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Abstract

Consistently scaling pre-trained language
models (PLMs) imposes substantial burdens on
model adaptation, necessitating more efficient
alternatives to conventional fine-tuning.
Given the advantage of prompting in the
zero-shot setting and the observed performance
fluctuation among different prompts, we
explore the instance-level prompt and their
generalizability. By searching through the
prompt space, we first validate the assumption
that for every instance, there is almost always
a lottery prompt that induces the correct
prediction from the PLM, and such prompt can
be obtained at a low cost thanks to the inherent
ability of PLMs. Meanwhile, we find that some
strong lottery prompts have high performance
over the whole training set, and they are
equipped with distinguishable linguistic
features. Lastly, we attempt to generalize the
searched strong lottery prompts to unseen data
with prompt ensembling method without any
parameter tuning. Experiments are conducted
on various types of NLP classification tasks
and demonstrate that the proposed method
can achieve comparable results with other
gradient-free and optimization-free baselines.

1 Introduction

Since pre-trained language models (PLMs)
became the de-facto standard in modern NLP re-
searches (Devlin et al., 2019; Liu et al., 2019; Han
et al., 2021a), the pretraining-finetuning paradigm
has been prevailing until recent years when models
keep scaling (Radford et al., 2019; Brown et al.,
2020; Rae et al., 2021) and become too expensive
to be optimized. To this end, researchers are ac-
tively seeking more effective strategies that require
little or even no optimization to harness PLMs.

Among these exploratory studies of advanced
model adaptation, prompting (Brown et al.,

∗ equal contributions
† corresponding authors

2020; Schick et al., 2020; Schick and Schütze,
2021a; Gao et al., 2021) is gaining popularity
in the community, which uses additional context
(prompts) to wrap input instances and trigger
desired output tokens. Note that in this paper, the
term “prompt” technically refers to the template
that wraps the original input. In classification tasks,
these tokens are further mapped to particular labels
by a verbalizer. Such a paradigm is verified to be
effective in a variety of downstream tasks, even
when annotations are insufficient. Particularly,
empirical evidence shows that coincidental
prompts could achieve extraordinary performance
in the zero-shot setting, i.e., no training examples
are presented. For example, simple manual
prompt can achieve an F1 score of over 60% on
46-class entity typing dataset (Ding et al., 2021a)
and reaches 73% accuracy on DBpedia with 14
classes (Hu et al., 2021) in the zero-shot setting.

Despite the promising performance of prompt-
ing, it is often accompanied by drastic fluctuations
among different prompts (Zhao et al., 2021). Given
the observed sensitivity and context-dependent
nature of the prompting method, it is intuitive to
assign distinct prompts to each instance to trigger
the desired output. Intrigued by this intuition, we
explore a bold hypothesis:

Is it possible to find at least one instance-
level prompt that induces correct output for
every data point (lottery prompt) in classifi-
cation tasks without any optimization?

We empirically show that after building an
automatic searching procedure with reasonable
searching space on 13 representative classification
datasets of up to 66 classes, the existence of such
lottery prompts can be validated (§ 2) . That
is, the combination of just a few discrete tokens
can make a PLM output correct labels for almost
any classification data. This finding updates our
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recognition of the limit of prompted knowledge in
PLMs and demonstrates a promising upper bound
of the PLMs’ inference capability.

With the hypothesis verified, we conduct further
analysis on the internal mechanisms and properties
of lottery prompts to explore how the lottery
prompts relate to model capability and how lottery
prompts generalize to unseen data without any
optimization.

(1) We first find that the search cost of lottery
prompts is low for most datasets (under 30 API
calls), and could reflect task difficulty and model
capacity (§ 3.1). Search success rate increases and
search cost decreases for larger PLMs and PLMs
pre-trained for more steps, demonstrating that lot-
tery prompts are a unique consequence of the ex-
panded model capacity, rather than a mere stroke
of luck. (2) Among these lottery prompts, we also
find that there are a number of “strong prompts”
that perform non-trivially on the whole training set,
and interpretable linguistic features can be identi-
fied among them (§ 3.2). Strong prompts demon-
strate considerable potential to be generalized to
unseen data, i.e., test dataset, of the current task.
We develop a mutual-information-based prompt
ensembling method and show that strong prompts
could be effectively generalized to unseen data in
an optimization-free manner (§ 4). Without any pa-
rameter update, the ensembling of strong prompts
could achieve on-par or better performance with
many competitive baselines.

In summary, we validate the existence of lottery
prompts and conduct an in-depth analysis of the
properties of lottery prompts. We also show that by
directly ensembling the strong prompts, prominent
performance can be achieved on test data without
any optimization. Our study points to the great
potential of PLMs and is hoped to inspire future
works in more efficient ways in searching and en-
sembling lottery prompts as an optimization-free
adaptation of PLMs.

2 The Existence of Lottery Prompts for
Every Data Point

Considering the extraordinary performance ob-
served on zero-shot classification and the large vari-
ance brought by the prompt selection, we make an
assumption as follows: Given a pre-trained lan-
guage model and a classification dataset, for each
instance, at least one lottery prompt exists that can
induce the desired label from the PLM, without the

need to update the PLM parameters.

