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Abstract

The increasingly large size of modern pre-
trained language models not only makes them
inherit more human-like biases from the train-
ing corpora, but also makes it computationally
expensive to mitigate such biases. In this paper,
we investigate recent parameter-efficient meth-
ods in combination with counterfactual data
augmentation (CDA) for bias mitigation. We
conduct extensive experiments with prefix tun-
ing, prompt tuning, and adapter tuning on dif-
ferent language models and bias types to evalu-
ate their debiasing performance and abilities to
preserve the internal knowledge of a pre-trained
model. We find that the parameter-efficient
methods (i) are effective in mitigating gender
bias, where adapter tuning is consistently the
most effective one and prompt tuning is more
suitable for GPT-2 than BERT, (ii) are less ef-
fective when it comes to racial and religious
bias, which may be attributed to the limitations
of CDA, and (iii) can perform similarly to or
sometimes better than full fine-tuning with im-
proved time and memory efficiency, as well as
maintain the internal knowledge in BERT and
GPT-2, evaluated via fact retrieval and down-
stream fine-tuning.

1 Introduction

Pre-trained language models are able to encode rich
linguistic and factual knowledge by learning the
co-occurrence information of words in large real-
world corpora (Devlin et al., 2019; Petroni et al.,
2019; Raffel et al., 2020; Brown et al., 2020). Since
most of these corpora are internet-based and not
carefully curated, they are likely to contain unbal-
anced or stereotyped information for certain demo-
graphic groups. As a result, pre-trained language
models are often demonstrated to inherit bias from
human society and exhibit potential harms (Blod-
gett et al., 2020; Bender et al., 2021; May et al.,
2019; Zhao et al., 2019; Sheng et al., 2019; Nangia
et al., 2020; Nadeem et al., 2021). Hence, much re-

search effort has been devoted to debias pre-trained
language models (Meade et al., 2022).

With the size of language models becoming in-
credibly large (Brown et al., 2020; Hoffmann et al.,
2022; Smith et al., 2022), they are not only at
higher risk of exhibiting biased behaviors (Ben-
der et al., 2021), but also hard to debias because of
prohibitive computational cost. Therefore, recent
parameter-efficient methods (He et al., 2022; Ding
et al., 2022) have been applied to bias mitigation,
where only a small portion of the parameters are
updated (Lauscher et al., 2021; Gira et al., 2022).
However, these works are limited in terms of eval-
uation dimensions, making it unclear how differ-
ent parameter-efficient methods’ performance com-
pare to each other, whether one parameter-efficient
method is effective across different types of lan-
guage models, and whether they are also effective
for mitigating religious and racial bias in addition
to gender bias. Moreover, direct comparisons with
strong post-hoc debiasing methods (Liang et al.,
2020; Schick et al., 2021), as well as evaluations of
bias mitigation’s impact on the language model’s
internal knowledge, are often insufficient.

Given these observations, we investigate three
popular parameter-efficient methods, i.e., prefix
tuning (Li and Liang, 2021), prompt tuning (Lester
et al., 2021), and adapter tuning (Houlsby et al.,
2019), in combination with counterfactual data
augmentation (CDA, Zhao et al., 2018; Zmigrod
et al., 2019; Webster et al., 2020) to debias pre-
trained language models. We conduct extensive
experiments to study the parameter-efficient meth-
ods’ performance on two types of language models
(BERT (Devlin et al., 2019) for masked language
models and GPT-2 (Radford et al., 2019) for au-
toregressive language models), three types of social
biases (gender, race, and religion), and four types
of performance measures (debiasing performance
on CrowS-Pairs (Nangia et al., 2020) and Stere-
oSet (Nadeem et al., 2021), language modeling per-
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formance on WikiText-2 (Merity et al., 2017) and
StereoSet (Nadeem et al., 2021), fact retrieval per-
formance on LAMA (Petroni et al., 2019), as well
as downstream fine-tuning performance on Wino-
Bias (Zhao et al., 2018)). We empirically compare
to the performance of full fine-tuning and two post-
hoc debiasing methods (SentenceDebias (Liang
et al., 2020) and SelfDebias (Schick et al., 2021)),
aiming to comprehensively study the effectiveness
of parameter-efficient methods for bias mitigation.1

Our main findings are as follows:

• The parameter-efficient methods are effective
in mitigating gender bias. Within the three
parameter-efficient methods, adapter tuning is
consistently the most effective one for mitigat-
ing bias across different types of language
models, while prompt tuning is more suit-
able for GPT-2 than BERT. Comparing to
strong post-hoc debiasing methods, parameter-
efficient methods are better at preserving the
language modeling ability, while still achiev-
ing a competitive and sometimes superior de-
biasing performance.

• The parameter-efficient methods are less ef-
fective when it comes to mitigating racial and
religious bias, where the post-hoc debiasing
methods could achieve a more favorable over-
all performance.

• The parameter-efficient methods can perform
similarly to or sometimes better than full fine-
tuning, with improved time and memory effi-
ciency.

• The parameter-efficient methods can largely
maintain the internal knowledge in both BERT
and GPT-2, with the reduction in Preci-
sion@10 ranging from 0 to 6.8% across all the
LAMA datasets when compared to the origi-
nal pre-trained model, and with the reduction
in average F1 scores less than 3.3% on the
hard type-1 examples of WinoBias when com-
pared to full fine-tuning.

2 Parameter-Efficient Methods

In this section, we briefly review three popular
parameter-efficient methods investigated in our
study: prefix tuning (Li and Liang, 2021), prompt

1The code of this paper is available at https://github.
com/x-zb/pedb.

tuning (Lester et al., 2021), and adapter tun-
ing (Pfeiffer et al., 2021). In contrast to traditional
full fine-tuning where all the model parameters are
updated during training, these parameter-efficient
methods introduce a small number of extra tun-
able parameters φ on top of a frozen pre-trained
language model.

Pre-trained language models usually adopt the
transformer architecture (Vaswani et al., 2017) con-
sisting of multiple stacked layers. Assume that
there are Nlayer layers, and H

(i)
0 ∈ RT×d is the

input to the i-th layer, where T is the sequence
length, and d is the model dimension. Then, H(i)

0

is transformed by the following equations to obtain
the output of the i-th layer H(i)

5 , which is in turn
adopted as the input for the (i+ 1)-th layer:

H
(i)
1,h = Attn(H(i)

0 W
(i)
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0 W
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(i)
0 W

(i)
V,h),

h = 1, 2, . . . , Nhead, (1)

H
(i)
2 = [H

(i)
1,1; . . . ;H

(i)
1,Nhead

]W
(i)
O , (2)

H
(i)
3 = LayerNorm(H

(i)
0 +H

(i)
2 ), (3)

H
(i)
4 = ReLU(H

(i)
3 W

(i)
1 + b

(i)
1 )W

(i)
2 + b

(i)
2 , (4)

H
(i)
5 = LayerNorm(H

(i)
3 +H

(i)
4 ). (5)

Here, Eqs. (1) and (2) constitute the multi-head
attention sublayer, where W

(i)
Q,h, W (i)

K,h, and W
(i)
V,h

denote the projection matrix for the query, key,
and value of the h-th attention head, respectively;
Nhead is the number of attention heads, and H

(i)
1,h ∈

RT×(d/Nhead). Eq. (4) denotes the feed-forward
sublayer. [; ] denotes the concatenation operation.
H

(i)
j ∈ RT×d for j = 0, 2, 3, 4, 5. The input to

the 1st layer is the embeddings of the input tokens
H

(1)
0 = X ∈ RT×d.

