
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics
Volume 1: Long Papers, pages 1546–1558

July 9-14, 2023 ©2023 Association for Computational Linguistics

GEC-DePenD: Non-Autoregressive Grammatical Error Correction with
Decoupled Permutation and Decoding

Konstantin Yakovlev
Huawei Noah’s Ark Lab

Moscow, Russia
yakovlev.konstantin1
@huawei-partners.com

Alexander Podolskiy
Huawei Noah’s Ark Lab

Moscow, Russia
podolskiy.alexander

@huawei.com

Andrey Bout
Huawei Noah’s Ark Lab

Moscow, Russia
bout.andrey
@huawei.com

Sergey Nikolenko
AI Center, NUST MISiS, Moscow, Russia

PDMI RAS, St. Petersburg, Russia
sergey@logic.pdmi.ras.ru

Irina Piontkovskaya
Huawei Noah’s Ark Lab

Moscow, Russia
piontkovskaya.irina@huawei.com

Abstract

Grammatical error correction (GEC) is an
important NLP task that is currently usu-
ally solved with autoregressive sequence-to-
sequence models. However, approaches of
this class are inherently slow due to one-by-
one token generation, so non-autoregressive al-
ternatives are needed. In this work, we pro-
pose a novel non-autoregressive approach to
GEC that decouples the architecture into a per-
mutation network that outputs a self-attention
weight matrix that can be used in beam search
to find the best permutation of input tokens
(with auxiliary 〈ins〉 tokens) and a decoder net-
work based on a step-unrolled denoising au-
toencoder that fills in specific tokens. This al-
lows us to find the token permutation after only
one forward pass of the permutation network,
avoiding autoregressive constructions. We
show that the resulting network improves over
previously known non-autoregressive methods
for GEC and reaches the level of autoregres-
sive methods that do not use language-specific
synthetic data generation methods. Our re-
sults are supported by a comprehensive ex-
perimental validation on the ConLL-2014 and
Write&Improve+LOCNESS datasets and an
extensive ablation study that supports our ar-
chitectural and algorithmic choices.

1 Introduction

Grammatical error correction (GEC) is an impor-
tant and obviously practically relevant problem in
natural language processing. In recent works, GEC
has been usually tackled with machine learning
approaches, where it has been formalized either
as looking for a sequence of edits or transforma-
tion tags (Omelianchuk et al., 2020) or, more gen-
erally, as a sequence-to-sequence text rewriting

〈s〉 I be busy 〈\s〉 〈ins〉

0 1 2 3 4 5

0 1 5 3 4

〈s〉 I 〈ins〉 busy 〈\s〉

〈s〉 I msk1 msk2 msk3 busy 〈\s〉

〈s〉 I am 〈pad〉 〈pad〉 busy 〈\s〉

Permutation network

Decoder network

Figure 1: GEC-DePenD: idea and example.

problem (Náplava and Straka, 2019; Grundkiewicz
et al., 2019), a problem that is a natural fit for
encoder-decoder architectures.

Latest encoder-decoder architectures indeed de-
fine the state of the art in grammatical error cor-
rection (Rothe et al., 2021a; Lichtarge et al., 2020).
However, the best current results for GEC are
achieved by autoregressive methods that need to
produce output tokens one by one, which signifi-
cantly hinders inference time and thus limits their
applicability in real world solutions. This moti-
vates the development of non-autoregressive mod-
els that can achieve results similar to autoregres-
sive ones but with a significantly improved run-
time. Previously developed non-autoregressive ap-
proaches have relied on language-specific trans-
formation tags (Omelianchuk et al., 2020; Tar-
navskyi et al., 2022). In this work, we de-
velop a novel non-autoregressive and language-
agnostic approach, called GEC-DePenD (GEC
with Decoupled Permutation & Decoding) that
yields excellent performance on the GEC task and
has other attractive properties. In particular, it is
able to output a ranked list of hypotheses that a
potential user can choose from.

The main idea of GEC-DePenD is to decouple

1546

permutation and decoding, with one network pro-
ducing a permutation of input tokens together with
specially added 〈ins〉 tokens for possible insertions
and another network actually infilling 〈ins〉 tokens.
Fig. 1 illustrates the idea: the source sentence “I
be busy” is encoded as “〈s〉 I be busy 〈\s〉 〈ins〉”,
the permutation network obtains “〈s〉 I 〈ins〉 busy
〈\s〉”, and then the decoder network converts “〈s〉
I msk1 msk2 msk3 busy 〈\s〉” into “〈s〉 I am 〈pad〉
〈pad〉 busy 〈\s〉” and outputs “I am busy” as the
corrected sentence. In a single run, the permutation
network produces a self-attention matrix for subse-
quent beam search (Mallinson et al., 2020), while
in the decoder network we use the step-unrolled de-
noising autoencoder (SUNDAE) proposed by Savi-
nov et al. (2022). We also adapt and evaluate sev-
eral additional techniques including a three-stage
training schedule, length normalization, and infer-
ence tweaks that improve the final performance.

Thus, our main contributions can be summa-
rized as follows: (i) we propose, to the best of
our knowledge, the first open-vocabulary itera-
tive non-autoregressive GEC model 1 based on
decoupling permutation and decoding, including
(ii) a novel pointing mechanism that can be imple-
mented by a single permutation network without
an additional tagger and (iii) a new algorithm for
producing ground truth permutations from source
(errorful) and target (corrected) sentences, lead-
ing to more adequate dataset construction for the
GEC task. In experimental evaluation, we show
that our model outperforms previously known non-
autoregressive approaches (apart from GECToR
that uses language-specific tagging (Omelianchuk
et al., 2020)) and operates, with similar implemen-
tations for backbone networks, several times faster
than either autoregressive approaches or GECToR.

The paper is organized as follows. Section 2 sur-
veys related work on both autoregressive and non-
autoregressive approaches to GEC. Section 3 intro-
duces our approach, including our idea on decou-
pling permutation and decoding, SUNDAE, and
new ideas for dataset construction and inference
tweaks that make our approach work. Section 4
shows the main experimental results, Section 5
presents an extensive ablation study that highlights
the contributions of various parts of our approach,
Section 6 concludes the paper, and Section 7 dis-
cusses the limitations of our approach.

