
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics
Volume 1: Long Papers, pages 15783–15798

July 9-14, 2023 ©2023 Association for Computational Linguistics

Ranking-Enhanced Unsupervised Sentence Representation Learning

Yeon Seonwoo† *, Guoyin Wang‡, Changmin Seo‡, Sajal Choudhary‡,
Jiwei Li §, Xiang Li ‡, Puyang Xu ‡, Sunghyun Park ‡, Alice Oh †

†KAIST, ‡Amazon, §Zhejiang Univeristy
yeon.seonwoo@kaist.ac.kr

{guoyiwan, changmis, sajalc, lixxiang, puyax, sunghyu}@amazon.com
jiwei_li@zju.edu.cn
alice.oh@kaist.edu

Abstract

Unsupervised sentence representation learning
has progressed through contrastive learning and
data augmentation methods such as dropout
masking. Despite this progress, sentence en-
coders are still limited to using only an input
sentence when predicting its semantic vector.
In this work, we show that the semantic mean-
ing of a sentence is also determined by nearest-
neighbor sentences that are similar to the in-
put sentence. Based on this finding, we pro-
pose a novel unsupervised sentence encoder,
RankEncoder. RankEncoder predicts the se-
mantic vector of an input sentence by lever-
aging its relationship with other sentences in
an external corpus, as well as the input sen-
tence itself. We evaluate RankEncoder on se-
mantic textual benchmark datasets. From the
experimental results, we verify that 1) RankEn-
coder achieves 80.07% Spearman’s correlation,
a 1.1% absolute improvement compared to
the previous state-of-the-art performance, 2)
RankEncoder is universally applicable to exist-
ing unsupervised sentence embedding methods,
and 3) RankEncoder is specifically effective
for predicting the similarity scores of similar
sentence pairs.1

1 Introduction

Sentence representation learning aims to encode
sentences into a semantic vector space. This task
has been a fundamental task in natural language
processing (NLP), as universal sentence vectors are
widely applicable to many NLP tasks (Kiros et al.,
2015; Hill et al., 2016; Conneau et al., 2017; Lo-
geswaran and Lee, 2018; Cer et al., 2018; Reimers
and Gurevych, 2019). Recently, unsupervised sen-
tence embedding methods have arisen as they have
shown a potential to overcome limited labeled data
with simple data augmentation methods (Gao et al.,

*This work was done during an internship at Amazon.
1We provide the implementation of RankEncoder at https:

//github.com/yeonsw/RankEncoder.git

Figure 1: Vector representations of sentences and their
neighbor sentences. The neighbor sentences reveal that
(a, c) share more semantic meanings than (a, b). This
captures more accurate semantic similarity scores than
their vectors.

2021; Wang et al., 2022; Yan et al., 2021; Liu et al.,
2021; Wu et al., 2021; Izacard et al., 2021; Kim
et al., 2021). These approaches minimize the dis-
tance between the vector representations of similar
sentences, called positive pairs, while maximiz-
ing the distance between those of dissimilar sen-
tences, called negative pairs. Many studies have
focused on developing better positive and negative
pair sampling methods. Data augmentation meth-
ods such as dropout masking (Gao et al., 2021),
token shuffling (Yan et al., 2021), and sentence
negation (Wang et al., 2022) have been proposed
and achieved comparable semantic textual similar-
ity performance to sentence encoders trained on
human-annotated datasets.

The semantic meaning of a sentence is not only
determined by the words within the sentence itself
but also by other sentences with similar meanings.
However, previous unsupervised sentence embed-

15783

https://github.com/yeonsw/RankEncoder.git
https://github.com/yeonsw/RankEncoder.git

ding methods use only the input sentence when pre-
dicting its semantic vector. Figure 1 shows example
sentences and their semantic vector space. In this
figure, the human-annotated similarity scores indi-
cate that sentence pair (a, c) is more similar than
(a, b). However, the similarity scores computed by
their sentence vectors indicate the opposite result;
the vector representations of a and b are closer than
a and c as they have more overlapping words than
a and c. This problem can be alleviated by lever-
aging the distance between the input sentence and
other sentences in a large corpus. The vectors of
their neighbor sentences approximate the overall
semantic distribution, and the semantic distribution
reveals that sentences a and c are likely to share
more semantic meanings than sentences a and b.
This facilitates the accurate prediction of semantic
similarity between sentences.

In this paper, we propose RankEncoder, a novel
unsupervised sentence encoder that leverages a
large number of sentences in an external corpus.
For a given corpus with n sentences and an input
sentence, RankEncoder computes a rank vector, an
n-dimensional vector in which i’th element rep-
resents the distance between the input sentence
and i’th sentence in the corpus; RankEncoder uses
an existing unsupervised sentence encoder, E, to
compute the distances. Then, two sentences that
share the same neighbor sentences (e.g., sentence
a and c in Fig 1) have similar rank vector repre-
sentations. We verify that using the similarity be-
tween rank vectors captures better semantic similar-
ity than their vector representation computed by the
base encoder, E, (Fig 4) without further training.
We further leverage the similarity scores predicted
by the rank vectors to train another sentence en-
coder and achieve a better sentence encoder (Table
1).