Prefix tuning. Li and Liang (2021) prepend
l tunable prefix vectors to the key vectors
(H(i)

0 W
(i)
K,h) and value vectors (H(i)

0 W
(i)
V,h) of the

attention function in Eq. (1) for each layer:

H
(i)
1,h = Attn(H(i)

0 W
(i)
Q,h, [P

(i)
K,h;H

(i)
0 W

(i)
K,h],

[P
(i)
V,h;H

(i)
0 W

(i)
V,h]), h = 1, 2, . . . , Nhead. (6)

Here, P (i)
K,h, P

(i)
V,h∈Rl×(d/Nhead) denote the tun-

able prefix vectors, and the total tunable parame-
ters are φ={P (i)

K,h, P
(i)
K,h | h=1, 2, . . . , Nhead, i=

1, 2, . . . , Nlayer}.
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Prompt tuning. Lester et al. (2021) prepend l
tunable prompt vectors (continuous tokens) only to
the input embeddings (X), and compute the acti-
vations of these prompt vectors in the subsequent
layers using the pre-trained transformer’s parame-
ters. So, the only modification is:

H
(1)
0 = [P ;X] ∈ R(l+T )×d, (7)

where P ∈ Rl×d denotes the tunable prompt vec-
tors, and φ = {P}.
Adapter tuning. Houlsby et al. (2019) insert
the following adapter module between the trans-
former’s sublayers:

H
(i)
j ← H

(i)
j + f(H

(i)
j W

(i)
down)W

(i)
up , (8)

where the intermediate activations H
(i)
j are first

down-projected by W
(i)
down ∈ Rd×(d/r) to a lower

dimension d/r, and then up-projected back by
W

(i)
up ∈ R(d/r)×d to the model dimension d. The

adapter also contains a non-linear function f and
a residual connection. The hyperparameter r is
called the reduction factor, which determines the
bottleneck dimension d/r and controls the trade-off
between parameter efficiency and model capacity.

In our implementation, we adopt Pfeiffer et al.
(2021)’s setting where only a single adapter is in-
serted after the feed-forward sublayer, since it is
found to be the optimal setting among other al-
ternatives (Pfeiffer et al., 2021). Thus, all the
tunable parameters are φ = {W (i)

down,W
(i)
up | i =

1, 2, . . . , Nlayer}.2

3 Parameter-Efficient Debiasing through
Counterfactual Data Augmentation

We adopt counterfactual data augmentation (CDA,
Zhao et al., 2018; Zmigrod et al., 2019; Webster
et al., 2020) as our debiasing method to work to-
gether with parameter-efficient tuning methods.
Since the encoded biases in pre-trained language
models originate from the unbalanced training cor-
pora, it is natural to mitigate these biases by re-
balancing the training corpora. For example, when
we want to mitigate gender bias between the male
and female demographic group and encounter the
training sentence “He is a doctor.”, CDA would
substitute the bias attribute word “He” with its

2Pfeiffer et al. (2021) also insert an additional “add &
layer norm” sublayer before the adapter module, so the actual
number of tunable parameters is a bit larger.

Algorithm 1 Counterfactual Data Augmentation

Input: original corpus D0, # demographic groups
N , # samples S(≤ N − 1), bias attribute word
list {(w(i)

1 , . . . , w
(i)
N )}Mi=1

Output: augmented corpus D1

1: D1 ← ∅
2: for text sequence x ∈ D0 do
3: Identify the number of demographic groups

n(≤ N) contained in x
4: if n > 0 then
5: Generate all the permutations of N de-

mographic groups considered n demo-
graphic groups at a time: Π = {πj}P

n
N

j=1,
where πj = (g1, . . . , gn), {g1, . . . , gn}⊂
{1, . . . , N}

6: if n = N and (1, 2, . . . , N) ∈ Π then
7: Π← Π \ {(1, 2, . . . , N)}
8: end if
9: Sample w/o replacement S permutations

ΠS = {πs}Ss=1 from Π
10: for πs ∈ ΠS do
11: xs←Substitute all bias attribute words

w
(i)
k contained in x with w

(i)
πs[k]

12: D1 ← D1 ∪ {xs}
13: end for
14: D1 ← D1 ∪ {x}
15: end if
16: end for

counterpart “She” to obtain an additional train-
ing sentence “She is a doctor.”, so that both gen-
der groups would have equal association with the
gender-neutral word “doctor”. Once we have a
list of bias attribute words like {(he, she), (man,
woman), (husband, wife), . . . }, we could retrieve
all the occurrences of these bias attribute words in
the training corpus, and substitute all of them with
their counterparts.

For religious and racial bias where more than
two demographic groups are considered, we need
to maintain two key properties: (i) we should guar-
antee consistency, i.e., we should avoid the case
where some occurrences of the bias attribute words
in group A are substituted with those in group B,
while the other occurrences of (possibly different)
bias attribute words in group A are substituted with
those in group C, and (ii) we should avoid colli-
sions, i.e., we should avoid the case where both
groups A and B are substituted with group C. To
this end, we should not consider each group inde-
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pendently and adopt random substitution. Rather,
we should substitute according to permutations of
all the occurred demographic groups in a sentence.
Our complete CDA method is formally summa-
rized in Algorithm 1.

Note that in Algorithm 1, for convenience, we
propose to sample a fixed number (S) of substitu-
tions for each sentence. This is because the number
of possible substitutions (Pn

N − 1) for each sen-
tence may vary when the number of occurred de-
mographic groups (n) in the sentence varies. In
practice, we adopt N = 3 and S = 2 for religious
and racial bias.

Finally, the parameter-efficient debiasing frame-
work works as follows: we first use Algorithm 1
to augment an original corpus D0 and obtain the
debiasing corpus D1; next, we use the parameter-
efficient tuning methods from Section 2 to solve
the following optimization problem:

min
φ
L(θ0, φ;D1), (9)

where L is either the masked language model-
ing loss (Devlin et al., 2019) or causal language
modeling loss (Radford et al., 2019), θ0 denotes
the frozen parameters in the pre-trained language
model, and φ denotes the tunable parameters de-
fined in Section 2.

