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Abstract

In the real-world scenario, a longstanding
goal of multilingual neural machine transla-
tion (MNMT) is that a single model can in-
crementally adapt to new language pairs with-
out accessing previous training data. In this
scenario, previous studies concentrate on over-
coming catastrophic forgetting while lacking
encouragement to learn new knowledge from
incremental language pairs, especially when
the incremental language is not related to the
set of original languages. To better acquire
new knowledge, we propose a knowledge trans-
fer method that can efficiently adapt original
MNMT models to diverse incremental lan-
guage pairs. The method flexibly introduces the
knowledge from an external model into original
models, which encourages the models to learn
new language pairs, completing the procedure
of knowledge transfer. Moreover, all original
parameters are frozen to ensure that transla-
tion qualities on original language pairs are not
degraded. Experimental results show that our
method can learn new knowledge from diverse
language pairs incrementally meanwhile main-
taining performance on original language pairs,
outperforming various strong baselines in in-
cremental learning for MNMT.1

1 Introduction

Multilingual neural machine translation (MNMT)
aims at handling multiple translation directions
in a single model and achieves great success in
recent years (Wenzek et al., 2021; Goyal et al.,
2022; Cheng et al., 2022). However, the powerful
MNMT models need to be retrained from scratch

∗Corresponding authors: Peng Li (lipeng@air.tsinghua.
edu.cn) and Yang Liu (liuyang2011@tsinghua.edu.cn)

1Our code will be released at https://github.com/
THUNLP-MT/ktnmt

Method en→uk en→bn

From-scratch 23.70 15.54

Replay-Based 21.37 10.32
Regularization-Based 20.33 7.84
Adapter 19.92 9.46

Table 1: The BLEU scores of incremental learning meth-
ods on new translation directions. The original model
is mBART25 which does not support the languages of
Ukrainian (uk) and Bengali (bn).

using a mixture of original and incremental training
data when new language pairs arrive (Tang et al.,
2020). Considering that the original training data
of MNMT models is often large-scale (Fan et al.,
2021; Costa-jussà et al., 2022), and thus the method
that utilizes original data to train incrementally is
time-consuming and cumbersome (Ebrahimi and
Kann, 2021). Therefore, a practical scenario is
that these models can continually support new lan-
guage pairs while preserving the previously learned
knowledge without accessing previous training
data, which belongs to incremental learning, and
has drawn much attention recently (Dabre et al.,
2020; Gu et al., 2022; Zhao et al., 2022).

In this scenario, existing studies attempt to over-
come the issue of catastrophic forgetting (French,
1993) on original language pairs, such as replay-
based methods (Garcia et al., 2021; Liu et al., 2021)
and regularization-based methods (Huang et al.,
2022; Zhao et al., 2022). However, the methods
primarily focus on balancing performance between
old and new translation directions and use only in-
cremental data to acquire new knowledge, restrict-
ing the development of new language pairs (Es-
colano et al., 2021; Ke and Liu, 2022). As shown in
Table 1, prior incremental learning methods cannot
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achieve comparable performance on new transla-
tion directions, compared with training a bilingual
translation model from scratch. Therefore, is it
possible to leverage external knowledge without
increasing the amount of incremental training data
to facilitate the learning procedure of new language
adaptation?

Fortunately, the development of Transformer-
based language models unveils that Feed-Forward
Networks (FFN) might be a core component that
stores the knowledge (Geva et al., 2021; Dai et al.,
2022; Geva et al., 2022; Vázquez et al., 2022).
In these efforts, external knowledge is injected
into FFN layers to enhance the performance of
pre-trained language models. More importantly, it
opens the door to leveraging the knowledge from
neural models in adapting MNMT models to incre-
mental language pairs.

In this work, considering the knowledge in neu-
ral networks, we propose a knowledge transfer
(KT) method that can efficiently adapt MNMT
models to diverse incremental language pairs. First,
we convert incremental training data into continu-
ous representation by additional parameters, form-
ing pluggable modules. Then the pluggable mod-
ules can be flexibly introduced in the embedding
layer and FFN layers of original MNMT models, re-
spectively. The two stages are regarded as a process
of knowledge transfer and equip original models
with knowledge of unseen languages before adap-
tation, alleviating the representation gap between
original models and introduced parameters. And
the knowledge transfer method can further provide
better optimization than training from scratch for
the introduced parameters. Moreover, except for
the pluggable modules, all the parameters of the
original model are frozen. Therefore, our architec-
ture can also retain previously learned knowledge
from the original translation model to completely
maintain the translation qualities on original lan-
guage pairs. To sum up, our contributions are as
follows:

• We propose a knowledge transfer method with
pluggable modules to acquire more knowl-
edge of new languages, which achieves com-
petitive translation qualities on incremental
language pairs.

• Our architecture can efficiently adapt to di-
verse language pairs in incremental learning
and naturally retain the performance on origi-

nal language pairs when the original training
data is not available.

• Experiments show that our method can learn
knowledge from the other large-scale transla-
tion models for adapting original models with
different sizes to new language pairs.

2 Related Work

Replay-Based Methods. The first branch of
works utilizes previous training data or create
pseudo data that is essentially a replay on old
tasks (de Masson D’Autume et al., 2019; Liu et al.,
2021; Kanwatchara et al., 2021). Specifically, pre-
vious data sometimes cannot be accessed due to
data protection and security (Feyisetan et al., 2020;
Qu et al., 2021). In this scenario, Sun et al. (2019)
replay pseudo samples of previous tasks, which
can avoid forgetting previously learned knowledge.
However, the pseudo data with noise significantly
hurts the performance for both old and new tasks,
and the data generation procedure requires addi-
tional time costs, restricting the efficiency of incre-
mental learning (Peng et al., 2020; Garcia et al.,
2021). In contrast to these methods, our approach
does not require extra data and is more flexible in
the real-world scenario.