To validate the assumption, we conduct exper-
iments that attempt to find the lottery prompt for
every data point on 13 classification tasks. Note
that for different instances, the prompt may be dif-
ferent, and our goal is to verify the existence of
such prompts in this experiment.

2.1 Overview and Setup

Particularly, for every input instance in a clas-
sification task, we attempt to search through
the prompt space and find a textual prompt that
can make PLMs produce desired label words.
We choose 13 datasets of various NLP tasks
for assumption validation. Most of them come
from GLUE benchmark (Wang et al., 2018), and
others include Yelp Polarity (Zhang et al., 2015),
SNLI (Bowman et al., 2015), AG’s News (Zhang
et al., 2015), DBpedia (Zhang et al., 2015), and
Few-NERD (Ding et al., 2021b). SST-2 (Socher
et al., 2013) and Yelp Polarity are datasets for
binary sentiment classification. CoLA (Warstadt
et al., 2019) is for acceptibility judgment of
single sentence. SNLI, RTE (Wang et al., 2018),
QNLI (Wang et al., 2018), WNLI (Levesque,
2011) and MNLI (Williams et al., 2018) target at
language inference detection given a sentence pair.
QQP (Iyer et al., 2017) and MRPC (Schick et al.,
2020) are for paraphrase judgment. AG’s News
and DBpedia are used for text theme classification.
Few-NERD is an entity typing dataset.

As for prompt search space, 200 words with top
frequency in English1 are gathered and grouped
according to part-of-speech tag with NLTK pack-
age (Loper and Bird, 2002) into nouns, verbs,
prepositions, adjectives and adverbs. The designed
prompt search space is the Cartesian product of
three word sets T = NOUNS×VERBS× (PREP∪
ADJ∪ADV)×{<MASK>}, and |T | = 76725. The
major concerns of such designing is to restrict the
prompt space and to fit with common syntactic or-
der of words to ensure prompt plausibility to some
extent. As for verbalizers, we follow the standard
design of previous works (Sun et al., 2022). We use
RoBERTa-large (Liu et al., 2019) and GPT-2 (Rad-
ford et al., 2019) as the backbones. The specific
prompt format and verbalizers used are shown in
Appendix C.

1https://sketchengine.co.uk
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2.2 The Searching Process

For each dataset, we randomly sample 1000 in-
stances from the training set as Xtrain = {(xi, yi)}
and apply each prompt T ∈ T to each instance and
use the PLM M to produce the prediction. Specif-
ically, a prompt T composed of a noun, a verb and
an adjective may be “it was really”. Applying it to
an instance x:“A fun movie.” will yeild the input
text T (x):“A fun movie. it was really <MASK>”.
For each of such pair T (x) ∈ Xtrain × T , the score
for each class can be obtained as

o(x;T,M) = Softmax(V(M(T (x)))), (1)

where V denotes the projection from output
logits over PLM vocabulary to the class label set.
Specifically, to reduce the impact from the prompt,
we use calibration (Zhao et al., 2021) to rescale
the scores before making the final prediction.

q(T ;M) = Softmax(V(M(T (·)))),

p(x;T,M) = Normalize(
o(x;T,M)

q(T ;M)
).

(2)

T (·) means a wrapped input with empty string
and q is the corresponding output probability over
the label words. p is the final calibrated probability
over the class labels. For every (x, y) ∈ Xtrain, we
enumerate over each T ∈ T and see if the output
ŷ = argmax p will give the correct prediction y.

2.3 Verification of the Assumption

Table 1 reports the basic searching results. Each
instance x is considered correctly predicted if there
exists T ∈ T such that y = argmax p. It is shown
that for all datasets, a lottery prompt that induces
the correct prediction from M exists for almost
all 1000 instances. The assumption is thus vali-
dated, that is, in a finite search space composed of
textual tokens, we can almost always find at least
one combination of common words as a prompt to
make the prediction correct. While it may not be
surprising to see a success on binary classification
tasks, achieving 100% coverage on Few-NERD, a
66-class dataset for entity typing, is worth noting.
It indicates that the particular semantics distributed
in PLM can be triggered by certain contexts even
without any further fine-tuning.

Naturally, the phenomenon is not observed
when the model is not pre-trained. We conduct
the same searching process for Few-NERD on
a randomly initialized RoBERTa-large, and only

33.1% instances could find the corresponding lot-
tery prompts. The effect of pre-training will be
further explored in Section 3.1, demonstrating that
lottery prompts are a unique and consequent effect
along with language model pre-training.

Datasets #Classes RoBERTa-large GPT-2

SST-2 2 100.00 100.00
Yelp P. 2 100.00 100.00
SNLI 3 100.00 99.90
RTE 2 100.00 100.00
MRPC 2 100.00 100.00
CoLA 2 100.00 100.00
MNLI 3 99.90 99.90
QNLI 2 100.00 100.00
QQP 2 100.00 100.00
WNLI 2 100.00 100.00
AG’s News 4 100.00 100.00
DBpedia 14 100.00 100.00
Few-NERD 66 100.00 99.70

Table 1: The success rate (%) of lottery prompt search
for each dataset’s 1000 randomly sampled data. WNLI
uses the whole training set with 635 instances.