4 Conceptual Comparisons with Existing
Debiasing Methods

Most existing debiasing methods are training-
based, where they introduce a specific debiasing
loss to fine-tune a pre-trained model on certain bal-
anced debiasing corpora (Kaneko and Bollegala,
2021; Garimella et al., 2021; Ravfogel et al., 2020;
Cheng et al., 2021; Guo et al., 2022). These meth-
ods are, in general, orthogonal to our parameter-
efficient debiasing framework in that we could
substitute the (masked) language modeling loss
in Eq. (9) with their specific debiasing loss. In this
paper, we only focus on the simple language mod-
eling loss, and leave other kinds of debiasing loss
for future work.

Another important line of debiasing methods
applies post-hoc mathematical operations on the
frozen representations of a language model, such
as SentenceDebias (Liang et al., 2020) and SelfDe-
bias (Schick et al., 2021). We briefly review these
methods below and make empirical comparisons to
parameter-efficient debiasing methods in Section 5.

SentenceDebias. Liang et al. (2020) assume that
there is a linear subspace that can capture demo-
graphic information in the embedding space, thus
trying to identify and remove the demographic in-
formation via linear algebra operations. Specif-
ically, they first leverage a procedure similar to
CDA to extract and augment sentences containing
bias attribute words from a source corpus. Then,
they encode the sentences to embeddings with a
pre-trained language model, and obtain a set of
difference vectors between the embeddings of sen-
tences in different demographic groups. Next, they
perform principle component analysis on the set of
difference vectors, and use the first K components
to expand a bias subspace. Once the bias subspace
is identified, we could debias a new sentence em-
bedding by subtracting its projection on the bias
subspace.

SelfDebias. Schick et al. (2021) assume that a
pre-trained language model has a self-diagnosis
ability, which can be used to adjust the output prob-
abilities over the vocabulary during language gen-
eration. Specifically, SelfDebias relies on hand-
crafted descriptions for each type of bias. It first
puts the bias description and the currently gener-
ated sentence into a self-diagnosis template, which
encourages the language model to generate biased
words for the next time step. Then, the probabili-
ties of these detected biased words are scaled down
in the actual generation process.

Although no training is needed for these post-
hoc debiasing methods, their strong assumptions
about bias may harm the language modeling ability
of a language model. On the contrary, CDA-based
parameter-efficient methods adhere to the original
language modeling loss without additional assump-
tions, which may largely reserve the language mod-
eling ability. Another advantage of CDA-based
parameter-efficient methods is that nearly no addi-
tional computation is required during inference.

5 Experiments on Bias Mitigation

5.1 Experimental Setup

Datasets. To measure gender, religious, and
racial bias in pre-trained language models, we
adopt two crowd-sourced datasets: CrowS-
Pairs (Nangia et al., 2020) and StereoSet (Nadeem
et al., 2021). CrowS-Pairs consists of pairs of
contrasting sentences, where one is more stereo-
typing than the other. Its gender, religious, and
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racial subsets contain 262, 105, and 516 exam-
ples, respectively. For StereoSet, we adopt its intra-
sentence test, where each example consists of a
context sentence and three candidate completions
corresponding to stereotypical, anti-stereotypical,
and unrelated associations, respectively. We again
only adopt the gender, religious, and racial subsets,
whose sizes are 1026, 623, and 3996, respectively.

Evaluation Metrics. Our evaluation protocol fol-
lows Meade et al. (2022). We adopt the “stereotype
score”, defined as the percentage of examples for
which the language model favors the stereotypical
association (or the stereotyping sentence) to the
anti-stereotypical association (or the less stereotyp-
ing sentence), as the measure of bias. An ideal
model that is free of the considered bias should
achieve a stereotype score of 50%. To measure the
language modeling ability, we adopt the first 10%
of WikiText-2 (Merity et al., 2017) to compute the
perplexity (for autoregressive language models) or
pseudo-perplexity (Salazar et al., 2020, for masked
language models). We also compute the “language
modeling (LM) score” (Nadeem et al., 2021) on all
the bias subsets of StereoSet as our second measure
of language modeling ability.

Training Details. We choose to debias BERT
(Devlin et al., 2019) and GPT-2 (Radford et al.,
2019), which represent masked language mod-
els and autoregressive language models, respec-
tively. Our implementation is based on the Hugging
Face Transformers (Wolf et al., 2020) and Adapter
Hub (Pfeiffer et al., 2020), and the adopted check-
points are bert-base-uncased (109’514’298 pa-
rameters) and gpt2 (124’439’808 parameters). We
adopt the English Wikipedia as our original debias-
ing corpus3, and counterfactually augment it using
Algorithm 1. The adopted bias attribute words for
each type of bias are listed in Appendix A. Next,
we randomly down-sample 20% of the augmented
Wikipedia as our debiasing corpus. All the CDA-
based debiasing methods are trained for two epochs
on one TITAN RTX GPU with 24 GB memory. We
select optimal training hyperparameters according
to the language modeling loss on a validation set
(we use 5% of the augmented debiasing corpus
for validation), since the language modeling loss
on a balanced dataset is a reasonable proxy for
both debiasing performance and language model-

3We also investigate the effect of different debiasing cor-
pora for GPT-2. See Appendix C for details.

ing ability. We select hyperparameters using the
default seed of 42, and re-train the models for four
additional times with different random seeds, to ac-
count for CrowS-Pairs and StereoSet’s sensitivity
to pre-training seeds (Aribandi et al., 2021). More
details are in Appendix B.

Baselines. We compare the parameter-efficient
methods to full fine-tuning, where all the parame-
ters of a language model are tuned, For post-hoc
debiasing methods, we compare to SentenceDe-
bias (Liang et al., 2020) and Self-Debias (Schick
et al., 2021), as described in Section 4.

5.2 Mitigating Gender Bias

For experiments on mitigating gender bias, we
adopt a default reduction factor of r = 48 in
adapter tuning, leading to 304’320 tunable parame-
ters, which are less than 0.3% of all the parameters
in BERT (109’514’298) or GPT-2 (124’439’808).
For prefix tuning, we adopt a prefix length of
l = 16 to obtain a similar amount of tunable pa-
rameters (294’912) to adapter tuning. Obtaining a
similar amount of tunable parameters for prompt
tuning would require an exceptionally large prompt
length, even approaching the maximum acceptable
sequence length of the pre-trained language models.
Therefore, we only set the prompt length l = 16
(which corresponds to 12’288 tunable parameters)
to compare with prefix tuning under the same num-
ber of prepending tokens. Evaluation results are
shown in Table 1.4

In general, the parameter-efficient methods are
effective in reducing stereotype scores, and the
reductions are statistically significant (p < 0.05)
under a permutation test (Ernst, 2004).

Among the three parameter-efficient methods,
adapter tuning achieves the best debiasing per-
formance on both CrowS-Pairs and StereoSet,
for both BERT and GPT-2. This demonstrates
adapter tuning to be a reliable parameter-efficient
method for bias mitigation across different types of
language models. Note that our results are also con-
sistent with He et al. (2022)’s finding that modify-
ing transformer representations at the feed-forward
sublayers (adapter tuning) is more effective than
modifying those at the multi-head attention sublay-
ers (prefix tuning).