1We release our code at https://github.com/
Gibson210/GEC-DePenD

2 Related work

Synthetic data for grammatical error correc-
tion. In this work we concentrate on the model part
of a GEC pipeline, but we also have to emphasize
the importance of data and training pipelines for
GEC. We discuss available datasets in Section 4.1
but it is important to note the role of synthetic data
generation for GEC model training. Synthetic data
has been used for GEC for a long time (Foster
and Andersen, 2009; Brockett et al., 2006), and
recent research shows that it can lead to significant
performance gains (Stahlberg and Kumar, 2021;
Htut and Tetreault, 2019). Approaches for syn-
thetic data generation include character perturba-
tions, dictionary- or edit-distance based replace-
ments, shuffling word order, rule-based suffix trans-
formations, and more (Grundkiewicz et al., 2019;
Awasthi et al., 2019a; Náplava and Straka, 2019;
Rothe et al., 2021b). However, the most effective
methods are language-dependent and require to
construct a dictionary of tags and transformations
for every language. In particular, Omelianchuk
et al. (2020) and Tarnavskyi et al. (2022) em-
ploy language-specific schemes while we present a
language-agnostic approach.
Non-autoregressive machine translation. Au-
toregressive models can be slow due to sequential
generation of output tokens. To alleviate this, Gu
et al. (2017) proposed non-autoregressive gener-
ation for machine translation via generating out-
put tokens in parallel. Since non-autoregressive
models are not capable of modeling target side
dependencies, several approaches have been pro-
posed to alleviate this issue: knowledge distilla-
tion (Gu et al., 2017; Lee et al., 2018), iterative
decoding (Ghazvininejad et al., 2019; Kasai et al.,
2020), latent variables (Shu et al., 2020; Ma et al.,
2019), and iterative methods (Gu et al., 2019; Kasai
et al., 2020; Saharia et al., 2020).
Autoregressive grammatical error correction.
Autoregressive models show outstanding perfor-
mance in the GEC task (Rothe et al., 2021a;
Lichtarge et al., 2020). The generation process
can be done either in token space (Lichtarge et al.,
2020) or in the space of edits that need to be applied
to the source sequence to get the target (Stahlberg
and Kumar, 2020; Malmi et al., 2019). Using the
edit space is motivated by improving the runtime;
another way of increasing inference speed is to use
aggressive decoding where tokens are generated in
parallel and regenerated when there is a difference

1547

https://github.com/Gibson210/GEC-DePenD
https://github.com/Gibson210/GEC-DePenD

between source and target sequences (Sun et al.,
2021). Combinations with a non-autoregressive
error detection model, where an autoregressive de-
coder generates tokens to be corrected instead of
generating the full output sequence, also can im-
prove the running time (Chen et al., 2020).
Non-autoregressive text editing models.
Mallinson et al. (2020) proposed to split the
modeling of the target sequence given the source
into two parts: the first non-autoregressive model
performs tagging and permutes the tokens, and
the second model non-autoregressively performs
insertions on 〈msk〉 token positions. In contrast
to our work, insertion position are predicted
non-autoregressively, which yields lower quality
than our approach. Omelianchuk et al. (2020)
and Tarnavskyi et al. (2022) proposed to employ
a non-autoregressive tagging model for GEC,
predicting the transformation of each token. How-
ever, these transformations are language-specific,
which limits the approach in multilingual settings;
in contrast, our approach is language-agnostic.
Awasthi et al. (2019b) suggested to construct
a language-specific space of all possible edits
and proposed iterative refinement that improves
decoding performance. They apply the model
to the predicted target sequence several times,
but this leads to an additional train-test domain
shift since the model receives a partially corrected
input. In this work we alleviate this issue by using
SUNDAE and perform iterative refinement only
with the decoder rather than the entire model,
further improving inference speed.
Iterative decoding. Several approaches were in-
troduced to better capture target-side dependencies.
Ghazvininejad et al. (2019) decompose the decod-
ing iteration into two parts: predicting all tokens
and masking less confident predictions. Lee et al.
(2018) predict all tokens simultaneously, while
Savinov et al. (2022) introduce argmax-unrolled de-
coding that first updates most confident tokens and
then less confident ones from the previous iteration.

3 Methods

3.1 Decoupling permutation and decoding

In GEC-DePenD, we separate changes in word or-
der and choosing the actual tokens to insert. Con-
sider a source sentence x = (x1, . . . , xn) with
fixed first and last tokens: x1 = 〈s〉, xn = 〈\s〉.
We append s special tokens responsible for inser-
tions, {〈insi〉}si=1, getting x̃, |x̃| = n+ s. The task

is to get an output sequence which is a permutation
of a subset of tokens of x̃, with 〈insi〉 tokens occur-
ring in order and separated by at least one token
from x. Let π =

(
π1, . . . , πp

)
be a sequence of

indices defining the permutation, with π1 = 1 and
πp = n (it points to 〈\s〉 and indicates stopping).
We decompose the architecture according to

pθ (y|x) =
∑

π
pθ (π|x) pθ (y|π,x) (1)

into a permutation network implementing pθ (π|x)
and a decoder network for pθ (y|π,x) (see Fig. 1
for an example). The permutation and decoder net-
works have a shared encoder, but we do not perform
end-to-end training, so in effect we approximate∑

π with a single π (defined in Section 3.3), simi-
lar to Mallinson et al. (2020).

Permutation. For the permutation network,
from the last hidden state of the encoder we ob-
tain a representation H ∈ R(n+s)×d, where d is
the latent dimension. We follow Mallinson et al.
(2022) and feed H through a linear key layer and
a single Transformer query layer, obtaining an at-
tention matrix A ∈ R(n+s)×(n+s) by computing
pairwise dot products of the rows of key and query
matrices. Then the likelihood of the permutation is
decomposed as

log p (π|A) =
∑p

i=2
log p

(
πi
∣∣π1:i−1,A

)
=

=
∑p

i=2
LogSoftmax(Aπi−1 +mπ1:i−1), (2)

where mπ1:i−1 is a mask vector. We mask atten-
tion weights in A in the row πi−1 for columns
π1, . . . , πi−1 and do not allow pointing to 〈INSs〉
before 〈INSs−1〉; masking means setting the corre-
sponding mi to −∞. The key observation here is
that while formula (2) is an autoregressive decom-
position for π, we do not use it directly during ei-
ther training or inference. On inference, we get the
permutation π with beam search after one encoder
pass that gives the attention matrix A and thus de-
fines log p (π|x) for any π. Moreover, beam search
outputs a ranked list of permutations that can lead
to a set of candidate corrections, a feature useful in
real world applications.

Decoding. After obtaining π, we apply it to the
source sentence, getting a permuted input π(x̃),
and then apply the decoder network that is sup-
posed to replace 〈insi〉 in π(x̃) with actual tokens.

During training, the decoder receives a permu-
tation of the source sentence x̃ given by an oracle.

1548

Following Mallinson et al. (2020), we replace each
〈insi〉 token by three 〈msk〉 tokens (if the target is
shorter than 3 tokens we add 〈pad〉 tokens), sample
tokens at 〈msk〉 positions, and feed the result to the
decoder again to calculate the loss function (see
Section 3.2 below).

During inference, the decoder iteratively refines
tokens at positions where the input had 〈msk〉 to-
kens, without any changes to other tokens or their
ordering. We apply the decoder to the output of
the previous iteration and replace only tokens at po-
sitions that were 〈msk〉 after the permutation (but
could change on previous iterations of the decoder).
To speed up inference, we do not run the decoder
if there are no insertions in the prediction.

