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Abstract

The bias-variance tradeoff is the idea that
learning methods need to balance model
complexity with data size to minimize
both under-fitting and over-fitting. Recent
empirical work and theoretical analyses with
over-parameterized neural networks challenge
the classic bias-variance trade-off notion
suggesting that no such trade-off holds: as the
width of the network grows, bias monotonically
decreases while variance initially increases
followed by a decrease. In this work, we
first provide a variance decomposition-based
justification criteria to examine whether large
pretrained neural models in a fine-tuning
setting are generalizable enough to have
low bias and variance. We then perform
theoretical and empirical analysis using
ensemble methods explicitly designed to
decrease variance due to optimization. This
results in essentially a two-stage fine-tuning
algorithm that first ratchets down bias and
variance iteratively, and then uses a selected
fixed-bias model to further reduce variance
due to optimization by ensembling. We also
analyze the nature of variance change with
the ensemble size in low- and high-resource
classes. Empirical results show that this
two-stage method obtains strong results on
SuperGLUE tasks and clinical information ex-
traction tasks. Code and settings are available:
https://github.com/christa60/
bias-var-fine-tuning-plms.git

1 Introduction

Transformer-based neural language models, such
as Bidirectional Encoder Representations from
Transformers (BERT) (Devlin et al., 2019), have
achieved state-of-the-art (SOTA) performance for
a variety of natural language processing (NLP)
tasks through the process of fine-tuning. Given
an NLP task, the process often involves searching
for optimal pretrained models and hyperparameters

∗ co-first authors

while continuing to train the pretrained model on a
domain-specific dataset, with the aim of building
generalizable and robust fine-tuned models.

Based on the classic notion of the bias-variance
tradeoff (Geman et al., 1992), where increasing
model capacity decreases bias but increases vari-
ance (leading to a U-shaped test error curve), large
pretrained models (LPMs) should have large vari-
ance and overfit domain-specific data which is of-
ten sparsely labeled and extremely imbalanced for
classification. However, recent empirical work
and theoretical analysis of neural networks chal-
lenge this classic bias-variance trade-off notion
(Neal et al., 2018; Yang et al., 2020). It has been
suggested that no such trade-off holds: as the
width/depth of the network grows, bias monoton-
ically decreases while variance initially increases
followed by a decrease. This is why transformer-
based LPMs often achieve better performance com-
pared to less complex models like long short-term
memory (LSTM)-based models or feature-rich
methods (e.g., support vector machines). In the
context of the new bias-variance paradigm, these
LPMs are seemingly complex enough to have low
bias and variance, however, so far there has been
no method to justify whether those SOTA models
are generalizable and robust in solving a variety of
downstream tasks. In this paper, we (1) show that
many SOTA models are very sensitive to data and
training randomness, and (2) provide a variance
decomposition-based justification method.

We also aim to improve model performance, re-
ducing the generalization error of LPMs by reduc-
ing their bias and variance. Recent findings in
Yang et al. (2020) show that the generalization er-
ror mainly comes from bias. Bias can be reduced
by modifying the model architecture, e.g., mak-
ing the neural networks wider and deeper as in
transformer-based LPMs. However, pretraining
new or larger language models can be challenging
due to the technical and computational resource

15746

https://github.com/christa60/bias-var-fine-tuning-plms.git
https://github.com/christa60/bias-var-fine-tuning-plms.git


requirements afforded by only a few institutions
– a topic outside the scope of this paper. We fo-
cus on the problem of reducing variance of neural
models to further boost model performance, given
a fixed bias (i.e., a fixed pretrained model). En-
semble methods have been successful in boosting
predictive performance of single learners (Ren et al.
(2016) presents a comprehensive review) and thus
are a promising venue to explore.

We propose a two-stage fine-tuning framework
that first justifies the generalization status of a se-
lected pretrained model through a concrete metric,
and then uses the fixed-bias model to further reduce
variance due to optimization through ensembling
techniques. To the best of our knowledge, we are
the first to provide such a metric and perform theo-
retical and empirical analysis using ensembles for
improved bias and variance for LPMs. We conduct
experiments on the SuperGLUE tasks as well as
on information extraction from clinical text as it
is a domain of high significance and presents data
challenges due to the limitations of sharing patient-
related data. We believe our proposal is of interest
to any unstructured domain where neural models
are used. Specifically we make the following con-
tributions:

• We propose a two-stage fine-tuning algorithm
for improving bias and variance in the new
bias-variance paradigm;

• We provide a variance decomposition-based
strategy to examine whether LPMs in fine-
tuning settings are generalizable enough to
have low bias and variance;

• We perform theoretical and empirical anal-
yses using ensembles explicitly designed to
decrease variance due to optimization while
keeping bias unchanged;

• We analyze the nature of variance change
due to ensembling in low- and high-resource
classes in classification tasks;

• We conduct comprehensive experiments and
show that the proposed two-stage method ob-
tains strong results on SuperGLUE tasks and
two clinical NLP tasks.

2 Preliminaries

In this section we present the bias-variance decom-
position for squared loss in the new paradigm stud-
ied in Neal et al. (2018) and Yang et al. (2020).

We also present a further decomposition of vari-
ance. We denote f as a supervised learning
task such that f : X → Y , based on a train-
ing dataset S of m i.i.d. samples drawn from a
joint distribution D of (X ,Y). The learning tar-
get is to minimize the mean squared error E(f) =
E(x,y)

[
∥ y − f(x) ∥2

]
, where (x, y) ∼ D.

We consider the predictor fθ as a random vari-
able depending on the random variable S for train-
ing dataset and the random variable O for opti-
mization randomness, where θ = A(S,O) ∈ Rp

represents the weights of neural networks produced
by the learning algorithm A. p denotes the dimen-
sion of θ. The notations and their descriptions are
shown in Table 3 in the Appendix.