4Since SelfDebias preserves 32 tokens for its prefix tem-
plates, when measuring perplexity for all the methods in Ta-
ble 1, the input sequence length is set to 480 (512-32) for
BERT and 992 (1024-32) for GPT-2.

15734



Gender Bias CrowS-Pairs
Stereotype Score

StereoSet
Stereotype Score

WikiText2
Perplexity (↓)

StereoSet LM
Score (↑)

BERT 57.25 60.28 5.167 84.17
+Full Fine-Tune 56.11±2.15 56.43±0.72∗ 5.517±0.080 84.22±0.19
+Prefix Tune (l=16) 53.59±0.19∗ 57.82±0.46∗ 4.425±0.015 84.75±0.15
+Prompt Tune (l=16) 57.56±1.41 58.07±0.60∗ 4.641±0.033 84.71±0.16
+Adapter Tune (r=48) 51.68±0.52∗∗ 56.04±0.43∗∗ 4.931±0.043 84.97±0.14
+SentenceDebias 52.29 59.37 5.181 84.20
+SelfDebias 52.29 59.34 7.070 84.09
GPT-2 56.87 62.65 29.669 91.01
+Full Fine-Tune 55.88±1.27 61.88±0.55∗ 81.778±0.655 90.24±0.14
+Prefix Tune (l=16) 54.73±0.66∗ 61.35±0.60∗ 31.400±0.108 91.24±0.07
+Prompt Tune (l=16) 54.12±1.14∗ 61.30±0.43∗ 30.630±0.099 91.37±0.08
+Adapter Tune (r=48) 52.29±1.13∗∗ 60.33±0.46∗∗ 35.255±0.345 90.87±0.11
+SentenceDebias 56.11 56.05 56.891 87.43
+SelfDebias 56.11 60.84 31.482 89.07

Table 1: Results on mitigating gender bias. For CrowS-Pairs and StereoSet, stereotype scores closer to 50 indicate
less bias; for perplexity, lower values are better; for StereoSet LM score, higher values are better. For the CDA-
based methods, we report mean±std from five runs. The best score of all the debiasing methods for each metric
is marked in bold. ∗: the reduction in stereotype score w.r.t. that of the original BERT/GPT-2 is statistically
significant (p < 0.05). ∗∗: the stereotype score of adapter tuning is significantly (p < 0.05) lower than those of the
other parameter-efficient methods.

Prompt tuning is more effective on GPT-2 than
BERT. Prompt tuning is ineffective in reducing
the CrowS-Pairs stereotype score on BERT, but
can successfully reduce it on GPT-2, where it even
achieves a similar debiasing performance to prefix
tuning. This is remarkable given that prompt tun-
ing has much less tunable parameters than prefix
tuning. This is also consistent with prompt tuning
being more effective when T5 (Raffel et al., 2020)
is continuously pre-trained with an autoregressive
language modeling loss (Lester et al., 2021).

Comparing to post-hoc debiasing methods, para-
meter-efficient methods are better at maintain-
ing the language modeling ability while achiev-
ing a similar debiasing performance. Note
that post-hoc debiasing methods sometimes sig-
nificantly worsen the language modeling ability,
e.g., a perplexity of 7.070 for SelfDebias on BERT,
a perplexity of 56.891, and a LM score of 87.43
for SentenceDebias on GPT-2. Since a completely
random language model would achieve the per-
fect stereotype score (50), but is useless as a lan-
guage model (Nadeem et al., 2021), the degraded
language modeling ability of the post-hoc debias-
ing methods undermines their true effectiveness
for bias mitigation. On the contrary, parameter-
efficient methods keep the language modeling loss
during CDA training, which helps to preserve or
even enhance the language modeling ability.

Comparing to full fine-tuning, parameter-effi-
cient methods can achieve a better or similar

performance with improved time and memory
efficiency. Since full fine-tuning updates all the pa-
rameters of the language model, it is computation-
ally expensive and prone to be overfitting. When
debiasing BERT, full fine-tuning consumes around
19 GB memory, while the parameter-efficient meth-
ods consume 12~17 GB memory. Training on the
debiasing corpus for full fine-tuning lasts around 6
hours, while that for the parameter-efficient meth-
ods lasts 4~5 hours. For GPT-2, full fine-tuning
consumes around 18 GB memory with the training
time being around 7 hours, while the parameter-
efficient methods consume 15~16 GB memory and
5 hours of training time.

5.3 Mitigating Racial and Religious Bias

When mitigating racial and religious bias, we find
that a prefix length of l = 16 (or, equivalently, a
reduction factor of r = 48 for adapter tuning) is no
longer sufficient for successful debiasing. There-
fore, we search l in a broader range of {48, 96, 192,
384} (and, correspondingly, r in {16, 8, 4, 2}). The
results are shown in Table 2.

In general, the parameter-efficient methods are
less effective when it comes to racial and religious
bias. Even the previously strongest method, adapter
tuning, is ineffective in many cases such as de-
biasing BERT on the religion subsets of CrowS-
Pairs and StereoSet, and GPT-2 on the race sub-
set of CrowS-Pairs. For GPT-2, prompt tuning is
consistently effective on the race subsets of both

15735



Racial Bias CrowS-Pairs
Stereotype Score

StereoSet
Stereotype Score

WikiText2
Perplexity (↓)

StereoSet LM
Score (↑)

BERT 62.33 57.03 4.899 84.17
+Full Fine-Tune 57.65±3.61∗ 57.67±0.70 5.291±0.064 83.44±0.29
+Prefix Tune (l=192) 57.44±1.90∗ 56.95±0.39 4.448±0.008 84.35±0.12
+Prompt Tune (l=192) 58.25±3.90∗ 58.17±0.55 4.572±0.019 83.41±0.80
+Adapter Tune (r=4) 57.20±4.16∗ 59.10±0.45 4.903±0.071 84.34±0.20
+SentenceDebias 62.72 57.78 4.949 83.95
+SelfDebias 56.70 54.30 6.187 84.24
GPT-2 59.69 58.90 32.712 91.01
+Full Fine-Tune 60.04±0.48 56.68±0.37∗ 41.781±0.240 89.44±0.05
+Prefix Tune (l=384) 59.61±0.51 57.53±0.23∗ 35.346±0.073 89.48±0.08
+Prompt Tune (l=384) 58.76±0.92∗ 57.72±0.33∗ 33.983±0.266 89.18±0.10
+Adapter Tune (r=2) 61.28±1.27 57.77±0.44∗ 35.818±0.304 89.01±0.68
+SentenceDebias 55.43 56.43 37.826 91.38
+SelfDebias 53.29 57.33 34.851 89.53

Religious Bias CrowS-Pairs
Stereotype Score

StereoSet
Stereotype Score

WikiText2
Perplexity (↓)

StereoSet LM
Score (↑)