3 Empirical Analysis

Since we have verified the existence lottery
prompts, in this section, we conduct further analy-
sis on search cost and the searched lottery prompts.

3.1 Search Cost Analysis

As aforementioned, the searching space in our ex-
periment is |T | = 76725, however, the practical
cost to find a lottery prompt for one data point is
significantly lower than the budget. As shown in
Figure 2, the average search cost for each instance
does not exceed 30 API calls on most datasets for
both PLMs. In this section, we show that search
cost correlates with data difficulty and model ca-
pacity with further analysis.
Task Difficulty. As shown in Figure 2, searching
for a lottery prompt for a multi-class classifica-
tion problem is more costly. The 66-class typing
dataset Few-NERD requires a significantly higher
search budget than the rest of the datasets, most
of which only contain 2 or 3 classes. Another rea-
sonable observation is that single sentence classifi-
cation tasks are generally easier than tasks involv-
ing sentence pairs. As mentioned in the next part,
it may be attributed to the designing of prompt
format and label words. Meanwhile, NLI tasks
with mixed domains are probably the most difficult
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Figure 1: The change of search success rate and the mean search cost along with the model size (left) and the
pre-training steps (right). Experiments are conducted with GPT-2, GPT-2-medium, GPT-2-large, GPT-2-xl, and
RoBERTa-base pre-trained with 5000, 10000, 50000, and 100000 steps.
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Figure 2: The average search cost (number of API calls
for each instance) on each dataset.

sentence-pair tasks, given that MNLI, RTE, and
SNLI are more costly than paraphrase tasks and
other domain-specific NLI datasets. Comparing
across models, the auto-regressive model (GPT-
2) generally takes more searches than the auto-
encoding model (RoBERTa-large). Despite the dif-
ferences in individual datasets, they show similar
trends, which can roughly reflect how difficult
the dataset is for PLMs.

Hard Instances. Beyond task difficulty, we are
also interested in some of the hard instances,
i.e. instances that require a significant number of
searches or fail to match any lottery prompt in the
given search space. We gather the 5 instances that
require the most searches or ultimately observe
a failure in searching from both PLMs. The ex-
amples from 3 datasets are presented in Appendix
Table 8. It can be seen that for SST-2, the presented

cases are intuitively difficult, as many of them in-
volve vague expressions and complex reasoning
that can be misleading. On the other hand, the
hard cases in MNLI and SNLI seem more counter-
intuitive. Most “entailment” cases have consider-
able vocabulary overlap between the premise and
hypothesis statements. The three failed cases are
short sentences with almost identical expressions.
We believe it is the negative effect from prompt
template and label word chosen. For MNLI, both
the high-lighted cases contain negation auxiliaries
that rarely follow a “Yes” statement. This tendency
drives the PLMs to always favor the choice of “No”,
which leads to erroneous prediction. The effect
of negation has also been studied with standard
PLM finetuning and proved to be a challenge (Hos-
sain et al., 2022; Hosseini et al., 2021). The anal-
ysis shows that although for most instances, the
lottery prompts can be easily found, the prompt-
ing method is still disadvantaged when it comes
to complex text that requires advanced under-
standing ability. Also, prompting method is sen-
sitive to verbalizer designs and can be easily in-
fluenced by statistical correlation between label
words and input texts.
Impact of Model Size and Pre-training. To
explore the effect of model capacity on the easi-
ness to search for lottery prompts, we conduct the
same searching process as described in § 2 on AG’s
News and FewNERD with PLMs of different scales
and pre-training status. Specifically, we use GPT-
2, GPT-2-medium, GPT-2-large and GPT-2-xl for
model size ablation and RoBERTa-base pre-trained
for 5000∼100000 steps for pre-training ablation,
respectively. Figure 1 shows the variation of search
success rate and average search cost per instance.
For models of different scale, the success rate is
similar but the search cost consistently decreases as
models scale up, which shows that large PLMs gen-
erally have a larger feasible solution space for spe-
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cific instances. Meanwhile, finding lottery prompts
for PLM at their early pre-training stage is much
harder. As the pre-training progresses, a significant
reduction in search cost and increase in success
rate follow. This indicates that the existence of
lottery prompts is not merely a stroke of luck,
but a consequence of pre-training that expands
model capacity and can be further strengthened
as PLMs scale up.

SST-2 Yelp Agnews DBpedia SNLI RTE MRPC FewNERD
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Figure 3: Prompt performance and variation on each
dataset using RoBERTa-large. The vertical axis repre-
sents the metric of each prompt over Xtrain. MRPC uses
f1 metric, and others use accuracy.

3.2 The Strong Prompts
After searching for lottery prompts for all instances,
we are interested in if there are “strong prompts”
among them, i.e., prompts that perform well on the
whole Xtrain. We measure the performance of each
prompt over Xtrain with standard metrics on some
representative datasets from each task category.
The metric statistics and variation of all prompts
are shown in Figure 3. It could be concluded that
for all datasets, there are a handful of “strong
prompts” that can perform satisfactorily on
the dataset. Note that despite having altogether
66 classes, the best-performing prompt almost
achieves an accuracy of 0.4 on Few-NERD. Mean-
while, different tasks show distinct patterns. Text
classification tasks with single sentence are more
sensitive to prompt choice and often observe larger
performance variation over the prompt space. For
SST-2, while the best-performing prompt reaches
an accuracy of 0.8, the worst prompts can barely
get to 0.3. For NLI tasks, prompt performance is
more stable however mediocre.