2.1 Bias-variance decomposition
In the context of classification of C classes, where
y ∈ RC is represented as a one-hot vector and
fθ(x) ∈ RC denotes an output probability vector
by the predictor, the risk R of the learning algo-
rithm can be decomposed into three sources of
errors (Geman et al., 1992):

R = Enoise + Ebias + Evar (1)

The first term is the irreducible noise and comes
from the intrinsic error of data independent of the
predictor. The second is a bias term:

Ebias = E(x,y)

[
∥ Eθ[fθ(x)]− E[y|x] ∥2

]
(2)

The third is a variance term

Evar = ExVar(fθ(x))

= Ex

[
Eθ

[
∥ fθ(x)− Eθ[fθ(x)] ∥2

]] (3)

and can be further decomposed into the variance
due to optimization Varopt and the variance due to
sampling Varsamp (Neal et al., 2018):

Var(fθ(x)) = Varopt + Varsamp

= ES [VarO(fθ(x)|S)]
+ VarS(EO[fθ(x)|S])

(4)

where we denote the expectation of the decom-
posed variance as EvarO = Ex[Varopt] and EvarS =
Ex[Varsamp].

2.2 Theoretical findings from variance
decomposition

Assuming the learning task is to learn a linear map-
ping y = θTx+ϵ where ϵ denotes the noise random
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Figure 1: Empirical findings from Neal et al. (2018).

variable with E[ϵ] = 0 and Var(ϵ) = σ2
ϵ , and the

input vector is x ∈ Rp where p is the input or
parameter dimensionality.

In this context, the over-parameterized setting is
when p > m and the under-parameterized setting
is when p ≤ m.

The theoretical findings in Neal et al.
(2018) prove that Evar grows with p in the
under-parameterized case, while in the over-
parameterized case, the variance does not grow
with p but scales with the dimension of the data:

ExVar(fθ(x)) =
{ p

mσ2
ϵ for p ≤ m

r
mσ2

ϵ for p > m
(5)

where r = rank(X) and X ∈ Rm×p denotes the
data matrix whose ith row is the training point xTi .
Furthermore, EvarO vanishes as p increases under
the linear squared regression assumption and EvarS
depends on critical parameter dimensionality d(p).

2.3 Empirical findings from variance
decomposition

Finding-I: as shown in the left panel of Figure 11,
Ebias decreases quickly and levels off once suf-
ficiently over-parameterized, while Evar is uni-
modal contrary to the classic theory. Finding-II:
in the right panel of Figure 1, EvarO is significant
and higher than EvarS in the under-parameterized
regime. The two variances cross at a certain p once
sufficiently over-parameterized. However, empir-
ical p and m of the over-parameterized setting is
not strictly following the theoretical findings in sec-
tion 2.2. Finding-III: in multi-layer models where p
is the width and q is the depth, given a fixed p, Ebias
decreases while Evar increases as q increases (Yang
et al., 2020). These empirical findings hold for mul-
tiple datasets in the original papers.

1The two underlying subplots are from Netzer et al. (2011)
on the SVHN dataset

3 Two-Stage Fine-Tuning for Improved
Bias and Variance

3.1 Overview

The prevailing fine-tuning methods first build or
select an LPM and then fine-tune its parameters on
the downstream datasets. The SOTA setting for the
LPM and its best hyperparameters for fine-tuning
are chosen based on evaluation results, such as pre-
cision (P), recall (R), F1 and accuracy scores, using
grid-search or random-search. Given a fine-tuning
task with a fixed training dataset, there is an upper
limit to the learning ability of an LPM which is
hard to measure by traditional evaluation methods.
For a selected LPM, it is usually hard to decide
when to stop searching for hyperparameters. Dif-
ferent from the prevailing fine-tuning setting, we
propose a two-stage fine-tuning method. We first
provide a variance decomposition-based justifica-
tion method to roughly measure the generalization
ability of a pretrained model w.r.t. the upper limit
of its learning ability. In Stage-I, the SOTA set-
ting is built by ratcheting down bias and variance
in an iterative way. The searching loop stops un-
til an acceptable performance appears or no more
improvement is observed. In Stage-II, given the
SOTA setting built in Stage-I, the variance due to
optimization is reduced by ensembling techniques.
Algorithm 1 outlines the procedure of the proposed
two-stage fine-tuning method. The details of each
stage are presented below.

3.2 Stage-I: Justification of generalization
ability

Based on the preliminaries in Section 2.3, assum-
ing an algorithm A(S,O) is fixed, the Ebias, Evar,
EvarO , and EvarS changes as p, q, and m change.
Taking the crossing point (EvarO = EvarS ) as a di-
viding point, we define the generalization ability
Gp as:

Gp =

{
Phase-I for EvarO > EvarS

Phase-II for EvarO ≤ EvarS
(6)

where Phase-I implies large bias and variance lead-
ing to large generalization error. Phase-II implies
small bias and variance leading to small general-
ization error which may be good enough w.r.t. the
upper limit of the learning ability of A.
Justification criteria: After each evaluation, if Gp is
in Phase-I, it is necessary to explore more hyperpa-
rameter settings or new pretrained models until Gp
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is in Phase-II or an acceptable performance (e.g., P,
R, F1) is achieved given the limited computing re-
sources available in practice. Then fine-tuning can
move to Stage-II. If Gp is in Phase-II, the current
setting may be generalizable enough for the given
learning task so that the searching can be stopped.
Stage-II can be applied but is not necessary. We
note that similar to Finding-II in Section 2.3, Gp

cannot be determined directly based on p, q, and
m. This breakdown provides a high-level guideline
for evaluating the generalization of LPMs in an
empirical way.