Regularization-Based Methods. The second
branch of works introduces additional penalty
terms to the learning objective on the parame-
ters, alleviating the issue of catastrophic forget-
ting (Kirkpatrick et al., 2017; Thompson et al.,
2019; Castellucci et al., 2021; Gu et al., 2022).
In particular, Shao and Feng (2022) propose a com-
plementary online knowledge distillation method
that utilizes previous models (teachers) to supple-
ment current model (student) training. In contrast
to these methods, our architecture can naturally
avoid forgetting previously learned knowledge and
retain the performance of old tasks. It allows our
method to focus solely on learning new knowledge
better instead of preserving old knowledge.

Parameter-Isolation Based Methods. The third
branch of works introduces extra parameters to
support new tasks and freeze all original parame-
ters to completely retain the performance on pre-
vious tasks (Bapna and Firat, 2019; Madotto et al.,
2021; Zhu et al., 2021). However, the methods
only utilize incremental training data to optimize
the additional parameters which are randomly ini-
tialized (Escolano et al., 2021; He et al., 2021),
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Figure 1: Illustration of incremental learning for MNMT.
The green parts are trainable for incremental adaptation.
The parameters of the original model are frozen at the
stage of incremental learning.

hindering old models from learning knowledge of
incremental languages (Dabre et al., 2020; Ke and
Liu, 2022). Chalkidis et al. (2021) combine pseudo
data with the prompt-tuning method to alleviate
this issue for multilingual tasks. Our method at-
tempts to exploit the potentiality of incremental
training data to acquire new knowledge via knowl-
edge transfer while not leveraging extra data, com-
pared with existing methods.

3 Method

In this work, we aim to completely maintain the
performance of previous translation tasks without
original training data. As shown in Figure 1, we
introduce additional components for new language
pairs and adopt a strategy that does not disturb the
parameters of the original model. We hope to mini-
mize the impact on the original model during the
incremental learning process. As a result, we exclu-
sively concentrate on how to handle the situation
of learning new language pairs. Furthermore, the
additional components are transferred from param-
eters in another pre-trained translation model, in
a similar way to a pluggable module, rather than
randomly initialized, as shown in Figure 2. It can
also reduce the cost of learning new language pairs
during the training stage, enhancing the practicabil-
ity and efficiency of incremental learning methods
in the real-world scenario.

3.1 Task Definition
An ideal requirement is that original MNMT mod-
els can be continually updated to support new lan-
guage pairs while retaining translation qualities on
original language pairs without accessing previous
training data, as shown in Figure 1.

Formally, an MNMT model is trained on ini-
tially selecting a set of available parallel data
D = {D1, ...,Di, ...,DN} which covers N lan-
guages, and Di represents the original parallel train-
ing corpus on the i-th language pair. The training
objective of the initial MNMT model is to maxi-
mize the log-likelihood L:

LD(θ) =
∑

Di∈D

∑

(x,y)∈Di

log p(y|x; θ) (1)

where θ represents the trainable parameters of
MNMT models. The source sentence is denoted
as x, while the target sentence is denoted as y. In
order to specify the source and target languages,
two language tokens are added at the beginning of
each source and target sentence, respectively.

Incremental learning is updating the original
MNMT model on an updated set of parallel data
D(U) = {D1, ...,DN , ...,DM} which covers M
languages, and N > M . A dilemma, though, is
that the original training data D is often unavail-
able due to data security. Thus, we can only utilize
the new data D′ = {DN+1, ...,Dj , ...,DM} to in-
crementally train the original MNMT model, and
Dj represents the incremental parallel training cor-
pus on the j-th language pair. The optimization
objective in incremental learning is given by:

LD′(θ) =
∑

Dj∈D′

∑

(x,y)∈Dj

log p(y|x; θ) (2)

As a result, the number of language pairs that the
MNMT model support increases from N to M .

3.2 Knowledge Transfer via Pluggable
Modules

Based on the original MNMT model, we open up
additional spaces for adapting to new language
pairs, as shown in Figure 2. However, the addi-
tional spaces with initialized parameters are weak
in their abilities to capture the shared linguistic
features among different languages. Because the
linguistic distribution of the original model is fit-
ted previously, which leads to a representation gap
between the original model and introduced spaces.
Thus, we not only leverage new training data but
also exploit the potentiality of these data by intro-
ducing two types of pluggable modules to bridge
the representation gap.

Vocabulary Adaptation. On the one hand, if
the new language has a distinct script with the
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Figure 2: Illustration of our architecture. We extend two parts of space in the embedding layer and the FFN layers,
respectively. These spaces are injected with pluggable modules that are pre-trained by another translation model.
During the training stage, the parameters of the original model are frozen and the pluggable modules are trainable.

set of original languages, a certain proportion
of the out-of-vocabulary (OOV) tokens with un-
clear semantics will occur due to different char-
acter sets between the original and incremental
languages, which hinders performance on new lan-
guage pairs (Zhang et al., 2022). However, the
external model is not troubled by this situation and
covers sufficient tokens for the incremental lan-
guage pairs. Therefore, we expand an extra space
in the embedding layer and concatenate the embed-
dings of non-overlap tokens between the original
model and the external model, bridging the repre-
sentation gap through vocabulary adaptation.

Feed-Forward Adaptation. On the other hand,
FFN layers can be seen as key-value mem-
ories, which has previously been investigated
by (Sukhbaatar et al., 2019). Each FFN layer con-
sists of two linear networks with a non-linearity
activation function and is given by:

FFN(H) = f(H ·K⊤) · V (3)

where K,V ∈ Rdffn×dmodel are parameter matrices,
dffn is the dimension of the FFN, H is the input
hidden state of FFN layers and the dimension is
dmodel, f represents the non-linearity activation
function, e.g., GELU and ReLU.