To inspect into the linguistic characteristics of
the strong prompts, we present the top-5 prompts
for some of the representative datasets and their

corresponding metrics on the training set of 1000
instances in Table 2. While many prompts may
not seem syntactical on the whole, certain linguis-
tic characteristics can still be identified, which fit
with our language intuition, both syntactically and
semantically, and reveal some of the most contribu-
tive words in prompts for distinctive datasets. For
example, the top prompts for the sentiment analysis
task are compatible with chosen label words. Ad-
verbs that enhance the statement (e.g. just, really,
very) appear frequently in sentiment analysis tasks.
For topic classification, the words like “other” and
“such” naturally lead to nominal label words like
“sports” and “artist”. As for natural language infer-
ence task, although language entailment is subjec-
tive, it is common that personal pronouns are often
involved when we express our opinions on entail-
ment, like "I think it means", "Do you think", etc.
Therefore appearance pf pronouns is in top prompts
is reasonable. Meanwhile, we do observe that good
prompts are not always interpretable. It may im-
ply that the PLM’s internal language ability and
understanding deviates from human beings, which
is why prompt engineering is important. Above all,
we see that “strong prompts” do exist and they
are equipped with distinct linguistic features de-
pending on label words and task type.

4 Explore the Generalizability of Strong
Prompts

In § 2 and § 3, we have empirically verified that
conditioned on a pre-trained model and a classifica-
tion task, it is possible to find a lottery prompt for
almost every data point, and that there are a handful
of strong prompts that perform non-trivially on the
training set. In this section, we first describe the
ensembling method and then present the general-
ization results.

4.1 Prompt Ensembling Method
We gather a set of feasible prompts T ∗ with the
searching result on Xtrain and conduct inference
with designed prompt ensembling method for each
instance in Xtest. Since the choice of T ∗ is solely
based on inference results on Xtrain, the process
uses no validation set. Formally, given the selected
prompts T ∗ = {T1, T2, ..., Tt} ⊂ T , the predic-
tion for each data point x ∈ Xtest is presented as

p(x; T ∗,M) = Φ(p1, p2, ..., pt), (3)

where pk = p(x;Tk,M) and is calculated as
equation 2, and Φ is the ensembling method used.
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Dataset Top-5 Prompts Metrics

SST-2 he work just, I find very, I find really, help are for, she work just 85.9, 85.6, 85.2, 84.6, 84.0
Yelp P. look place really, you place also, look was also, I were very, they place also 92.0, 91.3, 91.3, 91.2, 91.2

SNLI I get really, I like through, I said always, keep love through, you found that 56.9, 56.0, 55.8, 55.8, 55.7
RTE keep like always, way think such, life think same, end think such, end like always 60.0, 59.7, 59.6, 59.6, 59.4

MRPC money had very, something had very, I been very, help had very, life had very 70.9, 70.5, 70.4, 70.4, 70.2

AG’s News lot say on, I said other, time think other, state say on, you think other 79.7, 78.8, 78.1, 78.0, 77.3
DBpedia you said such, something know then, life make of, home said such, information is that 87.5, 86.6, 86.0, 85.9, 85.8

Table 2: An example of Top-5 prompts over 1000 training instances for each dataset and their individual performance
on training sets. The model used is RoBERTa-large.
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Figure 4: The complete process of searching for T ∗ and ensembling with Φ.

With the assumption that strong prompts over Xtrain
are also expected to perform well on Xtest, these
best-performing prompts are regarded as the most
reliable for predicting the unseen data. So we take
the top-k best-performing prompts over the training
set as T ∗. In the experiments, we empirically use
k = 10. A naive ensembling method is to take the
average output as the final prediction by simple
voting, where Φ(p1, p2, ..., pt) = 1

t

∑t
k=1 pk.

While a more sophisticated strategy that echoes
the spirit of “lottery prompt” is to select one most
“reliable” prompt for each instance x ∈ Xtest. In-
tuitively, the more reliable a prompt T is, the more
confident the model M will be about instance x.
Inspired by Sorensen et al. (2022), we measure the
confidence with the mutual information between
x and y, T , which is defined by the reduction in
entropy of predicted probability brought by x,

I(x;Tk,M) = H(q|Tk(·))−H(p|Tk(x))

=−
∑

i

qi(Tk;M) log qi(Tk;M)+

∑

i

pi(x;Tk,M) log pi(x;Tk,M),

(4)

where q and p are the predicted probability vectors
as in Equation 2. So the overall objective is

T ∗ = arg max
T∈T ∗

I(x;T,M),

Φ(p1,p2, ..., pt) = p(x;T ∗,M).
(5)

Specifically, maximization of mutual information
entails that a good prompt itself should contain
no bias towards the label set, so q should be close
to a uniform distribution. On the other hand, a
suitable prompt for a specific instance should
induce an almost certain prediction on the desired
class, corresponding to a near one-hot vector p.
Experiments show that under few-shot settings,
our mutual-information-based ensembling strategy
is more advantageous than direct simple voting
(§ 4.2). The complete searching and ensembling
process is shown in Figure 4.