BERT 62.86 59.70 6.172 84.17
+Full Fine-Tune 65.33±2.73 60.76±1.38 6.762±0.059 83.67±0.18
+Prefix Tune (l=384) 72.76±1.55 60.61±0.98 5.372±0.010 85.42±0.09
+Prompt Tune (l=384) 83.05±1.85 60.07±1.12 5.483±0.048 83.80±0.58
+Adapter Tune (r=2) 68.00±4.33 58.93±1.19 6.135±0.019 84.45±0.19
+SentenceDebias 63.81 58.73 6.185 84.26
+SelfDebias 56.19 57.26 7.624 84.23
GPT-2 62.86 63.26 32.712 91.01
+Full Fine-Tune 54.86±1.29∗ 64.36±0.81 45.525±0.065 90.20±0.06
+Prefix Tune (l=384) 60.95±0.60∗ 65.16±0.56 35.226±0.073 90.95±0.03
+Prompt Tune (l=384) 58.29±1.52∗ 64.89±1.52 43.177±17.750 90.68±0.12
+Adapter Tune (r=2) 62.10±2.72 62.05±0.66∗ 39.732±0.695 90.31±0.10
+SentenceDebias 35.24 59.62 60.204 90.53
+SelfDebias 58.10 60.45 35.174 89.36

Table 2: Results on mitigating racial bias (upper table) and religious bias (lower table). For CrowS-Pairs and
StereoSet, stereotype scores closer to 50 indicate less bias; for perplexity5, lower values are better; for StereoSet
LM score, higher values are better. For the CDA-based methods, we report mean±std from five runs. The best score
of all the debiasing methods for each metric is marked in bold. ∗: the reduction in stereotype score w.r.t. that of the
original BERT/GPT-2 is statistically significant (p < 0.05).

CrowS-Pairs and StereoSet, but cannot obtain a
similar performance on StereoSet’s religion subset.
In three out of the eight debiasing cases, none of
the parameter-efficient methods could reduce the
stereotype score in a statistically significant way.

Moreover, SelfDebias exhibits a superior debias-
ing performance over the parameter-efficient meth-
ods, and its language modeling ability does not
severely degenerate as in mitigating gender bias.
Indeed, when we calculate the icat score (Nadeem
et al., 2021), defined as lms ∗ min(ss, 100 −
ss)/50 (lms stands for the LM score, and ss stands
for the stereotype score on StereoSet), to integrate
the debiasing performance and language modeling
ability, we can clearly see a better overall perfor-

5For the race-debiased models, we set the input sequence
length to 320 for BERT and 640 for GPT-2; for the religion-
debiased models, we set the input sequence length to 128 for
BERT and 640 for GPT-2.

mance of SelfDebias over adapter tuning (e.g., on
StereoSet’s religion subset, the icat score of Self-
Debias and adapter tuning is 72.00 vs. 69.37 for
BERT, and 70.68 vs. 68.55 for GPT-2).

The less successful performance of parameter-
efficient methods may be attributed to some lim-
itations of the CDA debiasing method. The bias
attribute word lists for race and religion are shorter
and contain more noise (i.e., words with multiple or
ambiguous meanings) than that for gender, which
may undermine the diversity and quality of the
augmented training corpus. On the contrary, Self-
Debias relies on bias descriptions that contain less
noise and could generalize with the help of the lan-
guage model’s own knowledge. Given this analysis,
future work could explore how to adopt parameter-
efficient methods to debiasing techniques other
than CDA to overcome these limitations.
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6 Impact on Internal Knowledge

6.1 Fact Retrieval

To investigate the impact of bias mitigation on the
factual knowledge encoded in pre-trained language
models, we take the gender-debiased models from
Section 5.2 and evaluate them on the four LAMA
datasets (Petroni et al., 2019).6 The results are
shown in Table 3. We report the results from a
single run (with the default seed 42) to save com-
putation in Table 3 and 4.

The parameter-efficient methods can largely
maintain the factual knowledge of a language
model, with the reduction in Precision@10 rang-
ing from 0 to 6.8% across all the datasets and
pre-trained models. Surprisingly, for BERT on
SQuAD and GPT-2 on all the four datasets, quite
a number of the results are actually improved.
We attribute these improvements to the fact that
Wikipedia contains a lot of factual knowledge, and
continuously training on it can enhance the internal
knowledge of a language model.

Comparing the performance between full fine-
tuning and parameter-efficient tuning, we find that
the former performs best on SQuAD with BERT
and Google-RE with GPT-2, while the latter per-
forms better in the rest of the settings. In general,
the performance gaps are marginal.

6.2 Downstream Fine-Tuning

We further investigate the impact of bias mitiga-
tion on knowledge transfer to downstream tasks via
fine-tuning. Since neural network models suffer
from catastrophic forgetting (French, 1999), a debi-
ased model may forget the encoded knowledge in
the original language model, and conversely a fine-
tuned model may forget the debiasing knowledge
in the debiased model. Therefore, it is important
to adopt an evaluation dataset that can simultane-
ously evaluate downstream task performance and
debiasing performance. We choose the coreference
resolution dataset WinoBias (Zhao et al., 2018) to
fulfill the above requirements.

We append each example from WinoBias (e.g.,
The physician hired the secretary because he was
overwhelmed with clients.) with the suffix “{Pro-
noun} refers to the {Candidate}.” ({Pronoun} is

6Instead of using the intersectional vocabulary of several
pre-trained models, as in Petroni et al. (2019), we adopt each
pre-trained model’s full vocabulary, since we do not aim to
compare the performance across different pre-trained models.

“He” in this example), and then measure the prob-
ability of the model completing the sentence with
different candidates (“physician” and “secretary”
in this example) to determine the coreference re-
sult. We adopt both the type-1 and type-2 test sets
of WinoBias, where type-1 examples are harder
to resolve as they contain no syntactic cues. We
adopt WinoBias’ dev set to fine-tune an original
pre-trained language model using either full fine-
tuning or parameter-efficient tuning.7 The results
are shown in Table 4.

On type-1 examples, adapter tuning achieves
a comparable performance to full fine-tuning
for both BERT and GPT-2, with the reduction
in average F1 scores less than 3.3%. On BERT,
adapter tuning achieves a much better debiasing
performance (Diff= 0.51) than full fine-tuning,
while on GPT-2 it is slightly more biased. Nev-
ertheless, both of them can be considered effective
simultaneously on the coreference resolution task
and debiasing task. The performance gap between
full fine-tuning and prefix/prompt tuning is more
significant, but the latter can still achieve a nearly
perfect performance on the easier type-2 examples.

7 Conclusion

In this study, we investigated the performance of
prefix tuning, prompt tuning, and adapter tuning on
mitigating social bias and preserving the linguistic
and factual knowledge for two types of pre-trained
language models. Our results demonstrated the
effectiveness and efficacy of parameter-efficient
methods in combination with CDA, and also re-
vealed their performance limitations by comparing
to post-hoc debiasing methods. We hope that our
study can make it more accessible for others to
debias pre-trained language models with reduced
computational requirements, and contribute to fair
and inclusive NLP.