Objective. We minimize the loss function

Ltotal(θ) = −λper log pθ (π|x)− Lmsk(θ), (3)

where Lmsk(θ) is a lower bound (see Section 3.2)
on the marginal probability of tokens only at 〈msk〉
positions (the rest are unchanged by the decoder),
and λper is a hyperparameter. Fig. 2 shows a com-
plex example of GEC-DePenD operation with mul-
tiple insertions.

3.2 Step-unrolled denoising autoencoder
For the decoder, we use the step-unrolled denoising
autoencoder (SUNDAE) proposed by Savinov et al.
(2022). Consider a sequence-to-sequence problem
with source sequence (sentence) x = (x1, . . . , xn)
and target sequence y = (y1, . . . , ym). SUNDAE
constructs T intermediate sequences y1, . . . ,yT
with yT = y, decomposing

pθ (y1, . . . ,yT |x) = pθ (y1|x)
T∏
t=2

pθ (yt|yt−1,x) ,
where θ are model parameters. Each term is factor-
ized in a non-autoregressive way, with yit depend-
ing only on the previous step yt−1:

pθ (y1|x) =
∏m

i=1
pθ
(
yi1
∣∣x
)
,

pθ (yt|yt−1,x) =
∏m

i=1
pθ
(
yit
∣∣yt−1,x

)
,

so the marginal log-likelihood lower bound is

log pθ (y|x) ≥ L(θ) =
= Ey1,...,yT−1 [log pθ (y|yT−1)] .

We follow Savinov et al. (2022) and set T = 2.
The gradient of the lower bound w.r.t. θ is given as

∇θL(θ) ≈ λ0∇θ log pθ (y1|x)
∣∣
y1=y

+

+ (1− λ0)Ey1 [∇θ log pθ (y|y1,x)] , (4)

where λ0 ∈ [0, 1]. Savinov et al. (2022) used
λ0 = 0.5, while we treat λ0 as a hyperparame-
ter and optimize it. This is an approximation since
we do not propagate the gradients through sam-
pling y1. The case λ0 = 1 corresponds to T = 1,
i.e. for λ0 = 1 target tokens are independent given
the source sentence. We call this case vanilla be-
low and always perform one decoding step for the
vanilla model. If λ0 6= 1, target tokens are depen-
dent given the source; we call this case SUNDAE.

3.3 Dataset construction

During training, given source and target sentences
(x,y), we need to find a permutation π and se-
quences of tokens that correspond to special 〈insi〉
tokens. This requires a special algorithm to be ap-
plied to available training data; one such algorithm
is FELIX proposed by Mallinson et al. (2020).

However, we do not use the FELIX dataset con-
struction algorithm because we want to handle
cases with repeating tokens differently. Fig. 3
shows an example: for the input “I like films when
I was younger I watched on TV” the model has to
move the clause “I watched on TV” forward. Both
algorithms produce the same tokens but in the per-
mutation, FELIX leaves the “I” pronouns close to
their original locations, breaking the span “when I
was younger”, which is undesirable since it makes
the permutation network’s job harder.

Therefore, we propose a different construction
of the permutation π given a source sentence x
and target sentence y. Our algorithm operates as
follows:

(1) find all matching spans for the source and target
sequences; we iterate over target spans from
longer to shorter, and if the current span occurs
in the source we remove it from both source
and target; at the end of this step, we obtain a
sequence of pairs of aligned spans;

(2) reorder source spans and insert missing tokens;
we do not allow to reorder spans whose ranks in
the target sequence differ by ≥ max_len = 2
to make the permutations local; we maximize
the total length of spans covered under these
constraints with dynamic programming.

Algorithm 1 shows this idea in full formal detail;
in the example shown on Fig. 3, it keeps both “I”s
with their clauses.

1549

〈s〉

0

it

1

was

2

20

3

years

4

ago

5

we

6

were

7

friends

8

since

9

us

10

were

11

10

12

〈\s〉

13

〈ins1〉

14

〈ins2〉

15

〈ins3〉

16

0

〈s〉

1

it

2

was

3

20

4

years

5

ago

14

〈ins1〉

6

we

15

〈ins2〉

8

friends

9

since

16

〈ins3〉

11

were

12

10

13

〈\s〉

〈s〉 it was 20 years ago we friends since were 10 〈\s〉msk11 msk21 msk31msk12 msk22 msk32msk13 msk23 msk33

〈s〉 it was 20 years ago and 〈pad〉 〈pad〉 we had been 〈pad〉 friends since we 〈pad〉 〈pad〉 were 10 〈\s〉

Figure 2: A complex example of GEC-DePenD with multiple insertions and deletions: “It was 20 years ago we
were friends since us were 10” becomes “It was 20 years ago and we had been friends since we were 10”.

〈s〉

0

I

1

like

2

films

3

when

4

I

5

was

6

younger

7

I

8

watched

9

on

10

TV

11

〈\s〉

12

0

〈s〉

1

I

2

like

3

films

5

I

9

watched

10

on

11

TV

4

when

8

I

6

was

7

younger

12

〈\s〉

(a) FELIX

〈s〉

0

I

1

like

2

films

3

when

4

I

5

was

6

younger

7

I

8

watched

9

on

10

TV

11

〈\s〉

12

0

〈s〉

1

I

2

like

3

films

8

I

9

watched

10

on

11

TV

4

when

5

I

6

was

7

younger

12

〈\s〉

(b) Proposed algorithm.

Figure 3: Dataset construction algorithms.

3.4 Beam search modifications
To further improve the permutation network, we
use two important tricks (see also Section 5). First,
we use length normalization, i.e., we divide each
candidate score by its length in beam search (Bah-
danau et al., 2014; Yang et al., 2018).

Second, we use inference tweaks to improve
the F0.5 score by rebalancing precision and re-
call, increasing the former and decreasing the lat-
ter (Omelianchuk et al., 2020; Tarnavskyi et al.,
2022). The idea is to make a correction only if we
are confident enough. We adopt this idea to beam
search decoding in the permutation network. We
prioritize the position nearest to the last pointed
position on the right. Formally, given a distribution
p
(
πi
∣∣π1:i−1,A

)
, we introduce a confidence bias

parameter c ∈ [0, 1] and rescore the distribution as

p̃
(
πi
∣∣π1:i−1,A

)
= (1− c)p

(
πi
∣∣π1:i−1,A

)
+

+ c · one_hot(right(π1:i−1)),

Algorithm 1: Dataset construction
Data: x,y, s,max_len
Result: π, dec_input, dec_output
/* List of triples (start_src, start_tgt, length) */
aligns = [];
msk_x, msk_y = x, y;
for len in {|y|, . . . , 1} do

for i in {0, . . . , |y| − len + 1} do
start = cont_len(msk_y[i : i + len], msk_x);
if start != -1 then

aligns.append(start, i, len);
/* Hide aligned source tokens */
msk_x[start : start + len] = -1;
/* Hide aligned target tokens */
msk_y[i : i + len] = -2;