4.2 In-Dataset Generalization
Experimental Setup. We comprehensively eval-
uate the generalizability of strong prompts on
8 representative datasets. Following previous
works (Sun et al., 2022), we conduct experiments
under few-shot settings. Specifically, we choose
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Figure 5: Performance on datasets under few-shot setting with RoBERTa-large. “Best Prompt” means directly
using the top-1 performing searched prompt for test. † means using 32-shot data as training set and no extra data
as validation set, and manual prompt uses no training data. Other baseline methods use 16-shot data as training
and validation set. Our method uses mutual-information-based prompt ensembling method (indicated as “MI”) and
average results over 5 runs are reported. The baseline results mainly follow Sun et al. (2022).

the top-10 prompts as T ∗ and obtain the final pre-
diction and test metrics with mutual-information-
based ensembling as Φ on the test set. We keep
the verbalizers aligned with Sun et al. (2022) for
fair comparison. The description of experimental
details and baselines can be found in Appendix A.

Overall Results. Figure 5 shows the in-dataset
generalization results on each dataset. Overall, our
method performs comparably to the existing base-
lines and requires the fewest trainable parameters.
For some datasets, the searched strong prompts
are shown to be more effective than baselines. It
points to the fact that with a reasonable prompt
search space and a few training instances, strong
prompts can be identified and generalized effec-
tively to unseen data. Best prompt on 32-shot data
surprisingly overtakes many baselines. This, jointly
with the mediocre performance of manual prompts,
indicate that a human-comprehensible prompt may
not always be the best choice for PLMs and may
fail to probe a considerable amount of intrinsic
knowledge in PLMs. Meanwhile, the success of
MI over best prompt shows that ensembling a set
of strong prompts is beneficial. Comparing across
datasets, our method is more advantageous for
harder tasks, including natural language inference
(SNLI and RTE) and paraphrasing (MRPC). For
single-sentence classification tasks, the improve-
ment is minor. This finding fits with our intuition,
as tasks involving two sentences often require more

abstract abilities like reasoning and the contexts are
more diverse across instances. Designing or opti-
mizing for one unified prompt for such datasets
is admittedly harder. Above all, it is exciting that
ensembling a proper set of prompts composed of
textual tokens may surpass network optimization
on a dataset in an era of pre-trained language mod-
els and points to the values of mining and tapping
into an optimal usage of plain textual prompt.

Impact of Training Data Size. To further explore
the property of our method, experiments are con-
ducted under few-shot settings ranging from 8 shots
to 256 shots with both simple voting and mutual-
information-based ensembling. As shown in Fig-
ure 6, we can see that performance varies a lot
when different instances are sampled as the train-
ing set under low-shot settings. It suggests the
importance of choosing the proper training data
for our method. When more shots are provided,
metrics get higher and variance gets smaller. As
the data volume climbs up to 128 shots and 256
shots, the increase in metrics becomes minor for
most datasets. It can also be concluded that for
low-shot settings, mutual-information-based en-
sembling method yields higher results than simple
voting. But as more training data are available, the
gap is narrowed and the two ensembling strategies
converge to similar levels.
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Task Setting Metrics

Sentiment
Analysis

SST-2 → Yelp P. 90.27 ( 1.58 ↓)
Yelp P. → SST-2 84.15 ( 5.37 ↓)

Natural
Language
Inference

RTE → SNLI 40.48 ( 10.13 ↓)
SNLI → RTE 54.51 (4.19 ↓)

MNLI → SNLI 47.96 (2.65 ↓)
MNLI → RTE 55.81 (2.89 ↓)

Table 3: Transferability test of T ∗ across datasets with
similar tasks. Prompts are searched on 32-shot training
data from source dataset and evaluated on test set of
target dataset. Top-10 prompts are used as T ∗ and
mutual-information-based strategy is used as Φ.

4.3 Cross-Dataset Generalization

We test the prompt transferbility across datasets
with similar tasks under 32-shot setting. Exper-
iments are conducted on sentiment analysis and
language inference tasks. We also use MNLI as
the source dataset as many previous works do. Ta-
ble 3 shows that prompts chosen by our method
can be transferable. While SST-2 and Yelp observe
mutual transferability, transfering RTE to SNLI is
relatively hard, which can be attributed to the incon-
sistency in class number. MNLI is shown to be a ro-
bust dataset for NLI task and the searched prompts
perform satisfactorily on both RTE and SNLI. It
is also in line with previous research findings that
using prompts pretrained on MNLI could greatly
boost performance on other NLI datasets. Above
all, the results demonstrate that our proposed strat-
egy can effectively extract representative prompts
for a specific kind of task, which can be further
utilized to reduce search cost.