8 Limitations

Due to the restrictions of the adopted benchmarks
and resources, our evaluation bears the following
limitations: (i) We only focus on social biases
in the English language and North American cul-
tures. This is due to the fact that both CrowS-
Pairs and StereoSet are generated by crowd work-
ers from North America. Future work can extend
our analysis to other languages and cultures with

7See Appendix B for more details.
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Google-RE T-REx ConceptNet SQuAD
P@1 P@10 MRR P@1 P@10 MRR P@1 P@10 MRR P@1 P@10 MRR

BERT 9.25 28.69 15.96 29.48 56.87 38.63 15.11 38.77 23.10 13.11 44.59 23.30
+Full Fine-Tune 7.47 21.43 12.43 26.93 53.72 35.85 14.89 37.59 22.57 14.43 47.21 24.78
+Prefix Tune (l=16) 8.23 22.54 13.43 27.68 53.64 36.38 15.05 37.42 22.73 12.79 46.56 23.91
+Prompt Tune (l=16) 8.68 23.19 14.04 28.28 53.59 36.88 14.58 36.58 22.11 12.79 46.89 23.54
+Adapter Tune (r=48) 8.51 21.97 13.39 26.92 51.65 35.27 14.75 36.47 22.13 11.80 44.26 22.59

GPT-2 1.51 10.88 5.04 9.36 31.10 16.78 5.91 19.01 10.42 3.15 17.48 7.53
+Full Fine-Tune 3.40 15.10 7.44 7.76 33.04 15.90 4.87 16.47 8.86 1.75 18.18 6.78
+Prefix Tune (l=16) 2.33 12.56 6.14 10.13 33.38 17.98 5.99 19.42 10.53 2.10 17.83 7.53
+Prompt Tune (l=16) 1.14 9.79 4.39 8.00 30.29 15.70 5.95 19.03 10.53 2.45 16.78 7.16
+Adapter Tune (r=48) 2.49 14.11 6.59 9.35 32.61 17.20 5.79 19.09 10.26 2.10 18.18 7.03

Table 3: Fact retrieval results of the original and debiased models on the four LAMA datasets. For all the metrics
(precision-at-1 (P@1), precision-at-10 (P@10), and mean reciprocal rank (MRR)), higher values are better. For the
debiased models, the best score under each metric is in bold, while the scores not worse than those from the original
BERT/GPT-2 are highlighted in green .

Type-1 Type-2
F1−pro F1−anti Avg Diff F1−pro F1−anti Avg Diff

BERT
+Full Fine-Tune 70.95 68.04 69.50 2.91 99.49 99.49 99.49 0
+Prefix Tune (l=16) 65.08 64.57 64.83 0.51 99.49 99.49 99.49 0
+Prompt Tune (l=16) 56.56 53.33 54.95 3.23 99.24 99.24 99.24 0
+Adapter Tune (r=48) 66.50 65.99 66.25 0.51 99.49 99.49 99.49 0
GPT-2
+Full Fine-Tune 63.33 63.47 63.40 -0.14 99.49 99.49 99.49 0
+Prefix Tune (l=16) 51.66 52.79 52.23 -1.13 99.49 99.49 99.49 0
+Prompt Tune (l=16) 53.46 52.36 52.91 1.10 99.24 99.24 99.24 0
+Adapter Tune (r=48) 60.70 59.96 60.33 0.74 99.49 99.49 99.49 0

Table 4: Evaluation results on the WinoBias’ type-1 and type-2 test sets. We report the F1 score on the pro-
stereotypical examples (F1−pro), anti-stereotypical examples (F1−anti), their average (Avg), and their difference
(Diff) to measure the models’ performance on both the coreference resolution task and the bias mitigation task.

the corresponding resources such as the French
CrowS-Pairs (Névéol et al., 2022) and multilin-
gual WEAT (Lauscher and Glavaš, 2019). (ii) Our
evaluation has a limited coverage over different
kinds of harms according to Blodgett et al. (2020).
CrowS-Pairs, StereoSet, and WinoBias all focus
on stereotyping, a kind of representational harm,
while others like allocational harms are untouched.
Developing methods to measure these harms gener-
ally requires in-depth interactions between technol-
ogists and customers. Blodgett et al. (2021) also
point out several conceputalization and operational-
ization pitfalls in the above three bias benchmarks,
which limits the validity of the results evaluated
on them. (iii) Due to the incomplete bias attribute
word lists, our CDA-based debiasing method is
by no means fair enough to cover all the minor-
ity groups (e.g., groups with non-binary genders).
Therefore the current debiasing method in this pa-
per can only be used to mitigate bias among the
demographic groups mentioned in Appendix A. We

recommend more complete resources such as the
gender-inclusive word list in (Cao and Daumé III,
2021) for real-world scenarios.
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Kamath, Ivan Vulić, Sebastian Ruder, Kyunghyun
Cho, and Iryna Gurevych. 2020. AdapterHub: A
framework for adapting transformers. In Proceedings
of the 2020 Conference on Empirical Methods in Nat-
ural Language Processing: System Demonstrations,
pages 46–54, Online. Association for Computational
Linguistics.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, and Ilya Sutskever. 2019. Language
models are unsupervised multitask learners. Techni-
cal Report.

Colin Raffel, Noam Shazeer, Adam Roberts, Kather-
ine Lee, Sharan Narang, Michael Matena, Yanqi

15740

https://doi.org/10.18653/v1/S19-1010
https://doi.org/10.18653/v1/S19-1010
https://doi.org/10.18653/v1/S19-1010
https://doi.org/10.18653/v1/2021.findings-emnlp.411
https://doi.org/10.18653/v1/2021.emnlp-main.243
https://doi.org/10.18653/v1/2021.emnlp-main.243
https://doi.org/10.18653/v1/2021.acl-long.353
https://doi.org/10.18653/v1/2021.acl-long.353
https://doi.org/10.18653/v1/2020.acl-main.488
https://doi.org/10.18653/v1/2020.acl-main.488
https://openreview.net/forum?id=Bkg6RiCqY7
https://openreview.net/forum?id=Bkg6RiCqY7
https://doi.org/10.18653/v1/N19-1063
https://doi.org/10.18653/v1/N19-1063
https://doi.org/10.18653/v1/2022.acl-long.132
https://doi.org/10.18653/v1/2022.acl-long.132
https://openreview.net/forum?id=Byj72udxe
https://openreview.net/forum?id=Byj72udxe
https://doi.org/10.18653/v1/2021.acl-long.416
https://doi.org/10.18653/v1/2021.acl-long.416
https://doi.org/10.18653/v1/2020.emnlp-main.154
https://doi.org/10.18653/v1/2020.emnlp-main.154
https://doi.org/10.18653/v1/2020.emnlp-main.154
https://doi.org/10.18653/v1/2022.acl-long.583
https://doi.org/10.18653/v1/2022.acl-long.583
https://doi.org/10.18653/v1/2022.acl-long.583
https://doi.org/10.18653/v1/D19-1250
https://doi.org/10.18653/v1/D19-1250
https://doi.org/10.18653/v1/2021.eacl-main.39
https://doi.org/10.18653/v1/2021.eacl-main.39
https://doi.org/10.18653/v1/2020.emnlp-demos.7
https://doi.org/10.18653/v1/2020.emnlp-demos.7
https://d4mucfpksywv.cloudfront.net/better-language-models/language-models.pdf
https://d4mucfpksywv.cloudfront.net/better-language-models/language-models.pdf


Zhou, Wei Li, and Peter J. Liu. 2020. Exploring the
limits of transfer learning with a unified text-to-text
transformer. Journal of Machine Learning Research,
21(140):1–67.