/* Find the order of appearance of source spans in the
target sequence and their lengths */

aligns = sorted(aligns, key=start_tgt);
src_ranks = argsort(argsort(aligns, key=start_src));
src_lens = aligns[:, 2];
/* Find with dynamic programming a subsequence of

src_ranks s.t. adjacent ranks differ by ≤ max_len
with max total length of selected spans; add spans
with 〈s〉 and 〈/s〉 manually if not selected */

ids = get_subsequence(src_ranks, src_lens, max_len);
reduced_aligns = aligns[ids];
/* Construct π, decoder input, and decoder output */
π, dec_output, dec_input = [], [], [];
last_src, last_tgt = -1, -1;
k = 1;
for start_src, start_tgt, len in reduced_aligns do

if last_tgt != -1 and k ≤ s and
start_tgt - last_tgt ≥ 2 then

π.append(|x| + k - 1);
k += 1;
ins_seq = y[last_tgt + 1 : start_tgt];
ins_seq.extend([〈pad〉, 〈pad〉]);
dec_output.extend(ins_seq[:3]);
dec_input.extend([〈msk〉] * 3);

π.extend([start_src, . . . , start_src + len - 1]);
dec_input.extend(x[start_src : start_src + len]);
dec_output.extend(x[start_src : start_src + len]);
last_tgt = start_tgt + len - 1;
last_src = start_src + len - 1;

where right(π1:i−1) is the smallest j ∈ [πi−1 +
1, n+ 2] such that j 6∈ π1:i−1.

1550

4 Evaluation

4.1 Datasets and training stages
Each dataset is a parallel corpus of errorful and
error-free sentences. Similar to (Omelianchuk
et al., 2020; Tarnavskyi et al., 2022; Katsumata
and Komachi, 2020), we train GEC-DePenD in
three coarse-to-fine training stages. Table 1 sum-
marizes dataset statistics and which stages of
our pipeline they are used on. For Stage I
(pretraining), we use the synthetic PIE dataset
constructed by Awasthi et al. (2019b) by inject-
ing synthetic grammatical errors into correct sen-
tences. For training on Stage II, we used several
datasets: (i) First Certificate in English (FCE) (Yan-
nakoudakis et al., 2011) that contains 28 350 error-
coded sentences from English as a second language
exams, (ii) National University of Singapore Cor-
pus of Learner English (NUCLE) (Dahlmeier et al.,
2013) with over 50K annotated sentences from es-
says of undergraduate students learning English,
(iii) Write&Improve+LOCNESS dataset (W&I+L,
also called BEA-2019 in some literature) (Bryant
et al., 2019) intended to represent a wide variety of
English levels and abilities, and (iv) cLang8 (Rothe
et al., 2021a), a distilled version of the Lang8
dataset (Mizumoto et al., 2011) cleaned with the
gT5 model. Finally, we used the W&I+L dataset
again for additional training on Stage III.

As evaluation data, we used the CoNLL-2014
test dataset (Ng et al., 2014) with the M2 scorer
(Dahlmeier and Ng, 2012) and W&I+L dev and
test sets with the ERRANT scorer (Bryant et al.,
2017). The W&I+L dev set was used for validation
and ablation study; the two test sets, for evaluation.

4.2 Baseline methods
We consider both autoregressive and non-autoreg-
ressive baselines.

BART (Lewis et al., 2020) is an autoregressive
sequence-to-sequence model; it takes an errorful
sentence as input and produces an error-free sen-
tence token by token with the decoder. We show the
scores reported by Katsumata and Komachi (2020)
and also reimplement the model with a shallow 2-
layer decoder (BART(12+2) in Table 2) and train
it according to the stages shown in Section 4.1;
note that our reimplementation has improved the
results. We consider two types of decoding: greedy
and aggressive greedy (Sun et al., 2021). In greedy
decoding, we generate the token with highest con-
ditional probability. In aggressive greedy decoding,

we generate as many tokens as possible in parallel,
then re-decode several tokens after the first differ-
ence between source and target sequences, and then
switch back to aggressive greedy decoding, repeat-
ing the procedure until the 〈/s〉 token. Aggressive
greedy decoding is guaranteed to produce the same
output as greedy decoding but can be much faster.
For comparison, we also show the state of the art
T5-XXL autoregressive model with 11B parame-
ters based on T5 (Raffel et al., 2020) and trained
on a much larger synthetic dataset.

FELIX (Mallinson et al., 2020) is a non-
autoregressive model. It consists of two submodels:
the first one predicts the permutation of a subset
of source tokens and inserts 〈msk〉 tokens, and the
second model infills 〈msk〉 tokens conditioned on
the outputs of the first model. Both stages are done
in a non-autoregressive way. Note that the model
does not use any language-specific information.

Levenshtein Transformer (LevT) (Gu et al.,
2019; Chen et al., 2020) is a partially non-
autoregressive model that does not use language-
specific information. It is based on insertions and
deletions and performs multiple refinement steps.

GECToR (Omelianchuk et al., 2020; Tarnavskyi
et al., 2022) is a non-autoregressive tagging model
that uses language-specific information, predicting
a transformation for every token. The model is iter-
atively applied to the corrected sentence from the
previous iteration. We compare GECToR based
on XLNet (GECToRXLNet) and RoBERTa-large
(GECToRlarge) pretrained models.

Parallel Iterative Edit (PIE) (Awasthi et al.,
2019b) is a non-autoregressive model that uses
language-specific information. For each source
token it predicts the corresponding edits, applying
the model iteratively to get the corrected sentence.

4.3 Experimental setup

As the base model for GEC-DePenD we used
BART-large (Lewis et al., 2020) with 12 pretrained
encoder layers and 2 decoder layers, initialized
randomly. The permutation network uses a sin-
gle Transformer layer, also randomly initialized;
the same encoder and decoder configurations were
used for our autoregressive baseline BART(12+2).

For training we used AdamW (Loshchilov and
Hutter, 2017) with β1 = 0.9, β2 = 0.999, ε =
10−8, weight decay 0.01, and no gradient accumu-
lation. For stages I and II we used learning rate
3 · 10−5 and constant learning rate scheduler with

1551

Dataset #sentences %errorful Stages

PIE 9 000 000 100.0 I
cLang8 2 372 119 57.7 II
FCE, train 28 350 62.5 II
NUCLE 57 151 37.4 II
W&I+L, train 34 308 66.3 II, III

W&I+L, dev 4 384 64.3 Val
CoNLL, test 1 312 71.9 Test
W&I+L, test 4 477 N/A Test

Table 1: Training, validation, and test datasets.

500 steps of linear warmup. For stage III we used
learning rate 10−5 and no warmup. For all stages
we used 0.1 dropout, max_len = 2, s = 8 for Al-
gorithm 1, λper = 5, confidence bias c ∈ [0.1, 0.3],
2-4 epochs, max 70 tokens per sentence and 3000
tokens per GPU, training on 4 TESLA T4 GPUs.