5 Related Work

Prompting, as an alternative to standard finetuning,
is originally inspired by GPT-3 (Brown et al.,
2020) and knowledge probing (Petroni et al.,

2019; Jiang et al., 2020). With a similar form
to pre-training tasks, it stimulates the intrinsic
knowledge in PLMs more efficiently. Following
several of the earliest works (Schick and Schütze,
2021a,b), prompting has been applied in various
NLP tasks (Han et al., 2021b; Li and Liang, 2021;
Sainz et al., 2021; Ding et al., 2021a). It is also
discovered that the specific prompt used has a
great impact on task performance. Therefore,
efforts have been devoted to prompt engineering
and automatic prompt generation. Optimizing for
a good prompt has been conducted at both discrete
token level (Shin et al., 2020; Gao et al., 2021)
and continuous embedding level (Li and Liang,
2021; Zhang et al., 2021; Liu et al., 2021b; Li
et al., 2022). Some also focus on the choice and
representation of label words (Schick et al., 2020;
Hu et al., 2021; Zhang et al., 2021). Experiments
show that a well-optimized or pre-trained (Gu
et al., 2022) prompt can be beneficial.

Given the striking performance of prompting
under few-shot settings especially, recently, more
works are focusing on the more efficient tuning of
PLMs based on prompts. Prompt tuning (Lester
et al., 2021) tunes the pre-pended token embedding
only. Other works enhance PLMs’ zero-shot learn-
ing ability with prompts. Studies show that large
PLMs with proper prompts (Wei et al., 2021) and
training with diverse prompts (Sanh et al., 2021)
can advance zero-shot performance. This line of
work emphasizes the efficient tuning and steering
process of large PLMs. Black-box tuning (Sun
et al., 2022) optimizes the pre-pended continuous
prompt in a projected low-dimensional space with-
out PLM gradient information.

This work is among the first few efforts (Jin
et al., 2022; Wu et al., 2022) in mining instance-
level prompts, and is the first to propose and prove
the existence of a lottery prompt composed of a few
textual tokens for each instance. In contrast to tun-
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ing a small number of parameters or tuning without
gradients, an optimization-free method is proposed
to generalize the searched prompts to the test sets.

6 Conclusion

In this work, we explore the existence of lottery
prompts for every single instance and the adap-
tation of them for various classification tasks in
an optimization-free manner. We propose a large
prompt space composed of common words as the
search space to verify the assumption. We also iden-
tify the searched strong prompts and the relation be-
tween model capacity and search cost and demon-
strate the effectiveness of ensembling the strong
prompts on the test set. Our proposed optimization-
free method achieves satisfactory results on various
NLP tasks under few-shot settings. Above all, this
work illuminates the fact that the great potential of
PLMs can be successfully harnessed and prompted
by plain textual prompts mined from PLM vocabu-
lary without parameter optimization and thus points
to the need for future efforts in more efficient ways
in mining and utilizing lottery prompts.
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Limitations

The current method works with a large prompt
search space T , which means a tremendous num-
ber of inference API calls are required. Though
Figure 2 shows that the average cost of finding a lot-
tery prompt for each instance is low, the searching

process is highly randomized and there is no guar-
antee of the performance of searched prompts over
the test dataset. Therefore, finding strong prompts
over the training set can still be laborious. How
to use PLM inference calls more efficiently and
leverage the generalization ability of T ∗ within a
reasonable cost is of future research interest. Our
acceleration strategy can be found in Appendix B.

Another aspect is that not all strong prompts
are interpretable as presented in 2. While recently
emerged larger models like ChatGPT demonstrate
superb language understanding ability and can al-
most always answer yes or no questions correctly
given a human-interpretable prompt. This gap ob-
served between small PLMs like RoBERTa and
large language models like ChatGPT is yet another
interesting research topic.

Ethical Considerations

This work shows that with proper plain textual
prompts, instance-level desired results can be
prompted from PLMs. This inherent feature of
PLMs means attacks can be launched to produce
rude or discriminated words. On the other hand,
however, we believe it can also be a technique used
for debiasing a PLM. Overall, this effect depends
on the intention of the users and the pre-training
corpus of the corresponding PLMs. The analysis of
this study can be used to facilitate the community to
develop more specifications for the rational use of
PLMs (especially the super-large ones), and more
approaches to effectively prevent potential ethical
issues. For example, we can use this technique to
analyze which outputs that may have ethical issues
are easily triggered by which contexts (prompts)
and develop a set of intervention methods to make
these tokens unavailable for output.
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A Experimental Details

A.1 Experimental Settings
We conduct experiments under few-shot settings on
8 datasets: SST-2, Yelp P., AG’s News, DBpedia,
MRPC, SNLI, RTE and MNLI. We experiment
under both 16-shot and 32-shot data as the training
set as our method requires no validation set. The
total seen labeled data number does not exceed 32-
shot across all methods. The original validation set
is used as the test set following (Sun et al., 2022).
The detailed training and test set statistics for
experiments in Figure 5 are shown in Table 4. All
datasets are distributed under either CC BY license
or CC BY-SA license, or subject to specified term
of use. We have read and complied to the terms dur-
ing experiments. The label words used follow (Sun
et al., 2022) and are the same across all methods.

Datasets Classes |Xtest|
SST-2 2 872
Yelp P. 2 38000
AG’s News 4 7600
DBpedia 14 70000
MRPC 2 1725
SNLI 3 10000
RTE 2 277
MNLI 3 9815

Table 4: Statistics of the training and test set for experi-
ments in Figure 5.