3.3 Stage-II: Ensembling to reduce variance

Ensembles have been proven to be able to improve
prediction accuracy and consistency of any learn-
ing models in Bonab and Can (2019); Wang et al.
(2020). Bagging-based ensembles which are com-
monly used in various learning tasks have been
proven to be able to reduce Evar while keeping
Ebias unchanged. However, no theoretical analysis
has been discussed in the context of the variance
decomposition paradigm. In Stage-II, we focus on
bagging-based ensembles to further improve the
model performance by reducing EvarO while keep-
ing EvarS unchanged. Applying Stage-II can either
move a model from Phase-I to Phase-II though en-
sembling, i.e., reducing EvarO until EvarO ≤ EvarS ;
or further improve a model’s generalization ability
from Phase-II by reducing EvarO .

We perform empirical analysis in Section 4 and
theoretical analysis in Section 5 to investigate why
and how bagging-based ensembles can guarantee
such improvements in this context. We also analyze
the nature of variance change with the ensemble
size in low- and high-resource classes in classi-
fication tasks. Boosting ensembles have a more
complex behaviour thus are out of scope for this
paper.

4 Experiments

4.1 Data and models

We conduct experiments on the SuperGLUE tasks
and two major clinical information extraction
datasets. The data processing and statistics and
hyperparameter settings are shown in Appendix
Table 4 and Table 5. Their brief descriptions are:

• SuperGLUE (Wang et al., 2019) is a bench-
mark dataset designed for a more rigorous test
of general-purpose language understanding

Algorithm 1: Pseudocode of the two-stage
fine-tuning method.

Input: S: training dataset; A: optimization
algorithm; N : number of ensemble single
learners; F : majority voting for ensemble;

Output: ζ: ensemble learner
/* Stage-I */

1 Gp ← Phase-I
2 E∗ ← 0
3 while (Gp = Phase-I) or (E∗ is not acceptable) do
4 Choose a pretrained model f and an initialization

seed O.
5 θ ← A(S,O, f)
6 Compute EvarO and EvarS by Equation 4.
7 Gp ← Phase-I if EvarO > EvarS otherwise

Phase-II
8 E∗ ← score(fθ) // P,R,or F1.

9 ζ := f
/* Stage-II */

10 if (Gp ̸= Phase-II) or (E∗ is not satisfied) then
11 ξ ← ∅ // The set of ensemble

components.
12 N is set to be ≥ EvarO/EvarS
13 while len(ξ) < N do
14 Resample training and validation sets Si

from S.
15 Train f∗ on Si using snapshot learning and

save N trained learners f∗
θ1
, . . . , f∗

θN
where θi = A(Si, O

∗, f∗).
16 Select l trained learners from the saved ones

by applying pruning algorithm (Wang
et al., 2020).

17 ξ ∪ f∗
θ1
, . . . , f∗

θl

18 ζ := F(ξ)

systems after GLUE (Wang et al., 2018). We
replicate the scores on dev set2, and select six
tasks (BoolQ, CB, RTE, MultiRC, WiC, and
COPA). The selected tasks cover question an-
swering (QA), natural language inference, and
word sense disambiguation. The SOTA setting
is based on the setting in Liu et al. (2019) us-
ing roberta-large as the pretrained model.

• THYME (Temporal Histories of Your Med-
ical Events) corpus (Styler IV et al., 2014)
for temporal relation extraction, consisting
of 594 de-identified clinical and pathol-
ogy notes on colon cancer patients. We
use the THYME+ version of the corpus
(Wright-Bettner et al., 2020). There are
10 classes of extremely imbalanced class
distribution. The SOTA setting is based
on the setting in Lin et al. (2021) using
PubmedBERTbase-MimicBig-EntityBERT as
the pretrained model.

2https://github.com/pytorch/fairseq/
tree/master/examples/roberta
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• 2012 i2b2 Temporal Relations (Sun et al.,
2013) consists of 394 training de-identified
reports, 477 test de-identified reports, and
877 unannotated reports. There are 3
classes of slightly imbalanced class distri-
bution. The SOTA setting is based on
the setting in Haq et al. (2021) using
BioBERT-base-cased-v1.1 as the pretrained
model.

4.2 Metrics and settings
We use an NVIDIA Titan RTX GPU cluster of 7
nodes for fine-tuning experiments through Hug-
gingFace’s Transformer API (Wolf et al., 2020)
version 4.13.0. We leverage the run_glue.py
pytorch version as our fine-tuning script. Unless
specified, default settings are used in our experi-
ments. Due to differences in the fine-tuning script
and some missing settings not provided by the orig-
inal authors, we were unable to reproduce the exact
SOTA scores but we achieved scores close to the
SOTA ones. Our implementation are denoted as
replicated-SOTA (RSOTA). We compare our imple-
mentation and reference SOTA scores in Appendix
Table 7. We use the RSOTA settings as the starting
point to conduct the experiments. We use Ebias,
Evar, EvarO , and EvarS for Stage-I, and adopt clas-
sic evaluation metrics (P, R, and F1) for Stage-I
and Stage-II. For the purposes of consistency, we
report P, R, and F1 of SuperGLUE tasks for con-
sistency with the reported results for the THYME
and i2b2 tasks in the experiment results. Accuracy
scores are reported in Appendix Table 7.

4.3 Experimental design
There are two stages in the proposed method. For
Stage-I, we use 5 random seeds for the randomness
over data samples S and 5 for the randomness over
initialization O, resulting in a total of 25 fine-tuned
models. The averages over data samples are per-
formed by taking the training set S and creating 5
bootstrap replicate training/validation splits with
the same class distribution. The bias expectation in
Equation 2 is estimated as the averages over both
S and O. The variance decomposition is estimated
based on Equation 4. More specifically, EvarO is
estimated as the averages over S of the variance
over O, and EvarS is estimated as the variance over
S of the averages over O. Furthermore, we also
apply RoBERTa-base-uncased (RBU) as the pre-
trained model for each fine-tuning task using the
RSOTA setting except for pretrained models. Their