4.4 Experimental results

The main results of our comparison are presented in
Table 2. We have evaluated the baselines described
in Section 4.2 and GEC-DePenD in two versions:
vanilla and SUNDAE with 2 decoder steps. The
results show that GEC-DePenD outperforms all
existing non-autoregressive baselines except for
the language-specific GECToR family.

We have also compared GEC baselines and
GEC-DePenD in terms of inference speed on the
ConLL-2014 test dataset on a single GPU. All mod-
els were implemented with the Transformers li-
brary (Wolf et al., 2020). In addition, we do not clip
the source sentence, as was done by Omelianchuk
et al. (2020), and process one sentence at a time.
We used a single TESLA-T4 GPU. Performance
results are summarized in Table 3. As we can
see, GEC-DePenD outperforms all baselines in
terms of inference speed and sets a new standard
for performance, running twice faster than even
non-autoregressive GECToR models. Note that
GEC-DePenD with SUNDAE both outperforms 1-
step GECToRlarge in terms of F0.5 on ConLL-14
(Table 2) and operates 1.25x faster (Table 3). The
quality gap between GEC-DePenD and its autore-
gressive counterpart (BART(12+2), our implemen-
tation) is reduced but still remains in Table 2.

Figure 4 shows a study of the latency with re-
spect to the length of the input sentence in to-
kens; it shows the results on the BEA-2019 dev
set for the proposed GEC-DePenD and autoregres-
sive BART(12+2) with greedy aggressive decoding.
We see that the latency of the autoregressive base-

[0,10) [10,20) [20,30) [30,40) [40,50) [50,60) [60,70)
Length of the source sentence (in tokens)

0

10

20

30

40

50

La
te

nc
y

(m
s/

se
nt

en
ce

)

GEC-DePenD, vanilla
GEC-DePenD, SUNDAE
BART(12+2), aggressive dec.

Figure 4: Latency of BART(12+2), aggressive decod-
ing and the proposed family of GEC-DePenD on BEA
dev set.

line increases faster with increasing input sentence
length than for the proposed non-autoregressive
models. In addition, the speedup over the au-
toregressive baseline approaches 2x on sentence
lengths from 60 to 70.

5 Ablation study

In this section, we present a detailed ablation study,
reporting both ideas that worked (Section 3) and
ideas that did not work. Table 4 shows our eval-
uation on the W&I+L-dev dataset; below we de-
scribe the results of Table 4 from top to bottom.
Subscripts (e.g., VanillaII, III) show which training
stages were used in the experiment (Section 4.1).

5.1 Dataset construction

First, we show that the proposed dataset construc-
tion algorithm (Algorithm 1) indeed yields an in-
crease in performance. We considered the BART-
large(12+2) model and performed training without
stage I (Section 4.1) with FELIX (Mallinson et al.,
2020) and Algorithm 1, calibrating the results with
inference tweaks. Table 4 shows that the effect
from Algorithm 1 is positive and significant.

5.2 Stage III, SUNDAE, and inference tweaks

The next section of Table 4 shows all combina-
tions of two- and three-stage training (Section 4.1),
vanilla and SUNDAE model (Section 3.2), and
adding inference tweaks (Section 3.4). We see that
each addition—Stage III, SUNDAE, and inference
tweaks—has a positive effect on validation perfor-
mance in all settings, and the best model, naturally,
is SUNDAEII, III with inference tweaks.

1552

ConLL-14 test set W&I+L test set
Prec Rec F0.5 Prec Rec F0.5

Autoregressive

BART-large (Katsumata and Komachi, 2020) 69.3 45.0 62.6 68.3 57.1 65.6
BART(12+2) Our implementation 69.2 49.8 64.2 69.6 63.5 68.3
T5-XXL, 11B parameters (Rothe et al., 2021a) — — 68.75 — — 75.88

Non-autoregressive

LevT (Chen et al., 2020) 53.1 23.6 42.5 45.5 37.0 43.5
FELIX (Mallinson et al., 2022) — — — — — 63.5
PIE, BERT-large (Awasthi et al., 2019b) 66.1 43.0 59.7 58.0 53.1 56.9
GECToRlarge, 1 step (Tarnavskyi et al., 2022) 75.4 35.3 61.4 82.03 50.81 73.05
GECToRlarge, 3 steps (Tarnavskyi et al., 2022) 76.2 37.7 63.3 80.73 53.56 73.29
GECToRlarge, 5 steps (Tarnavskyi et al., 2022) 76.1 37.6 63.2 80.73 53.63 73.32
GECToRXLNet (Omelianchuk et al., 2020) 77.5 40.1 65.3 79.2 53.9 72.4
GEC-DePenD, vanilla Ours 67.8 41.3 60.1 69.5 55.3 66.1
GEC-DePenD, SUNDAE Ours 73.2 37.8 61.6 72.9 53.2 67.9

Table 2: Experimental results on the ConLL-14 and W&I+L test sets.

Model Speedup #params

BART(12+2), greedy dec. 1.0x 238M
BART(12+2), aggressive dec. 3.7x 238M
GECToRXLNet, 5 steps 2.8x 120M
GECToRlarge, 1 step 3.8x 360M
GECToRlarge, 3 steps 2.4x 360M
GECToRlarge, 5 steps 2.4x 360M
GEC-DePenD, vanilla 5.3x 253M
GEC-DePenD, SUNDAE 4.7x 253M

Table 3: Performance comparison, ConLL-2014-test.

5.3 SUNDAE hyperparameters
Next, we show that tuning SUNDAE hyperparame-
ters, i.e., number of steps and λ0 (Section 3.2), can
indeed improve performance; for the final model,
we chose λ0 = 0.25 and 2 steps of SUNDAE.

5.4 Beam search rescoring and sinkhorn
We first check how much choosing the right hy-
pothesis from the beam search output will increase
the performance. We generate top 3 beam search
outputs and use the decoder to fill in 〈msk〉 tokens.
Then we select the hypothesis with the best GLEU
score (Wu et al., 2016) compared to the ground
truth, evaluating on W&I+L-dev. The next section
of Table 4 shows that although the results deterio-
rate significantly from #1 beam search hypothesis
to #2 and #3 (suggesting that beam search works
as intended), choosing the best out of top three
gives a very large increase in the metrics (more
than +0.1 in terms of the F0.5 measure), so there
is a lot of room for improvement in beam search
generation. For this improvement, we explored two
approaches. First, we tried to rescore hypotheses
with decoder scores. Note that the log probabil-

Model Prec Rec F0.5

Dataset construction

VanillaII, III + FELIX tagger 52.5 39.5 49.3
VanillaII, III + Algorithm 1 57.6 38.9 52.5

Training stages, SUNDAE and inference tweaks

VanillaII 57.9 36.5 51.8
VanillaII + inf. tweaks 59.3 34.6 51.9
SUNDAEII 56.4 39.3 51.9
SUNDAEII + inf. tweaks 59.9 35.0 52.4
VanillaII, III 54.6 42.8 51.7
VanillaII, III + inf. tweaks 60.6 36.5 53.5
SUNDAEII, III 54.9 43.4 52.1
SUNDAEII, III + inf. tweaks 63.5 34.3 54.3