The first linear network is regarded as the keys

and activates a set of intermediate neurons. The
second linear network integrates the corresponding
value matrices by weighted sum, using the activated
neurons as weights. The FFN layers store knowl-
edge in the key-value memories manner. Thus,
we leverage the continuous representation in the
FFN layers of the external model that stores useful
language knowledge and transfer the knowledge
into the FFN layers of the original model, form-
ing a type of pluggable module. We combine the
output of the original FFN layers and the injected
pluggable modules to share linguistic knowledge,
alleviating the representation gap through Feed-
Forward layers adaptation. The fusion FFN output
H(f) is given by:

H(f) = FFNoriginal(H) + FFNexternal(H) (4)

3.3 Training and Inference
During the training stage, previously learned
knowledge can be naturally preserved with a frozen
training strategy, which can avoid the issue of catas-
trophic forgetting. The training procedure of our
method is divided into two stages, as shown in
Figure 2.

Stage 1: External Model Training. To convert
incremental training data into continuous represen-
tation by additional parameters. We first leverage
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the incremental training data to train an external
Transformer-based neural network.

LD′(θ̂) =
∑

Dj∈D′

∑

(x,y)∈Dj

log p(y|x; θ̂) (5)

where θ̂ represents the trainable parameters of the
external neural models. We only retain the param-
eters in the embedding layer (θ̂e) and FFN layers
(θ̂f ) of the external model as the pluggable modules
for the next training stage.

Stage 2: Pluggable Module Tuning. Directly
transferring the additional parameters limits the
MNMT model capacity, especially for the language
pairs with sufficient data. Therefore, we further
train the pluggable modules in the second stage:

LD′(θ̂e, θ̂f ) =
∑

Dj∈D′

∑

(x,y)∈Dj

log p(y|x; θ̂e, θ̂f )

(6)
where θ̂e and θ̂f represent the trainable parameters
of pluggable modules in the embedding layer and
FFN layers, respectively.

Inference. For the inference stage, the original
translation directions follow the original model
without any pluggable modules while the incremen-
tal translation directions require the concatenation
of the original model and pluggable modules.

4 Experiments

4.1 Datasets
To ensure the reliability of the experiments, the
original MNMT model is implemented on a mul-
tilingual machine translation dataset2 (WMT-7)
that covers seven languages (Farhad et al., 2021).
And we provide four incremental languages con-
sidered for incremental adaptation3. An extensive
description and comprehensive information regard-
ing the datasets for all languages can be found in
Appendix A. All training data are sourced from
the WMT (Workshop on Machine Translation) and
FLoRes datasets, ensuring reliable quality.

Language Choice. As contrasted to previous
studies for incrementally adapting translation mod-
els to new languages, we further provide a com-
prehensive language setting. Previous works often
investigate the situation of the related languages

2https://www.statmt.org/
3https://data.statmt.org/cc-matrix/

which are similar language families and scripts to
the original languages. In our setting, the incre-
mental languages have distinct scripts and belong
to several language families, which leads to a se-
rious language representation gap. Please refer to
Appendix A.2 for more details of language consid-
eration in our setting.

4.2 Implementation Details
Baselines. We implement a vanilla Transformer
for original languages as the initial model which
is trained on multiple parallel data jointly (John-
son et al., 2017). And we compare the proposed
method with different architectures for adapting the
original model to new language pairs. All methods
utilize the preprocessing script of a shared BPE
model with 32k tokens based on the Sentencepiece
library4. The baselines can be listed as follows:

From-scratch (Johnson et al., 2017): A vanilla
Transformer is trained from scratch on the incre-
mental languages with the multilingual training
strategy. Note that the models do not support the
original translation directions.

Adapter (Bapna and Firat, 2019): We follow
previous adapter architectures and introduce ex-
tra parameters in each FFN layer of the original
MNMT model. All original parameters are frozen
and only the adapters are trainable.

Extension (Lakew et al., 2018): On the basis
of the adapter architecture, we extend the original
vocabulary (VP ) for new languages adaptation. Ini-
tially, a supplementary vocabulary (VQ) is created
using the standard Byte-Pair Encoding (BPE) pro-
cedure from the incremental training data. Subse-
quently, VP and VQ are combined to form a unified
vocabulary V , which is defined as V = VP ∪ VQ.
The embeddings of the original models are ex-
panded to match the size of the complete vocabu-
lary (V), and the additional embeddings are initial-
ized using a Gaussian distribution.

Serial/Parallel (Zhu et al., 2021): We follow
Zhu et al. (2021) to introduce adapters in the serial
or parallel connection manner. Our pluggable mod-
ules in the FFN layers can also be converted into a
serial manner.

Training Setup. We implement all models based
on the open-source toolkit fairseq5 (Ott et al., 2019).
For a fair comparison, we employ the same config-
uration of Transformer-Big (Vaswani et al., 2017)

4https://github.com/google/sentencepiece
5https://github.com/pytorch/fairseq
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Method Modules WMT16 WMT14 FLoRes FLoRes
ro→en en→ro de→en en→de bn→en en→bn uk→en en→uk

From-scratch - 30.63 23.58 31.35 26.55 30.58 15.54 28.22 23.70

Adapter Serial 34.39 22.85 30.34 19.43 16.94 0.12 28.47 19.01
Parallel 32.98 20.74 25.97 17.24 13.51 0.11 26.04 15.42

Extension Serial 32.06 22.36 30.53 22.05 27.78 13.42 30.65 21.12
Parallel 32.31 20.87 28.66 20.77 27.51 12.49 30.69 20.60

KT (Ours) Serial 34.38 25.52 31.24 26.33 30.73 15.63 31.91 24.46
Parallel 34.44 25.62 32.04 26.73 30.81 15.71 32.01 25.20

Table 2: Results in BLEU of adding a single language pair merely for MNMT in incremental learning. The highest
score on each translation direction is highlighted in bold. The second highest score on each translation direction is
highlighted in underline.