Ebias Evar EvarO EvarS Gp F1
BoolQ-RBU 162 5.4 3.9 1.6 Phase-I 77.8
BoolQ-RSOTA 142 9.9 6.2 3.7 Phase-I 84.3
CB-RBU 175 0.2 0.1 0.1 - 49.2
CB-RSOTA 149 1.7 1.5 0.2 Phase-I 62.0
RTE-RBU 176 11.4 8.0 3.4 Phase-I 74.0
RTE-RSOTA 153 13.2 11.2 2.1 Phase-I 83.5
MultiRC-RBU 164 5.9 4.6 1.3 Phase-I 78.5
MultiRC-RSOTA 178 13.3 10.5 2.8 Phase-I 74.7
WiC-RBU 212 5.5 4.2 1.3 Phase-I 63.6
WiC-RSOTA 199 12.7 10.1 2.5 Phase-I 70.3
COPA-RBU 250 0.0 0.0 0.0 - 38.0
COPA-RSOTA 185 4.3 3.9 0.5 Phase-I 81.2
THYME-RBU 81 0.17 0.14 0.02 Phase-I 57.0
THYME-RSOTA 80 0.09 0.07 0.02 Phase-I 61.8
i2b2-RBU 150 0.76 0.62 0.14 Phase-I 76.8
i2b2-RSOTA 152 0.73 0.58 0.14 Phase-I 78.1

Table 1: Bias and variance of different pretrained mod-
els on the SuperGLUE, THYME and i2b2 datasets.
RoBERTa-base-uncased (RBU). Values of Ebias, Evar,
EvarO , and EvarS are relative values to 0.001. F1 scores
are the means over 5 random seeds for initialization.

descriptions are shown in Appendix Table 6. To
replicate SOTA scores and obtain RSOTA settings
for each task, we conduct hyperparameter search-
ing in an iterative way. This process is considered
as the experiment of Stage-I.

For Stage-II, any bagging-based ensemble al-
gorithms are feasible. In our preliminary exper-
iments (Wang et al., 2022), we have shown that
the dynamic snapshot ensemble algorithm (Wang
et al., 2020), which we call ENS in this paper,
works better than vanilla bagging ensembles. ENS
is a bagging-based ensemble explicitly designed to
reduce variance over optimization-related hyperpa-
rameters in one framework, with the aim of build-
ing computationally efficient strategies to boost
model performance on top of any given setting with
a guarantee (i.e., simple bagging ensemble cannot
guarantee an improvement). In our implementa-
tion, we employ ENS. The ensemble size is 5 and
majority voting is used to generate ensemble predic-
tions. To explore the ensemble impact on low- and
high-resource classes, we compute and compare
performance improvements of each class from the
extremely imbalanced THYME dataset. To investi-
gate the impact of ensemble size on improving the
model performance of imbalanced classes, we also
evaluate performance of individual classes using
ENS of size 1 to 10. We compute 95% confidence
intervals for these estimates using bootstrapping
over 5 samples. More details are in Appendix B.
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BoolQ CB RTE MultiRC

Method P R F1 P R F1 P R F1 P R F1
RSOTA 84.58 84.10 84.34 60.76 63.80 62.06 83.94 83.40 83.54 73.02 77.54 74.68

(±0.34) (±0.32) (±0.30) (±19.0) (±15.0) (±16.9) (±0.89) (±0.94) (±0.94) (±21.8) (±13.5) (±18.76)
ENS 84.96 84.38 84.74 92.68 93.14 92.66 86.00 85.38 85.48 82.14 82.30 82.16

(±0.34) (±0.58) (±0.47) (±1.3) (±2.8) (±1.2) (±0.79) (±1.16) (±1.10) (±1.41) (±1.41) (±1.3)
IPV 0.45% 0.33% 0.47% 52.53% 45.99% 49.31% 2.45% 2.37% 2.32% 12.49% 6.14% 10.02%

WiC COPA THYME i2b2

Method P R F1 P R F1 P R F1 P R F1
RSOTA 72.06 70.74 70.30 82.54 81.72 81.24 66.6 58.2 61.8 78.3 76.9 78.1

(±0.12) (±1.7) (±1.9) (±11.40) (±12.10) (±12.4) (±1.02) (±1.47) (±1.25) (±1.56) (±0.98) (±1.24)
ENS 72.18 71.30 70.98 93.84 93.80 93.60 72.9 60.1 65.9 80.5 78.3 79.3

(±0.17) (±0.36) (±0.42) (±0.43) (±0.48) (±0.48) (±0.86) (±1.16) (±0.95) (±1.23) (±0.79) (±0.97)
IPV 0.17% 0.79% 0.97% 13.69% 14.78% 15.21% 9.46% 3.26% 6.63% 2.81% 1.82% 1.54%

Table 2: Ensemble model performance. Test set results with average and 95% confidence interval of 5 random
samples, where the t value for 95% confidence is 2.776. ENS denotes ensemble of 5 components. IPV denotes
improvement percentage by ENS compared with RSOTA.

4.4 Justification results

Table 1 shows Ebias, Evar, EvarO , and EvarS com-
puted on the datasets with different pretrained mod-
els. It is noted that in our experiment, we are
not applying the algorithm for Stage-I to ratchet
down bias and variance in an iterative manner. The
goal of this table is to analyze both RBU and
RSOTA models for the bias and variance trends
discussed in Section 2. Interestingly, we observe
that EvarO > EvarS for all datasets and models ex-
cept for CB-RBU and COPA-RBU where models
are not well trained given that F1 score is around
0.5 indicating random guess. This implies that
the vast majority of the SOTA models we experi-
mented with are in Phase-I (i.e., not generalizable
enough for their tasks), which is contrary to our
intuition that these transformer-based models are
complex enough given the moderate sized labeled
datasets. It is also observable that Ebias is much
larger than Evar indicating that the model perfor-
mance is dominated more by bias than by variance.
For SuperGLUE tasks, with the same hyperparame-
ter setting (i.e., A(S,O)), the RSOTA models (i.e.,
larger p and q than RBU models) achieve smaller
Ebias but larger Evar than RBU models except for
MultiRC. The change of Evar mainly comes from
the change of EvarO . As Finding-I in Section 2.3
that Ebias decreases while Evar is unimodal, our
observation implies that RBU models are before
peak and long way toward Phase-II while RSOTA
models get closer to Phase-II than RBU models.
The exception is the result on the MultiRC dataset
which is QA corpus listing a passage which con-
sists of text, a question, and multiple answers to