SUNDAE hyperparameters selection

1 step, λ0 = 0.75 60.8 36.5 53.6
1 step, λ0 = 0.25 62.9 33.9 53.7
1 step, λ0 = 0.01 60.8 35.8 53.4
2 steps, λ0 = 0.75 61.2 36.6 54.0
2 steps, λ0 = 0.25 63.5 34.3 54.3
2 steps, λ0 = 0.01 61.6 36.4 54.1
3 steps, λ0 = 0.75 61.3 36.7 54.0
3 steps, λ0 = 0.25 63.5 34.3 54.3
3 steps, λ0 = 0.01 61.7 36.4 54.1

Beam search rescoring and sinkhorn

#1 hypothesis, no length norm 60.4 35.2 52.8
#2 hypothesis, no length norm 40.4 28.3 37.2
#3 hypothesis, no length norm 33.1 28.3 32.0
Best of top-3 by GLEU 71.8 45.9 64.5
#1 hypothesis, with length norm 60.6 36.5 53.5
Decoder rescoring, λresc = 0.99 62.3 31.8 52.3
Decoder rescoring, λresc = 0.999 60.3 34.8 52.6
Decoder rescoring, λresc = 1 60.4 35.2 52.8
VanillaII, III, 16 sinkhorn layers 60.6 36.7 53.6

Table 4: Ablation study on W&I+L-dev.

ity of a hypothesis is the sum of permutation and
decoder scores. We introduce λresc ∈ [0, 1] and
choose the best hypothesis out of three by the score

1553

λresc log p (π|x) + (1 − λresc) log p (y|π,x) . We
chose the best λresc by validation F0.5 but found
that while λresc does help rebalance precision and
recall, the best F0.5 is achieved for λ∗resc = 1, so
rescoring with the decoder is not helpful.

The second approach, length normalization (Sec-
tion 3.4), indeed improved the performance.

Another related idea, the sinkhorn layer, was
proposed by Mena et al. (2018) as an extension of
the Gumbel-Softmax trick and later used for GEC
by Mallinson et al. (2022). For an arbitrary matrix
A, a sinkhorn step is defined as follows:

A′ = A− LogSumExp(A,dim = 0),

A(1) = A′ − LogSumExp(A′, dim = 1).

A(1) is the output of the first sinkhorn step, and
these steps can be repeated. The theoretical motiva-
tion here is that when the number of steps k tends
to infinity, exp(A(k)) tends to a doubly stochastic
matrix, i.e., after applying arg max to each row
we obtain a valid permutation that does not point
to the same token twice; the idea is to make several
sinkhorn steps on A and then optimize the cross-
entropy loss as usual. We have experimented with
different variations of sinkhorn layers, but even the
best (shown in Table 4) did not bring any improve-
ments.

6 Conclusion

In this work, we have presented GEC-DePenD, a
novel method for non-autoregressive grammatical
error correction that decouples permutation and
decoding steps, adds the step-unrolled denoising
autoencoder into the decoder network, changes
the dataset construction algorithm to preserve long
spans, and uses inference tweaks to improve the re-
sults. GEC-DePenD shows the best results among
non-autoregressive language-agnostic GEC mod-
els and significantly outperforms other models in
terms of inference speed. We hope that our ap-
proach can become a basis for real life applications
of grammatical error correction.

7 Limitations

The main limitations of our study also provide
motivation for future work. First, while we
have provided an extensive ablation study for
GEC-DePenD, there are many more low-level op-
timizations that can be done to further improve
the results. In a real life application, one would
be encouraged to investigate these optimizations.

Second, obviously, non-autoregressive models, in-
cluding GEC-DePenD, still lose to state of the art
autoregressive models. While the existence of this
gap may be inevitable, we believe that it can be
significantly reduced in further work.

Acknowledgements

We gratefully acknowledge the support of Mind-
Spore, CANN (Compute Architecture for Neural
Networks) and Ascend AI Processor used for this
research.

The work of Sergey Nikolenko was prepared
in the framework of the strategic project “Digital
Business” within the Strategic Academic Leader-
ship Program “Priority 2030” at NUST MISiS.

References
Abhijeet Awasthi, Sunita Sarawagi, Rasna Goyal,

Sabyasachi Ghosh, and Vihari Piratla. 2019a. Par-
allel iterative edit models for local sequence trans-
duction. In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Natu-
ral Language Processing (EMNLP-IJCNLP), pages
4260–4270, Hong Kong, China. Association for
Computational Linguistics.

Abhijeet Awasthi, Sunita Sarawagi, Rasna Goyal,
Sabyasachi Ghosh, and Vihari Piratla. 2019b. Par-
allel iterative edit models for local sequence trans-
duction. ArXiv, abs/1910.02893.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua
Bengio. 2014. Neural machine translation by
jointly learning to align and translate. CoRR,
abs/1409.0473.

Chris Brockett, William B. Dolan, and Michael Ga-
mon. 2006. Correcting ESL errors using phrasal
SMT techniques. In Proceedings of the 21st Interna-
tional Conference on Computational Linguistics and
44th Annual Meeting of the Association for Compu-
tational Linguistics, pages 249–256, Sydney, Aus-
tralia. Association for Computational Linguistics.

Christopher Bryant, Mariano Felice, Øistein E. An-
dersen, and Ted Briscoe. 2019. The bea-2019
shared task on grammatical error correction. In
BEA@ACL.

Christopher Bryant, Mariano Felice, and Ted Briscoe.
2017. Automatic annotation and evaluation of error
types for grammatical error correction. In Annual
Meeting of the Association for Computational Lin-
guistics.

Meng Hui Chen, Tao Ge, Xingxing Zhang, Furu Wei,
and M. Zhou. 2020. Improving the efficiency of

1554

https://doi.org/10.18653/v1/D19-1435
https://doi.org/10.18653/v1/D19-1435
https://doi.org/10.18653/v1/D19-1435
https://doi.org/10.3115/1220175.1220207
https://doi.org/10.3115/1220175.1220207

grammatical error correction with erroneous span de-
tection and correction. In Conference on Empirical
Methods in Natural Language Processing.

Daniel Dahlmeier and Hwee Tou Ng. 2012. Better eval-
uation for grammatical error correction. In North
American Chapter of the Association for Computa-
tional Linguistics.

Daniel Dahlmeier, Hwee Tou Ng, and Siew Mei Wu.
2013. Building a large annotated corpus of learner
english: The nus corpus of learner english. In
BEA@NAACL-HLT.

Jennifer Foster and Oistein Andersen. 2009. Gen-
ERRate: Generating errors for use in grammatical
error detection. In Proceedings of the Fourth Work-
shop on Innovative Use of NLP for Building Edu-
cational Applications, pages 82–90, Boulder, Col-
orado. Association for Computational Linguistics.