Method Modules WMT16 WMT14 FLoRes FLoRes
ro→en en→ro de→en en→de bn→en en→bn uk→en en→uk

From-scratch - 35.42 25.90 31.33 25.34 30.40 14.66 32.71 25.05

Adapter Serial 31.02 15.11 24.34 7.86 10.04 0.54 23.19 9.91
Parallel 35.38 14.58 29.57 6.56 24.95 0.34 31.52 9.40

Extension Serial 32.17 19.88 26.90 15.94 24.40 9.88 27.56 14.33
Parallel 36.28 23.17 30.45 20.92 28.78 11.62 31.94 19.59

KT (Ours) Serial 36.34 25.53 30.96 24.52 29.82 12.95 32.95 24.31
Parallel 36.88 26.48 31.65 25.65 30.10 15.10 33.86 25.42

Table 3: Results in BLEU of adding eight incremental language pairs for xx-to-English and English-to-xx simulta-
neously. The highest score on each translation direction is highlighted in bold. The second highest score on each
translation direction is highlighted in underline.

in our experiments. All original parameters are
frozen during the incremental learning procedure.
More model training details are provided in Ap-
pendix B.1.

Evaluation. We report the detokenized case-
sensitive BLEU of models by the SacreBLEU eval-
uation script (Post, 2018)6. We show the training
time of each method in terms of kiloseconds and
use the beam search decoding algorithm with a
beam size of 5 and a length penalty of 1.0.

4.3 Main Results

Adding A Single Language
As shown in Table 2, we investigate the translation
qualities when a new language pair arrive. The
results demonstrate that our proposed method (KT)
outperforms several baselines in terms of average
BLEU scores for all incremental translation direc-
tions. Specifically, KT achieves an average BLEU
score of 27.14 for xx→en and 21.32 for en→xx
translations. In particular, based on KT, the plug-
gable modules that are injected in a parallel man-
ner further improve the performance over the serial
manner on all incremental language pairs.

6Signature: nrefs:1 | case:mixed | eff:no | tok:13a |
smooth:exp | version:2.2.0.

Method WMT-7 (∆BLEU) WMT16 (BLEU)

xx→en en→xx ro→en en→ro

From-scratch - - 30.63 23.58
Fine-tuning -18.51 -14.00 33.87 25.22
Replay -0.74 -1.24 29.33 19.00
Replay† -3.86 -2.28 27.51 21.93
EWC -0.99 -2.82 28.14 17.87
Self-KD -5.29 -8.33 29.55 19.47
LFR -1.01 -2.56 32.13 22.73
Prompt -0.00 -0.00 31.33 15.64
Prompt† -0.00 -0.00 33.21 22.77
Prefix -0.00 -0.00 32.71 18.74
Prefix† -0.00 -0.00 33.17 22.62
KT (Ours) -0.00 -0.00 34.44 25.62

Table 4: Results on the original (WMT-7) and incre-
mental language pairs with different continual learning
methods. “†” indicates that we further extend the em-
bedding layers based on each method. The highest score
is highlighted in bold.

The Adapter methods are more vulnerable to
adapting original models to some incremental lan-
guage pairs, e.g., 0.12 BLEU scores on en→bn and
16.94 BLEU scores on bn→en. Because the meth-
ods with an unaltered vocabulary result in the sen-
tence being broken up into semantically meaning-
less OOV tokens. Although the Extension methods
can alleviate the issue of OOV tokens and fragmen-
tary semantics by rebuilding embedding layers, the
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No. Method Model Size Incremental Language Pairs (BLEU)

Original External ro→en en→ro uk→en en→uk

1 KD 0.4B 0.4B 32.68 24.36 30.67 23.48
2 KD 0.4B 1.2B 33.98 24.33 31.56 24.76
3 KT 0.4B 0.4B 34.15 24.54 32.33 24.93
4 KT 0.4B 1.2B 34.37 24.74 32.77 25.53
5 KT+KD 0.4B 0.4B 33.31 25.72 32.49 25.18
6 KT+KD 0.4B 1.2B 35.34 26.43 33.66 26.01

7 KD 1.2B 0.4B 31.52 21.94 30.60 24.55
8 KD 1.2B 1.2B 32.89 23.38 31.77 24.89
9 KT 1.2B 0.4B 34.44 24.50 32.59 25.67
10 KT 1.2B 1.2B 35.07 24.58 32.96 26.05
11 KT+KD 1.2B 0.4B 34.56 23.21 32.66 25.98
12 KT+KD 1.2B 1.2B 36.15 27.18 34.23 27.14

Table 5: Results of knowledge transfer for the incremental language pairs. The external models are two sizes of
M2M-100. The highest score of each original model is highlighted in bold.

extended parameters are still hard to optimize. The
knowledge transfer method can further guide addi-
tional parameters to achieve greater improvements
on these language pairs.

Considering the different introduced manners of
pluggable modules, based on the baselines, parallel
modules tend to be weaker than serials. It demon-
strates that parallel architecture is more difficult
to learn new knowledge from limited training data.
And the results show that the knowledge transfer
method mitigates this issue and explores the poten-
tial of parallel architectures, achieving obvious im-
provement on all eight translation directions, even
outperforming the model training from scratch.

Adding Multiple Languages Simultaneously
As shown in Table 3, we examine the translation
qualities in incremental learning when eight new
language pairs arrive simultaneously. The results
show that our proposed method can also achieve
better performance compared with the baselines.
Notably, in the low resource scenario (ro and uk),
our method of adding multiple languages obtains
better performance compared with adding a single
language.