that question each with a true/false label. Although
MultiRC represents a variety of question types (e.g.
yes/no, factual, etc.), the passages are not annotated
for question type. As explained in Appendix sec-
tion B.1., we represented the QA pairs within each
passage as text, question, answer, label in-
stances and sampled from these instances. Using
this instance-based sampling likely leads to sam-
ples not stratified by question types, therefore not
necessarily representative. This probably explains
the better mean F1 for MultiRC-RBU as compared
to the mean F1 for MultiRC-RSOTA in Table 1
(different samples are created for each run). How-
ever, when we drill down to the best model F1 for
MultiRC-RBU and MultiRC-RSOTA, the results
are 78.9 and 85.4 F1-scores respectively, which
supports the trend in Table 1.

For the SuperGLUE tasks, the bias and variance
of RBU models and RSOTA models are shown to-
gether to illustrate a trend (like Fig. 1) as p and q
are the only variables. However for THYME and
i2b2 tasks, similar trends could not be interpreted
since the RSOTA models are pretrained with do-
main specific corpora while the RBU models are
pretrained with general corpora. This implies that
for fine-tuning tasks such as temporal relation ex-
traction, other factors (e.g., domain corpora used
to pretrain models) may have larger impact than
the model complexity. Our observations are con-
sistent with Finding-II that empirical p and m set-
ting is not strictly following theoretical findings
which are under linear squared regression assump-
tion. This also indicates that p, q, and m cannot be
used to measure Gp empirically. On the other hand,
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our variance decomposition-based method does not
rely on p, q, and m, therefore it provides the basis
for a more generalized justification method.

4.5 Ensemble results
Table 2 presents P, R, and F1 scores of RSOTA and
ENS methods on all datasets. Similar to prior stud-
ies (e.g. Zhang et al., 2020; Du et al., 2022), results
for the SuperGLUE tasks are reported on the dev
set. The accuracy scores for each task are presented
in the Appendix Table 7. Compared to the RSOTA
setting, the ENS method boosts performance on all
datasets, with the largest gains of 49.3% and 15.2%
relative F1 improvements on the low-resource CB
and COPA datasets respectively. In Section 5, we
analyze why ensembles work from the variance de-
composition perspective, which provides insights
into how ensembles help reduce EvarO and lead to
better prediction accuracy.

4.6 Ensemble impact on low- and
high-resource classes

We further investigate the improvements on low-
resource datasets (e.g. CB and COPA). To elim-
inate all interference from p, q, A(S,O), pre-
trained models and only keep m as the vari-
able, we tease apart the results of the extremely
unbalanced THYME dataset and analyze the
performance on each class. Its most frequent
classes (i.e., high-resource classes) are CON-
TAINS (2895), OVERLAP (2359), and BEFORE
(2241); and the least frequent classes (i.e., low-
resource classes) are NOTED-ON (140), BEGINS-
ON (160), and ENDS-ON (244). The initial
F1 scores are: CONTAINS-0.776, OVERLAP-
0.539, and BEFORE-0.469; NOTED-ON-0.618,
BEGINS-ON-0.608, and ENDS-ON-0.695. In Fig-
ure 2, we show absolute improvement and improve-
ment percentage of F1 with various ensemble size
N (compared with single learners i.e., N = 1).
These values are computed based on the mean with
95% confidence interval over 5 random samples
for each class and each ensemble size. It is ob-
servable that given a fixed N , the performance
improvements by F1 scores on the low-resource
classes – NOTED-ON (brown), BEGINS-ON (red),
and ENDS-ON (orange) – are larger than the ones
of high-resource classes. The difference becomes
larger as N increases. The scales of improvement
are not affected by the initial results; i.e., the larger
improvements on low-resource classes are not due
to lower initial F1 scores. This is an interesting ob-

servation and may introduce a new solution for im-
proving performance of imbalanced datasets. More
similar results on P and R are shown in in Ap-
pendix Fig. 3. We explore theoretical insights into
these observations in Section 5.

5 Discussion and Theoretical Analysis

5.1 Basic statistics
Let X1, X2, · · · , XN be a random sample from
a population with mean µ and variance σ2 and
X̄ = 1

N

∑N
i=1Xi. Then the following two items

hold.
a: E[X̄] = E[Xi] = µ
b: Var(X̄) = 1

N Var(Xi) =
1
N σ2

5.2 Ensemble in bias-variance decomposition
We work in the context of bagging-based ensem-
bles, assuming the ensemble predictor f̄(x) is
f̄(x) = 1

N

∑N
i=1 fi(x) is the averaging of N sin-

gle learners trained with different samples of S and
O. Based on the basic statistics, the Ebias of f̄(x)
in Equation 2 is unchanged while the Evar of f̄(x)
in Equation 3 decreases by 1

N . Furthermore, we
have:

EvarO = Ex

[
ES [VarO(f̄θ(x)|S)]

]

=
1

N
Ex [ES [VarO(fθ(x)|S)]]

(7)

and:

EvarS = Ex

[
VarS(EO[f̄θ(x)|S])

]

= Ex [VarS(EO[fθ(x)|S])]
(8)

which indicates that EvarO reduces while EvarS
keeps unchanged as the ensemble size N increases.
EvarO vanishes when N is sufficiently large. The
improvement of the variance by ensembling comes
from the reduction of the variance due to optimiza-
tion.