A.2 Baselines
We choose comparable baselines that do not update
the PLM parameters, including 1) Gradient-based
methods: Prompt Tuning and P Tuning v2; 2)
Optimization-based methods: Feature MLP, Black-
box Tuning, and RLPrompt; and 3) Optimization-
free methods: Manual Prompt, and In-Context
learning. The details are as follows: Prompt Tun-
ing (Lester et al., 2021) optimizes the continuous
prompt at the input level. P-Tuning v2 (Liu et al.,
2021a) is a variant of prompt tuning that pre-pends
trainable parameters to each layer of the PLM and
optimizes them in a multi-task setting. Feature-
MLP uses pre-trained features output by PLMs and
train a lightweight classifier offline. Black-Box
Tuning (Sun et al., 2022) is a gradient-free method
that optimizes the projected extra 500 parameters at
the input layer with Covariance Matrix Adaptation
Evolution Strategy. RLPrompt (Deng et al., 2022)
optimizes for discrete prompts with reinforcement

Method Gradients Tuning #Tunable
Param.

Prompt Tuning Yes Yes 50K
P-Tuning v2 Yes Yes 1.2M

Feature-MLP No Yes 1M
Black-Box Tuning No Yes 500
RLPrompt No Yes 3.1M

Manual Prompt‡ No No 0
In-Context Learning† No No 0
Best Prompt† No No 0
Ours No No 0

Table 5: A summary of features of baselines methods
and our method. “Gradients” refers to whether gradients
of PLMs are required, and “Tuning” means whether
updates of parameters are performed.

learning. Manual Prompt is a zero-shot method
that directly uses a hand-crafted textual prompt for
each dataset. In-Context Learning (Brown et al.,
2020) is an optimization-free method that uses a
few samples as demonstrations prepended to the
test sample. Table 5 lists the features and trainable
parameter number of baselines and our method.

A.3 Implementation Details

RoBERTa-large contains 354 million parameters
and GPT-2 has 1.5 billion parameters. There is no
extra parameter added in our method. For each
dataset, the experiments are run with 5 different
random seeds, and the mean metrics are reported.
Most baseline results are taken from Sun et al.
(2022) and Deng et al. (2022), while we re-run
RLPrompt for MRPC and all baselines for MNLI
with original code. All experiments are conducted
on NVIDIA A100 and GeForce RTX 3090 GPUs
with CUDA. The search process in § 4.2 with 32-
shot data takes about 2 hours with 40 GB maximum
memory. The test process takes 5∼30 minutes de-
pending on the size of T ∗ and Xtest. Our method
is developed by OpenPrompt (Ding et al., 2022),
an open-source prompt-learning framework based
on PyTorch (Paszke et al., 2019). The models are
obtained from the Huggingface Transformers li-
brary (Wolf et al., 2020).

B Efficiency Analysis

The results reported in § 4.2 all search through the
whole prompt space T ∗, i.e. every combination
of an instance and a prompt is covered. Since it
would require up to 4 hours with a single NVIDIA
A100, we seek to optimize the process by prun-
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ing the search space. Our strategy is as follows:
(1) randomly sample a batch of valid prompts (in
our experiments we use batch size 16) from T ∗

and apply them to the whole training set Xtrain; (2)
record the performance of each prompt word, i.e.
if a prompt is “it was really” and achieves 0.8 ac-
curacy on Xtrain, then for each word in the prompt
(“it”, “was”, “really”) 0.8 is recorded; (3) update
the set of valid prompts; (4) repeat until there is
no remaining valid prompt. A valid prompt means
the average score of the three words is over a pre-
defined threshold. In our experiments, the thresh-
old is set to 0.7 on SST-2 dataset and achieves a
mean test accuracy of 87.6%.

As shown in Table 6, with the pruning strategy,
the average time cost can be greatly reduced to 10
minutes with a still satisfying performance on test
data. In our experiments, prompts are randomly
sampled and grouped into batches. We believe a
better-designed and heuristically informed batch-
ing strategy will further boost the searching effi-
ciency and test performance.

Method Time Cost

Prompt Tuning 15.9 mins
Feature-MLP 7.0 mins
Black-box Tuning 10.1 mins
Ours 10.3 mins

Table 6: Training and searching time cost on SST-2.
Following Figure 5, our method searches on 32-shot
training data and other baselines are trained on 16-shot
training data and evaluates on 16-shot validation data.
The max sequence length is set uniformly to 47. Our
method is run for 5 times on a single NVIDIA A100
and the mean time cost is reported.

C Details of Prompts and Label Words

Table 7 displays the specific prompt format and
label words used for searching for lottery prompt
for each dataset with RoBERTa-large. For auto-
regressive PLMs like GPT-2, the “<mask>” token
are removed and the prediction of the next token
by PLM will be extracted.

D Visualization of Words in Strong
Prompts

We also get the 100 best prompts out of T for SST-
2, and visualize the frequent words at each position,
as shown in Figure 7. From the variation of words

at each position, we can conclude that words more
adjacent to the “<mask>” token has a larger impact
on the prediction, which fits with our intuition. In
addition, GPT-2 demonstrates better fluency and
interpretability compared to RoBERTa-large, as
some high-frequency words found for RoBERTa-
large like “without” are hard to comprehend.