Marjan Ghazvininejad, Omer Levy, Yinhan Liu, and
Luke Zettlemoyer. 2019. Mask-predict: Parallel de-
coding of conditional masked language models. In
Conference on Empirical Methods in Natural Lan-
guage Processing.

Roman Grundkiewicz, Marcin Junczys-Dowmunt, and
Kenneth Heafield. 2019. Neural grammatical error
correction systems with unsupervised pre-training
on synthetic data. In Proceedings of the Fourteenth
Workshop on Innovative Use of NLP for Building
Educational Applications, pages 252–263, Florence,
Italy. Association for Computational Linguistics.

Jiatao Gu, James Bradbury, Caiming Xiong, Vic-
tor O. K. Li, and Richard Socher. 2017. Non-
autoregressive neural machine translation. ArXiv,
abs/1711.02281.

Jiatao Gu, Changhan Wang, and Jake Zhao. 2019. Lev-
enshtein transformer. In Neural Information Pro-
cessing Systems.

Phu Mon Htut and Joel Tetreault. 2019. The unbear-
able weight of generating artificial errors for gram-
matical error correction. In Proceedings of the Four-
teenth Workshop on Innovative Use of NLP for Build-
ing Educational Applications, pages 478–483, Flo-
rence, Italy. Association for Computational Linguis-
tics.

Jungo Kasai, James Cross, Marjan Ghazvininejad, and
Jiatao Gu. 2020. Non-autoregressive machine trans-
lation with disentangled context transformer. In In-
ternational Conference on Machine Learning.

Satoru Katsumata and Mamoru Komachi. 2020.
Stronger baselines for grammatical error correc-
tion using a pretrained encoder-decoder model. In
AACL.

Jason Lee, Elman Mansimov, and Kyunghyun Cho.
2018. Deterministic non-autoregressive neural se-
quence modeling by iterative refinement. In Con-
ference on Empirical Methods in Natural Language
Processing.

Mike Lewis, Yinhan Liu, Naman Goyal, Mar-
jan Ghazvininejad, Abdelrahman Mohamed, Omer
Levy, Veselin Stoyanov, and Luke Zettlemoyer.
2020. BART: Denoising sequence-to-sequence pre-
training for natural language generation, translation,
and comprehension. In Proceedings of the 58th An-
nual Meeting of the Association for Computational
Linguistics, pages 7871–7880, Online. Association
for Computational Linguistics.

Jared Lichtarge, Chris Alberti, and Shankar Kumar.
2020. Data weighted training strategies for gram-
matical error correction. Transactions of the Associ-
ation for Computational Linguistics, 8:634–646.

Ilya Loshchilov and Frank Hutter. 2017. Decoupled
weight decay regularization. In International Con-
ference on Learning Representations.

Xuezhe Ma, Chunting Zhou, Xian Li, Graham Neu-
big, and Eduard H. Hovy. 2019. Flowseq: Non-
autoregressive conditional sequence generation with
generative flow. ArXiv, abs/1909.02480.

Jonathan Mallinson, Jakub Adamek, Eric Malmi,
and Aliaksei Severyn. 2022. Edit5: Semi-
autoregressive text-editing with t5 warm-start.
ArXiv, abs/2205.12209.

Jonathan Mallinson, Aliaksei Severyn, Eric Malmi,
and Guillermo Garrido. 2020. Felix: Flexible
text editing through tagging and insertion. ArXiv,
abs/2003.10687.

Eric Malmi, Sebastian Krause, Sascha Rothe, Daniil
Mirylenka, and Aliaksei Severyn. 2019. Encode,
tag, realize: High-precision text editing. ArXiv,
abs/1909.01187.

Gonzalo E. Mena, David Belanger, Scott W. Linder-
man, and Jasper Snoek. 2018. Learning latent per-
mutations with gumbel-sinkhorn networks. ArXiv,
abs/1802.08665.

Tomoya Mizumoto, Mamoru Komachi, Masaaki Na-
gata, and Yuji Matsumoto. 2011. Mining revision
log of language learning sns for automated japanese
error correction of second language learners. In In-
ternational Joint Conference on Natural Language
Processing.

Jakub Náplava and Milan Straka. 2019. Grammati-
cal error correction in low-resource scenarios. In
Proceedings of the 5th Workshop on Noisy User-
generated Text (W-NUT 2019), pages 346–356,
Hong Kong, China. Association for Computational
Linguistics.

Hwee Tou Ng, Siew Mei Wu, Ted Briscoe, Christian
Hadiwinoto, Raymond Hendy Susanto, and Christo-
pher Bryant. 2014. The conll-2014 shared task on
grammatical error correction.

Kostiantyn Omelianchuk, Vitaliy Atrasevych, Artem N.
Chernodub, and Oleksandr Skurzhanskyi. 2020.
Gector – grammatical error correction: Tag, not

1555

https://aclanthology.org/W09-2112
https://aclanthology.org/W09-2112
https://aclanthology.org/W09-2112
https://doi.org/10.18653/v1/W19-4427
https://doi.org/10.18653/v1/W19-4427
https://doi.org/10.18653/v1/W19-4427
https://doi.org/10.18653/v1/W19-4449
https://doi.org/10.18653/v1/W19-4449
https://doi.org/10.18653/v1/W19-4449
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/D19-5545
https://doi.org/10.18653/v1/D19-5545

rewrite. In Workshop on Innovative Use of NLP for
Building Educational Applications.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, Peter J Liu, et al. 2020. Exploring the limits
of transfer learning with a unified text-to-text trans-
former. J. Mach. Learn. Res., 21(140):1–67.

Sascha Rothe, Jonathan Mallinson, Eric Malmi, Sebas-
tian Krause, and Aliaksei Severyn. 2021a. A simple
recipe for multilingual grammatical error correction.
In Annual Meeting of the Association for Computa-
tional Linguistics.

Sascha Rothe, Jonathan Mallinson, Eric Malmi, Sebas-
tian Krause, and Aliaksei Severyn. 2021b. A sim-
ple recipe for multilingual grammatical error cor-
rection. In Proceedings of the 59th Annual Meet-
ing of the Association for Computational Linguistics
and the 11th International Joint Conference on Nat-
ural Language Processing (Volume 2: Short Papers),
pages 702–707, Online. Association for Computa-
tional Linguistics.

Chitwan Saharia, William Chan, Saurabh Saxena, and
Mohammad Norouzi. 2020. Non-autoregressive ma-
chine translation with latent alignments. In Con-
ference on Empirical Methods in Natural Language
Processing.

Nikolay Savinov, Junyoung Chung, Mikolaj
Binkowski, Erich Elsen, and Aäron van den
Oord. 2022. Step-unrolled denoising autoencoders
for text generation. ArXiv, abs/2112.06749.

Raphael Shu, Hideki Nakayama, and Kyunghyun Cho.
2020. Latent-variable non-autoregressive neural ma-
chine translation with deterministic inference using
a delta posterior. Proceedings of the AAAI Confer-
ence on Artificial Intelligence, 34:8846–8853.