As mentioned in Section 2.2 that under linear
squared regression assumption, EvarO vanishes as
p increases and EvarS depends on critical param-
eter dimensionality d(p). In this paper, we also
proved that EvarO vanishes as N increases. Given
that pretraining LPMs with larger p and/or q is ex-
tremely difficult, increasing N is a much better
way for improving performance of LPMs. This
also proves the effectiveness of Stage-II in our pro-
posed two-stage fine-tuning method. To ensure that
a fine-tuned LPM can move from Phase-I to Phase-
II, the ensemble size N in Stage-II should be set to
a value that is larger or equal to EvarO

EvarS
.
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(a) F1 absolute improvement (b) F1 percentage improvement

Figure 2: Performance improvement of low-resource (NOTED-ON, BEGINS-ON, ENDS-ON) and high-resource
classes (CONTAINS, OVERLAP, BEFORE) on THYME data. We show absolute improvement (a) and improvement
percentage (b) (compared with single learners i.e., N = 1) with F1.

5.3 Ensemble in low- and high-resource
classes

One interesting experimental observation is that
the improvement on low-resource classes is larger
than that on high-resource classes. To further in-
vestigate the impact of the ensemble learners on
the imbalanced datasets, we make the following
analysis to Equation 5.

ExVar(f̄θ(x)) =
{

1
N · p

mσ2
ϵ for p ≤ m

1
N · r

mσ2
ϵ for p > m

(9)
where the impact of ensembles is represented as a
function of ensemble size N , denoted as π(N) =
1
N ∈ [0, 1] that a smaller π(N) means a larger per-
formance improvement. Given a fixed p, in over-
parameterized cases (p > m) where m is small,
since the samples in S are i.i.d, thus X ∈ Rm×p

is full rank so that r = rank(X) = m. The vari-
ance becomes 1

N · σ2
ϵ which does not change with

m. The impact of ensemble solely depends on N
thus is significant. On the other hand, in under-
parameterized cases (p ≤ m) where m is large, the
variance is negligible as m becomes much larger
than p, i.e., lim

m→∞
1
N · p

mσ2
ϵ = 0, so that the vari-

ance becomes 0 regardless of π(N). This implies
that the impact of ensemble can be ignored as m
increases. In general, given a fixed p, for both cases
the impact of ensemble is significant when m is
small and insignificant as m becomes very large.

These theoretical findings explain why we ob-
serve larger performance improvement on low-
resource than on high-resource classes using en-
sembles. Similar to the discussion in Section 4.4,
empirically, it is hard to define low-resource and
high-resource classes using m and p because our
analysis is based on least squared linear regression

assumption which is simplified compared to condi-
tions in real scenarios. Besides p and m, there are
other factors that may have implicit but significant
impact on model performance. This also explains
why the improvement does not strictly follow the
sorting of classes by their sample size. However,
our findings show another advantage of using en-
sembles. The empirical impact of ensemble size on
imbalanced classes has been examined and shown
in Section 4.6 and Appendix C, which is consis-
tent with the theoretical findings discussed in this
section.

6 Related Works

In a fine-tuning setting, searching for an optimal
setting of pretrained models and hyperparameters
is challenging due to the high dimensionality of the
search space, as well as the infinite values for each
dimension. In previous works of fine-tuning tasks
(Lee et al., 2020; Alsentzer et al., 2019; Beltagy
et al., 2019; Lin et al., 2021), the SOTA models
are single learners carefully selected and fine-tuned
based on evaluation results, such as P, R, and F1
scores, using grid-search or random-search. To
improve the stability of the pre-trained transformer-
based language models, Mosbach et al. (2021) sug-
gests using small learning rates with bias correction
and increasing the number of iterations to avoid
vanishing gradients. Prior efforts also highlight the
comparable effect of weight initialization and train-
ing data order to the variance of model performance
(Dodge et al., 2020).

Ensemble methods have been successful in
boosting the predictive performance of single learn-
ers (Ren et al., 2016 present a comprehensive re-
view; also see Wang et al., 2003; CireşAn et al.,
2012; Xie et al., 2013; Huang et al., 2017) as well

15753



as in estimating predictive uncertainty (Gal and
Ghahramani, 2016; Lakshminarayanan et al., 2017;
Snoek et al., 2019). Among these studies, Bonab
and Can (2019) and Wang et al. (2020) theoreti-
cally prove that ensembles can perform better than
the average performance of component learners for
prediction accuracy and consistency of learning
models. Wang et al. (2022) empirically evaluates
the application of ensemble methods to fine-tuned
transformer-based models for clinical NLP tasks.
The findings demonstrate that ensemble methods
improve model performance, particularly when em-
ploying dynamic snapshot ensembling. Although it
is common knowledge that ensembles can reduce
variance thus reducing the generalization error, no
previous work has discussed or measured this in the
context of variance decomposition. Furthermore,
no previous work has investigated the impact of
ensembles on imbalanced datasets.

7 Conclusion

Different from the prevailing fine-tuning settings,
we propose a two-stage fine-tuning method to im-
prove the generalization ability of a fine-tuned
LPM. We provide a variance decomposition-based
justification method to empirically measure the gen-
eralization ability of the LPM w.r.t. the upper limit
of its learning ability. In Stage-I, the RSOTA set-
ting is built by ratcheting down bias and variance
in an iterative way. In Stage-II, given the RSOTA
setting, the fine-tuned LPM is guaranteed to be
further generalized through ensembling techniques
by reducing the variance due to optimization. The
proposed justification method provides a concrete
metric to track this process.

We provide empirical evidence by conducting
experiments on the SuperGLUE tasks and two clin-
ical datasets. Furthermore, we perform theoreti-
cal analysis on how ensembles improve variance
due to optimization. We investigate the nature
of variance change for the ensemble size in low-
and high-resource classes in classification tasks.
Different from previous theoretical analyses us-
ing only model complexity and data size which
depends on least squared regression, our variance
decomposition-based justification method in Stage-
I does not rely on specific factors thus leading to a
more generalizable measurement. The ENS further
boosts performance without risk of computational
cost and overfitting. Our analysis on imbalanced
data reveals another advantage of ensemble algo-

rithms in improving model performance on low-
resource classes.