RoBERTa-large

GPT-2

Figure 7: Frequent words of 100 top-performing
prompts at each position on SST-2. The 3 positions are
[NOUN], [VERB], [PREP|ADJ|ADV] from left to right.
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Dataset Prompt Label words

SST-2 <Text> [Prompt] <mask> great, bad
Yelp P. <Text> [Prompt] <mask> great, bad

CoLA <Text> [Prompt] <mask> reasonable, unreasonable

SNLI <Text1> [Prompt]? <mask>, <Text2> Yes, Maybe, No
RTE <Text1> [Prompt]? <mask>, <Text2> Yes, No
MNLI <Text1> [Prompt]? <mask>, <Text2> Yes, Maybe, No
QNLI <Text1> [Prompt]? <mask>, <Text2> Yes, No
WNLI <Text1> [Prompt]? <mask>, <Text2> Yes, No

MRPC <Text1> [Prompt]? <mask>, <Text2> Yes, No
QQP <Text1> [Prompt]? <mask>, <Text2> Yes, No

AG’s News <Text> [Prompt] <mask> world, sports, business, technology

DBpedia <Text> [Prompt] <mask>

company, school, artist, athlete,
politics, transportation, building, river,
village, animal, plant, album,
film, book

Few-NERD <Text> <Entity> [Prompt] <mask>

water, law, broadcast/program, media/newspaper,
restaurant, artist/author, film, award, park,
event, government/agency, person, educational/degree,
education, director, game, sports/facility,
protest, car, language, airport, organization,
building, location, athlete, show/organization,
sports/league, geopolitical, scholar/scientist, library,
hotel, road/railway/highway/transit, painting, hospital,
election, written/art, religion, company,
train, ship, attack/battle/war/military/conflict, sports/event,
disaster, currency, weapon, living, sports/team,
politician, god, political/party, music,
art, actor, theater, biology, software, island,
medical, disease, chemical, product,
airplane, food, mountain, astronomy, soldier

Table 7: The prompt format and label words used for each dataset. [Prompt] represents the sequence of “[NOUN]
[VERB] [PREP|ADJ|ADV]”. For GPT-2, “<Text1> [Prompt]? <mask>, <Text2> ” is changed into “<Text1> <Text2>
[Prompt]? <mask>”.
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Datasets Instance Text Label

SST-2

it falls far short of poetry , but negative

will be best appreciated by those willing to endure its extremely languorous rhythms ,
waiting for happiness

negative

expiration date negative

gut-wrenching , frightening war scenes since “ saving private ryan ” positive

sit through – despite some first-rate performances positive

largely flat and uncreative negative

all of dean ’s mannerisms and self-indulgence , but negative

if oscar had a category called best bad film you thought was going to be really awful but was n’t positive

MNLI

It would be nice if more of the newcomers
were artists, artisans, and producers,
rather than lawyers and lobbyists, but head for head,
I’ll stack up Washington’s intellectual capital
against any competitor’s.

It would be nice if there were
more lawyers instead of artistic people.

contradiction

i just couldn’t watch that much TV I couldn’t watch that much TV entailment

yeah uh well we did well we did you know
we really did i mean i just don’t understand these
people that think taking an RV and parking it
and sitting inside and watching TV and having your
microwave it’s not camping

I don’t think it’s camping
if you hang out in an RV.

entailment

Of course Maybe. contradiction

I think not! I do not think so. entailment

Exhibit 10 Adjustment Factors Used to
Account for Projected Real Income Growth
through 2010 and 2020

See Exhibit 10 for Adjustment Factors Used to
Account for Projected Real Income Growth
through 2010 and 2020

neutral

In the dark of night, their aim must be true.
Their aim must be accurate in the dark,
or else they will not succeed.

neutral

now we quit that about two years ago no three years ago
when we got China mugs for everybody

We stopped doing that three years ago,
after we got everyone China mugs.

entailment

SNLI

Two men are playing a game of chess,
one is standing and the other is sitting.

A crowd watches a concert. contradiction

A green jeep with men who are manning guns,
with a crowd in the background on the street.

Video game fans in cosplay outfits. contradiction

A man has a pink ribbon around his arm. A guy with a strip of cloth around his bicep. entailment

Large amounts of people walk around near
a large, silver, reflective display.

People are singing. contradiction

Man playing the accordion on a sidewalk during the day. The Pope speed dials. contradiction

People walk and bike in front of a box office.
People are carrying about their business
nearby a box office

entailment

Three naked little boys are playing
in a river and are covered in mud;
one is standing up.

the boys had no clothes on in the river entailment

A person wearing a dark blue covered up
attire from head to toe, with a mask and vest,
holding a thin sword.

Someone with a sword entailment

Four children are in an industrial kitchen
looking at a recipe with the ingredients
on the table in front of them.

Four people are in the kitchen entailment

Two guys getting a drink at a store counter. two guys get a drink entailment

Table 8: The most difficult instances for RoBERTa-large and GPT-2, measured by number of searches required
to get the lottery prompt out of T . Instances in purple indicate failure to find a lottery prompt for GPT-2, and

instances in blue are failure instances for RoBERTa-large.
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