Besides, adding multiple languages simultane-
ously in incremental training makes more training
samples available and it facilitates the optimiza-
tion of challenging pluggable modules in a parallel
manner. In this setting, the parallel pluggable mod-
ules of all methods demonstrate better performance
than the serial. Moreover, the situation of incre-
mental language pairs that are difficult to learn is
still alive with the Adapter. It even shows more
severe degeneration on the other incremental lan-
guages (17.24 BLEU on en→de of adding a sin-

gle language while 6.56 BLEU of adding multiple
languages simultaneously). However, our method
does not significantly been disturbed by different
conditions in incremental learning, which exhibits
good stability, as shown in Table 2 and Table 3.

Degeneration in Incremental Learning.
As shown in Table 4, to demonstrate the reliabil-
ity and effectiveness, we investigate the degener-
ation on the original translation directions, com-
pared with various outstanding continual learn-
ing methods. The results demonstrate that our
method achieves competitive performance on the
incremental translation directions and even outper-
forms the fine-tuning strategy (up to +0.57/+0.40
for ro→en and en→ro respectively). Please refer
to Appendix 4.6 and B.2 for more details of the
original models and all baselines.

Besides, the results also show that prior replay-
based and regularization-based methods still suf-
fer from pronounced degeneration on the original
translation directions without the original data. Al-
though no degradation has occurred using Prompt
and Prefix, they are vulnerable to learning new
knowledge from updated training samples incre-
mentally. More importantly, considering the reli-
ability of the comparison, we have only selected
the translation directions between Romanian and
English. Because previous methods cannot obtain
comparable results when the incremental languages
are not related to the set of original languages.

4.4 Results on Pre-trained Models

As shown in Table 5, we leverage pre-trained M2M-
100 models (Fan et al., 2021) as the external model
and investigate the effectiveness of different knowl-
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No. Transfer Scopes Incremental Language Pairs(BLEU)

Embedding FFN ro→en en→ro de→en en→de bn→en en→bn uk→en en→uk

1 ✗ ✗ 32.31 20.87 28.66 20.77 27.51 12.49 30.69 20.60
2 ✗ ✓ 33.04 24.48 30.59 25.35 29.04 14.12 30.67 23.72
3 ✓ ✗ 34.08 24.56 28.74 21.15 28.67 13.99 31.66 23.44
4 ✓ ✓ 34.44 25.62 32.04 26.73 30.81 15.71 32.01 25.20

Table 6: Results on different transfer areas for the incremental language pairs. The highest score is highlighted in
bold. “✓” indicates that the pluggable module is injected through knowledge transfer in this area. “✗” indicates that
the pluggable module is randomly initialized with the Gaussian distribution.

Method ro→en en→ro bn→en en→bn

Ours 34.44 25.62 30.81 15.71

+Self-Attention 34.14 25.35 30.37 15.28
+Gate-Fusion 33.39 24.52 29.85 14.54
+Dropout 33.98 25.42 30.01 14.13

Table 7: Results on the incremental language pairs with
different pluggable modules.

edge transfer methods. Knowledge distillation
(KD) (Hinton et al., 2015) is a widely used tech-
nique to transfer knowledge between models. The
results show that only utilizing KD cannot achieve
comparable performance for incremental language
adaptation. However, KD can be arbitrarily inte-
grated into our method (KT) and further facilitate
the procedure of knowledge transfer. The combi-
nation of KD and KT achieves better translation
qualities than only using one alone based on all
model settings.

Besides, both KD and KT are better at learning
knowledge from the large pre-trained models. It
proves that the large pre-trained model contains
more useful knowledge. And we find that the size
between models also determines the performance
on incremental translation directions. The small
M2M-100 model (0.4B) is beneficial for the same
size original model (0.4B) but is insufficient to
support the large original model (1.2B). In contrast,
the large M2M-100 model (1.2B) plays a positive
role in both small and large original models by
knowledge transfer. However, the small original
model (0.4B) limits learning sufficient knowledge
from the large M2M-100 model according to the
comparison between No.6 and No.12, as shown in
Table 5.

4.5 Ablation Studies

Effects on Transfer Areas
As shown in Table 6, we further investigate the
effectiveness of our method in different transfer

areas. The results demonstrate that our method can
help each pluggable module to be better optimized
separately and achieves better performance when
both two pluggable modules are injected through
knowledge transfer for all incremental languages.
Specifically, the method improves translation qual-
ities related to Romanian and Ukrainian when it af-
fects the pluggable module in the embedding layer.
On the contrary, it is more effective to transfer the
knowledge for the pluggable modules in the FFN
layers on translation directions related to German
and Bengali, according to the comparison between
2 and 3. A possible reason is that the resource of
different language pairs influences the efficiency of
knowledge transfer.

Effects on Pluggable Modules
Previous parameter-isolation based methods pro-
pose various components to introduce additional pa-
rameters in the hidden layers (He et al., 2021). As
shown in Table 7, inspired by them, we modify the
usage of the pluggable modules in the hidden layers
and our method is stable on the four translation di-
rections. In particular, we also inject the pluggable
modules in the Self-Attention layer. However, the
special modification of pluggable modules does not
demonstrate effective performance in incremental
learning for MNMT.

4.6 Results on Original Language Pairs

To demonstrate the validity and reliability of our
method, we build two powerful MNMT models as
the original models. As shown in Table 8, the origi-
nal models achieve state-of-the-art performance on
all original translation directions, compared with
the other powerful MNMT models.

4.7 More Comparisons

Due to space limitation, we provide a more detailed
analysis of our method in Appendix C, including
the training cost of the incremental learning, the
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Model Size en→ha en→is en→ja en→pl en→ps en→ta AVG.

Ours 0.4B 12.41 21.30 14.48 26.43 4.93 11.26 15.14
Ours 1.2B 13.42 22.62 16.12 27.91 5.41 12.03 16.25
M2M-100 0.4B 2.75 13.12 9.51 22.55 2.92 1.67 8.75
M2M-100 1.2B 6.14 18.60 11.67 28.08 4.79 1.82 11.85

Model Size ha→en is→en ja→en pl→en ps→en ta→en AVG.