As future work, we are interested in (1) rigor-
ously proving variance decomposition-based jus-
tification criteria, (2) quantifying low- and high-
resource classes with specific features that interplay
with ensemble size. If properly used, we believe
the theoretical and empirical findings discussed in
this paper can guide practitioners to fine-tune more
generalizable models.

Limitations

As we stated under future work, one of the limi-
tations is the variance decomposition-based proof.
Our work is based on simplified settings, i.e., linear
squared regression assumption. Post-ensemble vari-
ance is not evaluated due to the nature of the ENS
ensemble algorithm. Extended experiments using
vanilla bagging ensemble would enable analysis of
post-ensemble variance. Further investigation into
refining the two stages would help understand the
performance of LPMs, e.g. those that are in Phase-I
but before the peak in Figure 1. Our results for Mul-
tiRC are based on the instance sampling, however a
better sampling technique should be based on strat-
ified sampling based on the ratio of the question
types in the MultiRC set. However, to achieve this,
the MultiRC set needs to be annotated for ques-
tion types, which is currently missing. Sampling
techniques by themselves can become a research
topic so that a further decrease of variance due to
sampling can be achieved. Although we list these
items as limitations, they are also topics for future
research within the greater theme of understanding
the new bias-prevalence paradigm for LPMs.
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Notation Description
X ,Y The input and output sets of a learning task.
D The unknown joint distribution of (X ,Y).
(x, y) The pair drawn from D; x ∈ X , y ∈ Y .
S A finite training dataset of m i.i.d. samples

from D.
m The sample size of S.
C The number of classes in a training dataset.
p The number of hidden units in a neural

network layer.
q The number of hidden layers in a neural network.
fθ The predictors that are parameterized by the

weights θ ∈ Rp of neural networks.
fθ(x) The output prediction given x.
O The random variable for optimization randomness.
A The learning algorithm that produces

θ = A(S,O).
E[y|x] The expectation of y given x.
Rm The performance of a learning algorithm using

training sets of size m.
Enoise The expected noise of the output predictions.
Ebias The expected bias of the output predictions.
Evar The expected variance of the output predictions.
Varopt The variance due to optimization.
Varsamp The variance due to sampling.
EvarO The expected variance due to optimization.
EvarS The expected variance due to sampling.
N The ensemble size.
Gp Generalization ability of a learning algorithm.

Table 3: Notations and their descriptions.

Jingjing Xie, Bing Xu, and Zhang Chuang. 2013. Hori-
zontal and vertical ensemble with deep representation
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Zitong Yang, Yaodong Yu, Chong You, Jacob Stein-
hardt, and Yi Ma. 2020. Rethinking bias-variance
trade-off for generalization of neural networks. In In-
ternational Conference on Machine Learning, pages
10767–10777. PMLR.

Yian Zhang, Alex Warstadt, Haau-Sing Li, and
Samuel R Bowman. 2020. When do you need bil-
lions of words of pretraining data? arXiv preprint
arXiv:2011.04946.

A Notations

Table 3 shows major notations and their descrip-
tions.

B Experiments

B.1 Data description
Table 4 shows the statistics of all datasets used in
our experiments. Each downloaded SuperGLUE
dataset includes train, val, and test sets in json for-
mat.2 The downloaded test set does not have gold-
standard labels thus is not used in our experiment.

2https://super.gluebenchmark.com/
tasks

15756

https://doi.org/10.18653/v1/2022.clinicalnlp-1.11
https://doi.org/10.18653/v1/2022.clinicalnlp-1.11
https://doi.org/10.18653/v1/2022.clinicalnlp-1.11
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2020.louhi-1.12
https://doi.org/10.18653/v1/2020.louhi-1.12
https://doi.org/10.18653/v1/2020.louhi-1.12
https://super.gluebenchmark.com/tasks
https://super.gluebenchmark.com/tasks


BoolQ CB RTE MultiRC WiC COPA THYME i2b2
Classes 2 3 2 2 2 2 10 3
Train samples 7541 200 2000 4080 4800 320 423612 9909
Dev samples 1886 50 500 1020 1200 80 235117 2478
Val samples 3270 57 278 953 638 100 208892 9630

Table 4: Data statistics.

BoolQ CB RTE MultiRC WiC COPA THYME i2b2
Random seed 62 52 72 72 42 72 42 42
Batch size 10 10 10 10 10 10 32 32
Epoch 8 7 10 6 8 8 3 3
Learning rate 1e-5 2e-5 2e-5 2e-5 1e-5 1e-5 4e-5 4e-5
Learning rate schedule type linear linear linear linear linear linear linear linear
Max sequence length 512 512 512 512 512 512 100 128
Gradient accumulation steps 2 2 2 2 2 2 2 2

Table 5: The RSOTA settings for SuperGLUE tasks and clinical information extraction tasks.

We split the train set into train (80%) and dev (20%)
sets, and evaluate the model performance on val set.
The i2b2 does not have a development (dev) set in
the released data and we split the train set into train
(80%) and dev (20%) sets. Random seed 42 is used
to replicate the sampling process. For MultiRC,
because each question can have more than one cor-
rect answer, we sampled the instances based on
individual question-answer options in the train set
for training and validation in our experiment.

B.2 Hyperparameter settings

Table 5 shows the details of hyperparameter set-
tings. Unless otherwise specified, we use default
values of the hyperparameters in Huggingface. We
also summarize pretrained models used in our ex-
periments in Table 6.