Shauli Ravfogel, Yanai Elazar, Hila Gonen, Michael
Twiton, and Yoav Goldberg. 2020. Null it out: Guard-
ing protected attributes by iterative nullspace projec-
tion. In Proceedings of the 58th Annual Meeting of
the Association for Computational Linguistics, pages
7237–7256, Online. Association for Computational
Linguistics.

Julian Salazar, Davis Liang, Toan Q. Nguyen, and Ka-
trin Kirchhoff. 2020. Masked language model scor-
ing. In Proceedings of the 58th Annual Meeting of
the Association for Computational Linguistics, pages
2699–2712, Online. Association for Computational
Linguistics.

Timo Schick, Sahana Udupa, and Hinrich Schütze. 2021.
Self-diagnosis and self-debiasing: A proposal for re-
ducing corpus-based bias in NLP. Transactions of the
Association for Computational Linguistics, 9:1408–
1424.

Emily Sheng, Kai-Wei Chang, Premkumar Natarajan,
and Nanyun Peng. 2019. The woman worked as
a babysitter: On biases in language generation. In
Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the
9th International Joint Conference on Natural Lan-
guage Processing (EMNLP-IJCNLP), pages 3407–
3412, Hong Kong, China. Association for Computa-
tional Linguistics.

Shaden Smith, Mostofa Patwary, Brandon Norick,
Patrick LeGresley, Samyam Rajbhandari, Jared
Casper, Zhun Liu, Shrimai Prabhumoye, George
Zerveas, Vijay Korthikanti, Elton Zheng, Rewon
Child, Reza Yazdani Aminabadi, Julie Bernauer, Xia
Song, Mohammad Shoeybi, Yuxiong He, Michael
Houston, Saurabh Tiwary, and Bryan Catanzaro.
2022. Using deepspeed and megatron to train
megatron-turing NLG 530b, A large-scale genera-
tive language model. CoRR, arXiv:2201.11990.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Ł ukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems, volume 30. Curran Associates, Inc.

Kellie Webster, Xuezhi Wang, Ian Tenney, Alex Beu-
tel, Emily Pitler, Ellie Pavlick, Jilin Chen, Ed Chi,
and Slav Petrov. 2020. Measuring and reducing
gendered correlations in pre-trained models. CoRR,
arXiv:2010.06032.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Remi Louf, Morgan Funtow-
icz, Joe Davison, Sam Shleifer, Patrick von Platen,
Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu,
Teven Le Scao, Sylvain Gugger, Mariama Drame,

Quentin Lhoest, and Alexander Rush. 2020. Trans-
formers: State-of-the-art natural language processing.
In Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing: System
Demonstrations, pages 38–45, Online. Association
for Computational Linguistics.

Jieyu Zhao, Tianlu Wang, Mark Yatskar, Ryan Cotterell,
Vicente Ordonez, and Kai-Wei Chang. 2019. Gender
bias in contextualized word embeddings. In Proceed-
ings of the 2019 Conference of the North American
Chapter of the Association for Computational Lin-
guistics: Human Language Technologies, Volume
1 (Long and Short Papers), pages 629–634, Min-
neapolis, Minnesota. Association for Computational
Linguistics.

Jieyu Zhao, Tianlu Wang, Mark Yatskar, Vicente Or-
donez, and Kai-Wei Chang. 2018. Gender bias in
coreference resolution: Evaluation and debiasing
methods. In Proceedings of the 2018 Conference
of the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 2 (Short Papers), pages 15–20, New
Orleans, Louisiana. Association for Computational
Linguistics.

Ran Zmigrod, Sabrina J. Mielke, Hanna Wallach, and
Ryan Cotterell. 2019. Counterfactual data augmenta-
tion for mitigating gender stereotypes in languages
with rich morphology. In Proceedings of the 57th
Annual Meeting of the Association for Computational
Linguistics, pages 1651–1661, Florence, Italy. Asso-
ciation for Computational Linguistics.

15741

http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
https://doi.org/10.18653/v1/2020.acl-main.647
https://doi.org/10.18653/v1/2020.acl-main.647
https://doi.org/10.18653/v1/2020.acl-main.647
https://doi.org/10.18653/v1/2020.acl-main.240
https://doi.org/10.18653/v1/2020.acl-main.240
https://doi.org/10.1162/tacl_a_00434
https://doi.org/10.1162/tacl_a_00434
https://doi.org/10.18653/v1/D19-1339
https://doi.org/10.18653/v1/D19-1339
http://arxiv.org/abs/2201.11990
http://arxiv.org/abs/2201.11990
http://arxiv.org/abs/2201.11990
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/N19-1064
https://doi.org/10.18653/v1/N19-1064
https://doi.org/10.18653/v1/N18-2003
https://doi.org/10.18653/v1/N18-2003
https://doi.org/10.18653/v1/N18-2003
https://doi.org/10.18653/v1/P19-1161
https://doi.org/10.18653/v1/P19-1161
https://doi.org/10.18653/v1/P19-1161


A Bias Attribute Words

We adopt the same bias attribute words as Meade
et al. (2022), where the list for gender is from Zhao
et al. (2018) and that for religion is from Liang et al.
(2020).

Gender: (actor, actress), (actors, actresses), (air-
man, airwoman), (uncle, aunt), (uncles, aunts),
(boy, girl), (boys, girls), (groom, bride), (grooms,
brides), (brother, sister), (brothers, sisters), (busi-
nessman, businesswoman), (businessmen, busi-
nesswomen), (chairman, chairwoman), (chairmen,
chairwomen), (dude, chick), (dudes, chicks), (dad,
mom), (dads, moms), (daddy, mommy), (daddies,
mommies), (son, daughter), (sons, daughters), (fa-
ther, mother), (fathers, mothers), (male, female),
(males, females), (guy, gal), (guys, gals), (gentle-
man, lady), (gentlemen, ladies), (grandson, grand-
daughter), (grandsons, granddaughters), (guy,
girl), (guys, girls), (he, she), (himself, herself ),
(him, her), (his, her), (husband, wife), (husbands,
wives), (king, queen), (kings, queens), (lord, lady),
(lords, ladies), (sir, maam), (man, woman), (men,
women), (sir, miss), (mr., mrs.), (mr., ms.), (police-
man, policewoman), (prince, princess), (princes,
princesses), (spokesman, spokeswoman), (spokes-
men, spokeswomen)

Religion: (jewish, christian, muslim), (jews,
christians, muslims), (torah, bible, quran), (syn-
agogue, church, mosque), (rabbi, priest, imam),
(judaism, christianity, islam)

Race: (black, caucasian, asian), (african, cau-
casian, asian), (black, white, asian), (africa, amer-
ica, asia), (africa, america, china), (africa, europe,
asia)

B Additional Training Details

For all the experiments on parameter-efficient tun-
ing methods and full fine-tuning, we use the default
settings of the AdamW optimizer (Loshchilov and
Hutter, 2019) and a linear learning rate scheduler
from the Hugging Face library.