Ours 0.4B 12.88 31.19 19.14 30.20 11.21 16.54 20.19
Ours 1.2B 13.41 32.31 19.27 31.91 12.29 17.62 21.14
M2M-100 0.4B 4.78 22.44 10.59 25.75 7.65 2.82 12.34
M2M-100 1.2B 9.24 29.33 13.43 28.87 10.91 2.70 15.75

Table 8: Results of English-to-xx and xx-to-English with different MNMT models on the original language pairs
(WMT-7).

visualization of sentence representations on all lan-
guage pairs, and the case study on new language
pairs, demonstrating the effectiveness of the knowl-
edge transfer method in incremental learning for
new language adaptation.

5 Conclusion

In this work, we propose a knowledge transfer
method in incremental learning for MNMT, which
leverages the knowledge from neural models. It can
encourage original models to learn new knowledge
from updated training data while naturally mitigat-
ing the issue of degradation on previous translation
directions. Moreover, it is more efficient to uti-
lize the knowledge transfer scheme than introduc-
ing randomly initialized parameters in incremental
learning. Experimental results demonstrate that the
proposed method outperforms several strong base-
lines in the comprehensive language consideration.

Limitations

In this work, we attempt to extend an existing
MNMT model to support new language pairs with
an acceptable expense. In addition to the advan-
tages, our method has the following limitations:

(1) Additional introduced parameters. We utilize
the parameter-isolation based method to support
new language pairs. The total parameters of the
MNMT model have been increased by pluggable
modules to achieve better performance than prior
studies. In the future, we will compress the number
of parameters to the same size of original models
meanwhile preserve the performance on all transla-
tion directions.

(2) The gap between our scenario and the real-
world scenario. Our proposed method is a white-
box service in incremental learning. Thus, we train

a powerful MNMT model as the original model in-
stead of directly utilizing existing models from the
Internet. And we only consider eight incremental
language pairs due to the limitation of computation
resources. We try our best to simulate the real-
world scenario and we will apply our proposed
method for large-scale pre-trained MNMT models
(e.g., NLLB 54.5B and M2M 12B) to validate the
effectiveness in industrial scenarios.
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A Dataset Details

We utilize six language pairs to train the original
MNMT model that covers 12 translation directions
and 7 languages (WMT-7). All the original training
data comes from the recent WMT general trans-
lation track. And we conduct eight incremental
language pairs in incremental learning from the
WMT news translation track and FLoRes. All data
follow the license that can be freely used for re-
search purposes (Farhad et al., 2021). The license
of FLoRes dataset is CC-BY-SA 4.0. In addition,
we follow Fan et al. (2021) to clean the training
sample. We introduce the characteristics of differ-
ent languages to analyze the linguistic diversity, as
shown in Table 9. All language pairs are English-
centric and the statistics of training data are shown
in Table 10.

A.1 Data Statistics

As the general setting, all language pairs are di-
vided into three categories in terms of the amount
of parallel data, including high resource (>10M),
medium resource (1M~10M), and low resource
(100k~1M). Specifically, the original language
pairs are, High resource: Japanese and Polish;
Medium resource: Icelandic and Pashto; Low re-
source: Hausa and Tamil. And the incremental
language pairs are, Medium resource: German and
Bengali; Low resource: Ukrainian and Romanian.
Note that incremental training data is often a non-
high resource in the real-world scenario.

A.2 Language Consideration

In this work, we explore a more complex and
comprehensive scenario for MNMT in incremental
learning, taking into account the diversity of incre-
mental languages. These incremental languages
differ from the original languages in terms of their
scripts and belong to different language families,
which leads to a serious vocabulary and linguistic
gap. Inspired by Zhang et al. (2022), if the incre-
mental language has a distinct script with the set
of original languages, a certain proportion of OOV
tokens with unclear semantics will occur between
the original and incremental languages and hinder
the performance on new language pairs. Moreover,
it is important to note that a language family refers
to a group of languages that share a common an-
cestry, known as the proto-language7. This concept

7https://en.wikipedia.org/wiki/Languagefamily

Code Language Genus Script Order

ha Hausa West Chadic Latin SVO
is Icelandic Germanic Latin SVO
ja Japanese Japanese Kanji SOV
pl Polish Slavic Latin SVO
ps Pashto Iranian Arabic SOV
ta Tamil Dravidian Tamil SOV

de German Germanic Latin SVO
ro Romanian Romance Latin SVO
uk Ukrainian Slavic Cyrillic SVO
bn Bengali Indic Bengali SOV

Table 9: The characteristics of languages in our setting.
The top half part represents the set of original languages.
The second half represents the set of incremental lan-
guages. Genus represents a subcategory of language
families.

highlights the historical connections among lan-
guages and their evolution over time. Additionally,
differences in grammar and word order can be ob-
served across distinct language families8. These
linguistic variations further contribute to the exist-
ing gap between incremental languages, making
their translation more challenging.

In our setting, the 4 incremental languages in-
clude: Bengali, which is not related to any of
the original 7 languages, and has a distinct script;
Ukrainian, which is related to the original language
Polish with the language family Slavic, but has a
distinct script with Cyrillic; Romanian, is Romance
language that is not related to all the original lan-
guages, but has a share script with Latin characters;
German, which is similar to the original languages
in the language families and scripts. The statistics
and details of datasets for original and incremental
languages are shown in Table 9.