B.3 Replicated SOTA scores

To ensure that our experiments on the Super-
GLUE tasks are reproducible, we followed
the settings and replicated the SOTA accuracy
scores reported in: https://github.com/
facebookresearch/fairseq/tree/
main/examples/roberta. We could not
replicate the representation (special token ex-
tractions) and the model settings (unpublished
pretrained model) for WSC task, thus it is omitted
in our paper. In our experiments, we report
the classic metrics of precision/recall/F1 for
consistency with the reported results for the
THYME and i2b2 tasks. Our accuracy scores
for the SuperGlue tasks (shown in Table 7) are
directly comparable and are consistent with those
in Table 2 in the main paper.

B.4 Implementation details of ENS

ENS allows a pretrained model to be fine-tuned
multiple times (i.e., multiple training runs) sequen-
tially with different random seeds and data shuf-
fling of train/validation splits. It uses a cyclic an-
nealing schedule and cyclic snapshot strategy to
periodically save the best model during each train-
ing run. Different from the simple bagging en-
semble, after each training run, a dynamic pruning
algorithm is applied to select a few single learners
from the saved ones which can lead to better per-
formance of the ensemble learner with theoretical
guarantees. The sequential training runs stop when
the accumulated number of selected single learners
reaches a preset ensemble size. The total amount
of training runs is a dynamic value rather than a
preset value, which is determined by the snapshot
strategy and pruning factor during the sequential
training.

In our experiments, we implemented ENS on the
top of RSOTA setting. The ensemble size is set as
5 and majority voting is used to generate ensem-
ble predictions. We reuse RSOTA settings except
that we set cosine with restarts as the learning rate
scheduler and set the learning rate to restart every
k epochs which, based on the RSOTA setting, al-
lows the model to converge to a reasonable state
before each restart. The total number of epochs for
each training run is 5 × k and we save the top 4
models for pruning based on validation accuracy.
The random seeds for initialization and data shuf-
fling are [42, 52, 62, 72, 82]. The logic behind
the above settings is to retain the benefits from
RSOTA fine-tuning settings as much as possible.
Code and settings to reproduce the results are avail-
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Model name Model Details
RoBERTa-base 12-layer, 768-hidden, 12-heads, 125M parameters.
RoBERTa-large 24-layer, 1024-hidden, 16-heads, 355M parameters
PubmedBERTbase-MimicBig-EntityBERT 12-layer, 768-hidden, 12-heads, 110M parameters.
BioBERT-base-cased-v1.1 12-layer, 768-hidden, 12-heads, 110M parameters.

Table 6: Details of pretrained models.

BoolQ CB RTE MultiRC WiC COPA
Reference 86.9 98.2 89.5 85.7 75.6 94.0
Replicated 86.3 98.2 87.4 84.7 72.1 93.4
RSOTA 85.4±0.31 81.1±9.9 83.7±0.91 79.1±10.72 70.7±1.7 81.6±11.9
ENS 85.7±0.41 92.2±1.4 85.6±1.05 82.5±1.3 71.3±0.36 93.6±0.48

Table 7: Accuracy scores on the SuperGLUE tasks. For "Reference" and "Replicated": training on the original train
set, validating and testing on the original dev set. For "RSOTA" and "ENS": training on 80% of the original train
set, validating on 20% of the original train set, and testing on the original dev set.

able at https://github.com/christa60/
bias-var-fine-tuning.git.

B.5 Experimental design of bagging ensemble
for investigating various ensemble sizes

To analyze the nature of the variance change
with the ensemble size in low-resource classes
(NOTED-ON, BEGINS-ON, END-ON relations
in the THYME corpus) and high-resource (CON-
TAINS, OVERLAP, BEFORE relations in the
THYME corpus) classes, we vary the ensemble
size from 1 to 10 and then compute the P, R, and
F1 scores for each class on THYME data.

We create 10 bootstrap replicate training sets
by resampling training and dev datasets with the
same size and class distribution. The random
seeds for resampling are randomly chosen and
then fixed. The various splits are denoted as
[’split_r42’, ’split_r52’, ’split_r62’, ’split_r72’,
’split_r82’, ’split_r92’, ’split_r102’, ’split_r112’,
’split_r122’, ’split_r132’]. Given a random seed of
initialization, we train N fine-tuned single learn-
ers. To compute 95% confidence intervals for these
estimates, we use 5 random seeds of initialization,
resulting in 5 ensemble models for each ensemble
size. We vary the ensemble size N from 1 to 10
and have 100 ensemble models in total.

C Section 4.6: Additional Results

We show the absolute and percentage improve-
ment (compared with single learners i.e., N = 1)
change over the ensemble size N using P and R
in Figure 3. Together with Figure 2, the major
observations are: (a) The absolute and percentage
improvements of P, R, and F1 increase as N in-
creases. (b) The precision improvements are more

pronounced than those of recall thus contributing
the major part of the F1 improvements. This phe-
nomenon is more pronounced for high-resource
classes. (c) Given a fixed N , the improvements
on low-resource classes are larger than those on
high-resource classes across the three metrics. The
difference becomes larger as N increases.

Discussion: Our experimental results are con-
sistent with our theoretical findings in Section 5
that model performance keeps improving because
variance due to optimization decreases as ensemble
size increases. Furthermore, the impact of ensem-
ble is more pronounced on low-resource classes
than on high-resource classes.

15758

https://github.com/christa60/bias-var-fine-tuning.git
https://github.com/christa60/bias-var-fine-tuning.git


(a) Precision absolute improvement (b) Precision percentage improvement

(c) Recall absolute improvement (d) Recall percentage improvement

Figure 3: Performance improvement on low-resource classes (NOTED-ON, BEGINS-ON, ENDS-ON) and high-
resource classes (CONTAINS, OVERLAP, BEFORE) from the THYME dataset. We show absolute and percentage
improvement (compared with single learners i.e., N = 1) for precision ((a) and (b)), and recall ((c) and (d)). Values
are computed based on the mean with 95% confidence interval over 5 random samples for each class and each
ensemble size.
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