Felix Stahlberg and Shankar Kumar. 2020. Seq2edits:
Sequence transduction using span-level edit opera-
tions. ArXiv, abs/2009.11136.

Felix Stahlberg and Shankar Kumar. 2021. Synthetic
data generation for grammatical error correction
with tagged corruption models. In Proceedings
of the 16th Workshop on Innovative Use of NLP
for Building Educational Applications, pages 37–47,
Online. Association for Computational Linguistics.

Xin Sun, Tao Ge, Furu Wei, and Houfeng Wang.
2021. Instantaneous grammatical error correc-
tion with shallow aggressive decoding. ArXiv,
abs/2106.04970.

Maksym Tarnavskyi, Artem N. Chernodub, and Kos-
tiantyn Omelianchuk. 2022. Ensembling and knowl-
edge distilling of large sequence taggers for gram-
matical error correction. In Annual Meeting of the
Association for Computational Linguistics.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Remi Louf, Morgan Funtow-
icz, Joe Davison, Sam Shleifer, Patrick von Platen,
Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu,
Teven Le Scao, Sylvain Gugger, Mariama Drame,
Quentin Lhoest, and Alexander Rush. 2020. Trans-
formers: State-of-the-art natural language process-
ing. In Proceedings of the 2020 Conference on Em-
pirical Methods in Natural Language Processing:
System Demonstrations, pages 38–45, Online. Asso-
ciation for Computational Linguistics.

Yonghui Wu, Mike Schuster, Z. Chen, Quoc V. Le,
Mohammad Norouzi, Wolfgang Macherey, Maxim
Krikun, Yuan Cao, Qin Gao, Klaus Macherey, Jeff
Klingner, Apurva Shah, Melvin Johnson, Xiaob-
ing Liu, Lukasz Kaiser, Stephan Gouws, Yoshikiyo
Kato, Taku Kudo, Hideto Kazawa, Keith Stevens,
George Kurian, Nishant Patil, Wei Wang, Cliff
Young, Jason R. Smith, Jason Riesa, Alex Rudnick,
Oriol Vinyals, Gregory S. Corrado, Macduff Hughes,
and Jeffrey Dean. 2016. Google’s neural machine
translation system: Bridging the gap between human
and machine translation. ArXiv, abs/1609.08144.

Yilin Yang, Liang Huang, and Mingbo Ma. 2018.
Breaking the beam search curse: A study of (re-
)scoring methods and stopping criteria for neural ma-
chine translation. In EMNLP.

Helen Yannakoudakis, Ted Briscoe, and Ben Medlock.
2011. A new dataset and method for automatically
grading esol texts. In Annual Meeting of the Associ-
ation for Computational Linguistics.

1556

https://doi.org/10.18653/v1/2021.acl-short.89
https://doi.org/10.18653/v1/2021.acl-short.89
https://doi.org/10.18653/v1/2021.acl-short.89
https://doi.org/10.1609/aaai.v34i05.6413
https://doi.org/10.1609/aaai.v34i05.6413
https://doi.org/10.1609/aaai.v34i05.6413
https://aclanthology.org/2021.bea-1.4
https://aclanthology.org/2021.bea-1.4
https://aclanthology.org/2021.bea-1.4
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2020.emnlp-demos.6

ACL 2023 Responsible NLP Checklist

A For every submission:
�3 A1. Did you describe the limitations of your work?

Section 7

�7 A2. Did you discuss any potential risks of your work?
Our work deals with improving grammatical error correction and does not seem to have potential
risks beyond the usual ecological concerns related to using large language models; we do note the
model size and training time.

�3 A3. Do the abstract and introduction summarize the paper’s main claims?
Section 1

�7 A4. Have you used AI writing assistants when working on this paper?
Left blank.

B �3 Did you use or create scientific artifacts?
Section 4

�3 B1. Did you cite the creators of artifacts you used?
Section 4

�3 B2. Did you discuss the license or terms for use and / or distribution of any artifacts?
See the Supplement.

�3 B3. Did you discuss if your use of existing artifact(s) was consistent with their intended use, provided
that it was specified? For the artifacts you create, do you specify intended use and whether that is
compatible with the original access conditions (in particular, derivatives of data accessed for research
purposes should not be used outside of research contexts)?
See the Supplement.

� B4. Did you discuss the steps taken to check whether the data that was collected / used contains any
information that names or uniquely identifies individual people or offensive content, and the steps
taken to protect / anonymize it?
Not applicable. Left blank.

� B5. Did you provide documentation of the artifacts, e.g., coverage of domains, languages, and
linguistic phenomena, demographic groups represented, etc.?
Not applicable. Left blank.

�3 B6. Did you report relevant statistics like the number of examples, details of train / test / dev splits,
etc. for the data that you used / created? Even for commonly-used benchmark datasets, include the
number of examples in train / validation / test splits, as these provide necessary context for a reader
to understand experimental results. For example, small differences in accuracy on large test sets may
be significant, while on small test sets they may not be.
Section 4

C �3 Did you run computational experiments?
Sections 4 and 5

�3 C1. Did you report the number of parameters in the models used, the total computational budget
(e.g., GPU hours), and computing infrastructure used?
Section 4

The Responsible NLP Checklist used at ACL 2023 is adopted from NAACL 2022, with the addition of a question on AI writing
assistance.

1557

https://2023.aclweb.org/
https://2022.naacl.org/blog/responsible-nlp-research-checklist/
https://2023.aclweb.org/blog/ACL-2023-policy/
https://2023.aclweb.org/blog/ACL-2023-policy/

�3 C2. Did you discuss the experimental setup, including hyperparameter search and best-found
hyperparameter values?
Section 4

�3 C3. Did you report descriptive statistics about your results (e.g., error bars around results, summary
statistics from sets of experiments), and is it transparent whether you are reporting the max, mean,
etc. or just a single run?
Sections 4 and 5

�3 C4. If you used existing packages (e.g., for preprocessing, for normalization, or for evaluation), did
you report the implementation, model, and parameter settings used (e.g., NLTK, Spacy, ROUGE,
etc.)?
Section 3

D �7 Did you use human annotators (e.g., crowdworkers) or research with human participants?
Left blank.

� D1. Did you report the full text of instructions given to participants, including e.g., screenshots,
disclaimers of any risks to participants or annotators, etc.?
No response.

� D2. Did you report information about how you recruited (e.g., crowdsourcing platform, students)
and paid participants, and discuss if such payment is adequate given the participants’ demographic
(e.g., country of residence)?
No response.

� D3. Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? For example, if you collected data via crowdsourcing, did your instructions to
crowdworkers explain how the data would be used?
No response.

� D4. Was the data collection protocol approved (or determined exempt) by an ethics review board?
No response.

� D5. Did you report the basic demographic and geographic characteristics of the annotator population
that is the source of the data?
No response.

1558