B Model Details

B.1 Training Setup

We implement Transformer translation models in
all our experiments. In particular, the small orig-
inal model (0.4B) consists of 6 stacked encoder
layers, 6 stacked decoder layers, and 16 multi-
attention heads, followed by the configuration of
Transformer-Big (Vaswani et al., 2017). The dimen-
sions of dmodel and dffn are 1024 and 4096 respec-
tively. The large original model (1.2B) consists of
24 stacked encoder layers, 24 stacked decoder lay-
ers, and 16 multi-attention heads, followed by the
configuration of M2M-100 (Fan et al., 2021). The

8https://wals.info
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Language Pair Data Sources # Samples

Train Dev Test Train Dev Test

ja-en WMT21 WMT20 WMT21 18,001,428 993 1,005
pl-en WMT20 WMT20 WMT20 10,206,520 2,000 1,001
is-en WMT21 WMT21 WMT21 4,376,282 2,004 1,000
ps-en WMT20 WMT20 WMT20 1,155,942 2,698 2,719
ha-en WMT21 WMT21 WMT21 744,856 2,000 997
ta-en WMT20 WMT20 WMT20 660,818 1,989 997

de-en WMT14 WMT13 WMT14 4,508,785 3,000 3,003
ro-en WMT16 WMT16 WMT16 610,320 1,999 1,999
uk-en FLoRes FLoRes FLoRes 8,604,580 997 1,012
bn-en FLoRes FLoRes FLoRes 925,896 997 1,012

Table 10: The statistics of train, dev, and test data for the original languages (WMT-7) and the incremental languages.
The top half part represents the set of the original languages. The second half represents the set of the incremental
languages.

dimensions of dmodel and dffn are 1024 and 8192
respectively. We use Adam (Kingma and Ba, 2014)
and a half-precision training scheme to optimize
the parameters of all MNMT models. In addition,
we reset the optimizer and learning scheduler in in-
cremental learning and use the temperature-based
sampling scheme (Arivazhagan et al., 2019) with
a temperature of T = 5 to balance the training
data between diverse language pairs. We adopt the
early stop (patience is 10) strategy in incremental
learning and the batch size is 4096×4 in all train-
ing procedures. To eliminate the randomness of the
result, we report the mean BLEU scores of the mod-
els that are trained in five seeds. All incremental
models are trained on 2 NVIDIA A100 GPUs.

B.2 Continual Learning Baselines
We compare our method with various representa-
tive baselines in continual learning. The baselines
are as follows:

• Replay (Sun et al., 2019): creating pseudo
data for the original language pairs and train-
ing new language pairs jointly with the pseudo
data and incremental training data.

• EWC (Kirkpatrick et al., 2017): computing
the importance of the parameters with Fisher
matrix and employing an additional penalty
into the loss function to preserve original
knowledge.

• Self-KD (Castellucci et al., 2021): utilizing
the original models as the teacher model to
distill old knowledge.

• LFR (Gu et al., 2022): constraining the pa-
rameters of original models with low forget-

Method ja(old)→ro(new) de(old)→ro(new)

Adapter 1.09 5.37
Adapter+LSE 10.12 18.05
KT 15.12 22.20

Table 11: The BLEU scores on zero-shot direction.

ting risk regions. We choose the LRF-CM for
adapting new language pairs.

• Prompt (Chalkidis et al., 2021): prepending
prompts to the input embedding in the first
layer.

• Prefix (Li and Liang, 2021): prepending pre-
fixes to the keys and values of the attention at
every layer.

C More Comparisons

C.1 Training Cost
To further illustrate the efficiency of our method,
we investigate the training time compared with the
stronger baselines, as shown in Figure 3. The re-
sults show that the knowledge transfer method can
reduce the training time of incremental learning,
which is more efficient and practical than the other
methods.

C.2 Visualization of Multilingual
Representations

As shown in Figure 4, we visualize the sentence
representations on xx-to-English translation direc-
tions to investigate the representation gap between
languages. Due to comparability in one represen-
tation space, we need multi-source sentences that
represent the same meaning in different languages.
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Figure 3: The training time of various methods in incremental learning for MNMT.
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Figure 4: T-SNE visualizations of encoder representations of original and incremental languages on xx-to-English
translation directions by Adapter and our method. Note that the blue color scheme represents incremental languages
while the red color scheme represents original languages.

We use “FLoRes” and reduce the 1024-dim repre-
sentations to 2-dim with t-SNE (Van der Maaten
and Hinton, 2008) for visualization.

As Figure 4 shows, the sentence representations
using our method are drawn closer than the stan-
dard Adapter method (one of the baselines). It
demonstrates that our method can well adapt to
the new language. Moreover, previous studies
have shown that if sentences with similar semantics
are closer together in the representation space, it
can usually improve the translation performance
of zero-shot translation. Experimental results in

two translation directions show that our method
can achieve better performance for zero-shot trans-
lation, which is consistent with our visualization.

C.3 Case Study

We present several translation examples to provide
a comprehensive understanding of the knowledge
transfer method, as shown in Table 12. The exam-
ples demonstrate that our method can effectively
adapt original models to new languages especially
when the incremental language is not related to
the set of original languages. In particular, due to
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the vocabulary gap, the Adapter method is vulnera-
ble to learning incremental languages that have a
distinct script with Latin. Although the Extension
alleviates this issue by expanding the embedding
layer, the additional parameters are not fully op-
timized to suffer from the off-target problem for
MNMT.

D Potential Risks of Our Method

Since our proposed method can increase the unlim-
ited number of translation directions, it is possible
for some malicious users to use the MNMT model
to provide translation services for politically sensi-
tive languages. For instance, a malicious user may
utilize our model to generate hateful or offensive
sentences in some politically sensitive languages.
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Source  
en→bn

S1: Widespread looting reportedly continued overnight, as law enforcement officers were not present on Bishkek's streets. 
S2: Bishkek was described as sinking into a state of "anarchy" by one observer, as gangs of people roamed the streets and plundered stores of 
consumer goods. 
S3: Several Bishkek residents blamed protesters from the south for the lawlessness.