For the debiasing experiments trained on
Wikipedia, we fix the number of training epochs
to 2 and greedily search initial learning rate from
{5e-1, 5e-2, 5e-3, 5e-4, 5e-5, 5e-6, 5e-7} according
to the language modeling loss on the validation set
(we use 5% of the augmented debiasing corpus for
validation). For experiments trained on WinoBias,
we greedily search training epochs from {10, 20,

30, 50, 100, 200} and initial learning rate from
{5e-1, 5e-2, 5e-3, 5e-4, 5e-5, 5e-6, 5e-7} accord-
ing to the Avg F1 score on type-1 examples in the
validation set (we use 5% of the training set for val-
idation). The hyperparameter values to reproduce
our results in Sections 5 and 6 are in Table 5.

Implementations of SentenceDebias and SelfDe-
bias are based on Meade et al. (2022)’s, where we
also follow their default parameter settings.

lr epoch bsz
For results in Table 1 (gender bias)
BERT
+Full Fine-Tune 5e-5 2 16
+Prefix Tune (l=16) 5e-3 2 16
+Prompt Tune (l=16) 5e-1 2 16
+Adapter Tune (r=48) 5e-4 2 16
GPT-2
+Full Fine-Tune 5e-5 2 8
+Prefix Tune (l=16) 5e-3 2 8
+Prompt Tune (l=16) 5e-2 2 8
+Adapter Tune (r=48) 5e-4 2 8
For results in Table 2’s upper sub-table (racial bias)
BERT
+Full Fine-Tune 5e-5 2 16
+Prefix Tune (l=192) 5e-3 2 16
+Prompt Tune (l=192) 5e-3 2 16
+Adapter Tune (r=4) 5e-4 2 16
GPT-2
+Full Fine-Tune 5e-6 2 8
+Prefix Tune (l=384) 5e-3 2 8
+Prompt Tune (l=384) 5e-1 2 8
+Adapter Tune (r=2) 5e-3 2 8
For results in Table 2’s lower sub-table (religious bias)
BERT
+Full Fine-Tune 5e-5 2 16
+Prefix Tune (l=384) 5e-3 2 16
+Prompt Tune (l=384) 5e-3 2 16
+Adapter Tune (r=2) 5e-4 2 16
GPT-2
+Full Fine-Tune 5e-6 2 8
+Prefix Tune (l=384) 5e-3 2 8
+Prompt Tune (l=384) 5e-1 2 8
+Adapter Tune (r=2) 5e-5 2 8
For results in Table 4 (WinoBias)
BERT
+Full Fine-Tune 5e-6 30 16
+Prefix Tune (l=16) 5e-2 20 16
+Prompt Tune (l=16) 5e-1 20 16
+Adapter Tune (r=48) 5e-4 20 16
GPT-2
+Full Fine-Tune 5e-5 20 16
+Prefix Tune (l=16) 5e-3 200 16
+Prompt Tune (l=16) 5e-4 100 16
+Adapter Tune (r=48) 5e-4 50 16

Table 5: Hyperparameter values adopted during training.
“lr” denotes initial learning rate; “epoch” denotes total
training epochs; “bsz” denotes batch size.
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Debiasing
Corpus

CrowS-Pairs
Stereotype Score

StereoSet
Stereotype Score

WikiText2
Perplexity (↓)

Stereoset LM
Score (↑)

GPT-2 56.87 62.65 29.669 91.01
Wikipedia +Full Fine-Tune 56.87 61.30 80.499 90.23
(single +Prefix Tune (l=16) 55.34 62.02 31.567 91.14
sentence) +Prompt Tune (l=16) 52.29 60.95 30.534 91.29

+Adapter Tune (r=48) 51.15 60.50 34.910 90.80
Wikipedia +Full Fine-Tune 56.49 61.74 56.527 90.19
(example +Prefix Tune (l=16) 58.40 62.67 31.935 91.22
length=1024 +Prompt Tune (l=16) 56.87 63.37 32.461 91.03
tokens) +Adapter Tune (r=48) 59.92 62.31 34.527 90.75
OpenWebText +Full Fine-Tune 55.73 62.43 38.252 90.60
(example +Prefix Tune (l=16) 53.44 60.94 31.592 90.31
length=1024 +Prompt Tune (l=16) 53.05 62.68 30.464 91.41
tokens) +Adapter Tune (r=48) 56.87 61.94 33.130 90.87

Table 6: Results on gender debiasing and language modeling for GPT-2 using different debiasing corpora.

C Effect of the Debiasing Corpus for
GPT-2

For consistency, we adopt the same debiasing cor-
pus (the English Wikipedia) for both BERT and
GPT-2 in Section 5.2, where each training exam-
ple consists of a single sentence (the average sen-
tence length in our corpus is around 107 tokens).
However, this setting is different from the origi-
nal pre-training settings of GPT-2 (Radford et al.,
2019) in terms of example length and data source.
Therefore, we further investigate debiasing GPT-2
on two other debiasing corpora: for one corpus, we
still use Wikipedia but concatenate all the sentences
into a long sequence and truncate it into examples
of 1024 tokens; for the other corpus, we use 1%
of OpenWebText8, which is a public replicate of
GPT-2’s private pre-training corpus, and truncate
it into examples of 1024 tokens. The results are
shown in Table 6.9

Comparing the results on Wikipedia, with single
sentence and example length 1024 tokens, in Ta-
ble 6, we can see that the former is consistently bet-
ter. This indicates that these methods favor shorter
example lengths. We conjecture that this is due
to GPT-2’s language modeling objective being an
average over all the tokens in an example. There-
fore, the counterfactual token’s signal will be less
significant if it is close to the end of a long example.

Comparing the last two blocks, we can see that
the results from the debiasing methods trained
on OpenWebText are superior to those trained on
Wikipedia under the same example length of 1024.

8https://skylion007.github.io/
OpenWebTextCorpus/

9We report the results from a single run (with the default
seed 42) to save computation.

This indicates that using a similar data source to
the original pre-training corpus is beneficial. For
full fine-tuning, this can improve perplexity to
38.252. For the parameter-efficient methods, the
improvements are more significant on stereotype
scores. Given that parameter-efficient methods’
model capacity is limited, if we allocate some ca-
pacity for adapting to new data sources, it is reason-
able for the debiasing performance to be negatively
affected.
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