CUBED
(Bagga and Baldwin, 1998), and CEAFE (Luo,
2005). For better visualization, we split results
into three tables, Table 8, Table 9, and Table 10.
There metrics show the same trend of F1 score that
are shown in the main text.
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Figure 8: The annotation tool for annotating the book Animal Farm.

LitBank
Method Cache Size MUC B3 CEAFE

Dual cache 25+25 87.7 ± 0.28 78.8 ± 0.72 69.8 ± 0.04

Dual cache 100+100 88.1 ± 0.28 79.1 ± 0.28 70.8 ± 0.03

Dual cache 250+250 88.2 ± 0.31 79.2 ± 0.71 71.0 ± 0.13

Table 8: Results on LitBank using three different metrics.

OntoNotes
Method Cache Size MUC B3 CEAFE

Dual cache 25+25 85.3 ± 0.10 78.9 ± 0.23 74.5 ± 0.29

Dual cache 100+100 86.2 ± 0.09 80.2 ± 0.22 76.7 ± 0.23

Dual cache 250+250 86.3 ± 0.09 80.3 ± 0.22 76.8 ± 0.25

Table 9: Results on OntoNotes using three different metrics.

WikiCoref
Method Cache Size MUC B3 CEAFE

Dual cache 25+25 70.2 58.8 50.7

Dual cache 100+100 71.7 61.6 54.1

Dual cache 250+250 72.1 62.1 54.7

Table 10: Results on WikiCoref using three different metrics.

LongtoNotes
Method Cache Size F1 MUC B3 CEAFE

Dual cache 25+25 76.2 ± 0.14 84.3 ± 0.23 74.4 ± 0.22 70.1 ± 0.09

Dual cache 100+100 77.7 ± 0.11 85.2 ± 0.10 75.9 ± 0.21 72.1 ± 0.03

Dual cache 250+250 77.9 ± 0.13 85.2 ± 0.12 76.3 ± 0.24 72.2 ± 0.04

Table 11: Results on LongtoNotes using three different metrics.

LongtoNotesS
Method Cache Size F1 MUC B3 CEAFE

Dual cache 25+25 74.8 ± 0.11 85.2 ± 0.25 72.0 ± 0.21 67.1 ± 0.07

Dual cache 100+100 76.3 ± 0.10 85.9 ± 0.09 73.9 ± 0.20 69.3 ± 0.03

Dual cache 250+250 76.3 ± 0.08 85.7 ± 0.11 74.2 ± 0.27 69.2 ± 0.03

Table 12: Results on the long-doc subset LongtoNotesS using three different metrics.
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