Reference

S1: রাতজুেড় ব"াপক লু)ন চলেছ কারণ িবশেকক'স 3ট এ আইন )েয়াগকারী কম0কত0 ারা উপি4ত িছেলন না। 

S2: "একজন পয9েব:েকর ;ারা িবশেকক বলেত <বাঝােনা হেয়িছল ""অরাজকতা"", কারন একদল 8লাক রাAায় ঘC ের <বড়াত এবং <ভাগGপেনGর িজিনসপH লুঠ 

করত।" 

S3: িবশেকেকর 8বশ িকছC  বািসJা আইনশৃNলার ঘাটিতর জনG দি:েনর Pিতবাদকারীেদর <দাষ িদেয়েছন।

Adapter 
(fail)

S1: বাংলা বাংলা বাংলা বাংলা, বাংলা বাংলা বাংলা, বাংলা বাংলা, বাংলা বাংলা বাংলা, বাংলা, বাংলা, বাংলা, বাংলা, বাংলা, বাংলা, বাংলা, বাংলা, বাংলা, 

বাংলা, বালা, বাংলা, বাংলা, বাংলা, বাংলা, বাংলা, বাংলা, বালা 

S2: বাংলা, বাংলা, বাংলা, বাংলা, বালা, বাংলা, বাংলা, বাংলা, বাংলা, বাংলা, বাংলা, বাংলা, বাংলা, বাংলা, বাংলা, বাংলা, বাংলা, বাংলা, বাংলা, ব 

S3: বাংলা, বাংলা, বাংলা, বাংলা, বাংলা, বাংলা, বাংলা, বাংলা, বাংলা, বাংলা, বাংলা, বাংলা, বাংলা, বাংলা, বাংলা, বাংলা, বাংলা, বাংলা, বাংলা, ব

Extension

S1: িবশেকেকর রাAায় আইনশNৃলা র:াকারী বািহনীর কম9কত9 ারা উপিUত িছেলন না বেলই রাতারািত লুটপাট চালােনা অবGাহত িছল বেল জানা িগেয়েছ । 
S2: িবশেক একজন পয9েব:েকর ;ারা 'রাজকীয়' অবUায় ডC েব যাওয়া বেল বণ9না করা হেয়িছল, কারণ জনতার দল রাAায় <ঘারােফরা কের এবং <ভাYা পেণGর 

<দাকান লুট কের িদেয়িছল । 
S3: <বশ কেয়কজন িবশেকেকর বািসJা <বআইিন আচরেণর জনG দি:ণ <থেক Pিতবাদকারীেদর <দাষােরাপ কেরেছন ।

Ours

S1: িবশেকেকর রাAায় আইন )েয়াগকারী কম0কত0 ারা উপি4ত না থাকায় রাতভর ব"াপক লুটপাট অবGাহত িছল বেল জানা <গেছ । 
S2: িবশেককেক একজন পয9েব:েকর ;ারা 'রাåজতT' অবUার মেধG ডC েব যাওয়ার বণ9না <দওয়া হেয়িছল, কারণ একদল 8লাক রাAায় <ঘারােফরা কের এবং 

<ভাগGপেণGর <দাকান লুট কের িনেয় যায় । 
S3: িবশেকেকর 8বশ কেয়কজন বািসJা দি:ণ িদক <থেক আসা Pিতবাদকারীেদরেক এই অধেম9র জনG <দাষােরাপ কেরেছ ।

Source  
en→uk

S1: Angel (2006), explains the Continuum approach as a method being used to help organizations reach a higher level of performance. 
S2: It has been known for a long time that different types of brain damage, traumas, lesions, and tumours affect behaviour and cause changes in 
some mental functions. 
S3: The Sundarbans has been declared a UNESCO World Heritage Site. The part of the forest within Indian territory is called Sundarbans 
National Park.

Reference

S1: "Ангел" (2006) пояснює підхід Континуума як метод, що використовується для допомоги організаціям у досягненні вищого рівня 
продуктивності. 
S2: "Було давно відомо, що різні типи пошкоджень мозку, травми, ураження та пухлини впливають на поведінку і призводять до змін у 
деяких психічних функціях. 
S3: Сундарбан був оголошений об'єктом Світової спадщини ЮНЕСКО. Частина лісу в межах індійської території називається 
Національним парком Сундарбан.

Adapter 
(fail)

S1: Angel (2006), explică abordarea Continuum ca metodă utilizată pentru a ajuta organizaţiile la un nivel mai mare de performanţă. 
S2: Відомо давного часу відомилося, що різні типи мозоку пошкоду, травми, резіонів і туморів впливають поведінку і викликають зміни 
в деяких психічних функціях. 
S3: Die Sundarbans wurde eine UNESCO Weltkulturbebe erklärt, die Teil des Waldes innerhalb indischen Territoriums wird Sundarbans National 
Park genannt.

Extension

S1: Angel (2006), пояснює підхід Continuum як метод, який використовується, щоб допомогти організаціям досягти більш високого рівня 
видатності. 
S2: З давно відомо, що різні типи пошкодження мозку, травми, перізаціями і тумари впливають на поведінку і викликають зміни в 
деяких психічних функціях. 
S3: Сундарбанські були оголошені UNESCO Світньої Спадщини, частина лісу в межах Індії називається Сандарбанською Національним 
парком.

Ours

S1: Ангел (2006), пояснює підхід Континуума як метод, який використовується, щоб допомогти організаціям досягти більш високого 
рівня продуктивності. 
S2: Давно відомо, що різні типи пошкоджень мозку, травм, ураження та пухлини впливають на поведінку і викликають зміни в деяких 
психічних функціях. 
S3: Сундарбан був оголошений об'єктом Світової спадщини  ЮНЕСКО. Частина лісу на території Індії називається Національний 
парком Сундарбан.

Table 12: Examples of several baselines and our method on en-to-bn and en-to-uk translation directions for each
label based on FLoRes testset. We only highlight some words and fragments to show the representative difference
between various methods.
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