From experiments on seven STS benchmark
datasets, we verify that 1) rank vectors are effec-
tive for capturing the semantic similarity of similar
sentences, 2) RankEncoder is applicable to any
unsupervised sentence encoders, resulting in per-
formance improvement, and 3) this improvement is
also valid for the previous state-of-the-art sentence
encoder and leads to a new state-of-the-art seman-
tic textual similarity performance. First, we mea-
sure the performance of RankEncoder and the base-
lines on three sentence pair groups divided by their
similarity scores. The experimental results show
that RankEncoder is effective on similar sentence

pairs. Second, we apply RankEncoder to the three
unsupervised sentence encoders, SimCSE (Gao
et al., 2021), PromptBERT (Jiang et al., 2022), and
SNCSE (Wang et al., 2022), then verify that our
approach brings performance improvement to each
encoder. Third, we apply RankEncoder to the state-
of-the-art unsupervised sentence encoder (Wang
et al., 2022) and achieve a 1.1% improvement; the
previous state-of-the-art is 78.97 Spearman’s corre-
lation, and we achieve 80.07 Spearman’s correla-
tion.

The contributions of this paper are three folds.
First, we demonstrate that the semantic meaning
of a sentence is also determined by its nearest-
neighbor sentences as well as the words within the
sentence itself. Second, we propose RankEncoder,
which leverages a large number of sentences to cap-
ture the semantic meanings of sentences. Third,
we achieve state-of-the-art STS performance and
reduce the gap between supervised and unsuper-
vised sentence encoders; the performances of our
method and the state-of-the-art supervised sentence
encoder (Jiang et al., 2022) are 80.07 and 81.97,
respectively.

2 Related Works

Unsupervised sentence representation learning has
progressed through contrastive learning with posi-
tive and negative sentence pair sampling methods
(Gao et al., 2021; Jiang et al., 2022; Chuang et al.,
2022; Wang et al., 2022). SimCSE (Gao et al.,
2021) and ConSERT (Yan et al., 2021) apply data
augmentation methods such as dropout masking,
token shuffling, and adversarial attacks to an input
sentence and sample a positive pair. However, these
data augmentation methods often change the mean-
ing of the input sentence and generate dissimilar
positive pairs. A masked language modeling-based
word replacement method has been proposed to
alleviate this problem (Chuang et al., 2022). They
train a sentence encoder to predict the replaced
words and make the encoder aware of surface-level
augmentations. Some studies adopt momentum
contrastive learning to generate positive samples in-
spired by unsupervised visual representation learn-
ing (Zhang et al., 2021; Wu et al., 2021). Prompt-
ing (Jiang et al., 2022; Jiang and Wang, 2022) is
another direction that is capable of generating pos-
itive pairs. Recently, a negative sampling method
for data augmentation has been proposed (Wang
et al., 2022). This approach takes the negation of an

15784

Figure 2: The overall illustration of RankEncoder. The left figure shows the process for computing rank vectors.
For a given sentence pair, (xi, xj), RankEncoder computes orders of sentences in the corpus by their similarity
scores to the input sentence and normalizes these orders with the function g; the similarity scores are computed
by the base encoder, E1. The right figures show the training process of RankEncoder. For a batch of sentences,
RankEncoder computes similarity scores of sentences with their rank vectors and trains the sentence encoder with
the mean square error of these scores.

input sentence and uses this soft-negative sample
in a contrastive learning framework. Compared to
previous approaches focused on generating better
positive and negative pairs, our work uses nearest-
neighbor sentences to predict better semantic vec-
tors of sentences, a novel approach that previous
approaches have yet to cover. Related but different
from our work, Trans-Encoder proposes the self-
distillation method that gets supervision signals
from itself (Liu et al., 2022). Trans-Encoder solves
a slightly different problem from ours. They aim
to solve an unsupervised sentence pair modeling
problem, not unsupervised sentence embedding;
although this work does not require any human-
annotated similarity scores of sentence pairs for
training, they need the sentence pairs of the STS
datasets, which are not allowed to be used for train-
ing in unsupervised sentence representation learn-
ing.

3 Method

Leveraging the k-nearest-neighbor sentences helps
a sentence encoder to approximate a more accu-
rate semantic meaning of a sentence. For instance,
when two input sentences have more common
neighbors than other sentences, it is likely that
they are semantically similar; we have provided
an example in Figure 1. We extend this idea to
leverage the entire sentences in the corpus, not just

the neighbor sentences. Our unsupervised sentence
encoder, RankEncoder, computes a rank vector for
a given sentence. The rank vector is a list of ranks
of all sentences in the corpus computed by their
similarity scores to the input; for a given corpus
with n number of sentences, a rank vector is an
n-dimensional vector, in which i’th element repre-
sents the rank of i’th sentence in the corpus. Thus,
when two input sentences have common neighbor
sentences, their rank vectors are similar. We found
that rank vectors capture more accurate semantic
similarity than previous unsupervised sentence en-
coders. Since rank vectors predict better semantic
similarity scores between sentences, we use these
scores for training another sentence encoder to fur-
ther increase its STS performance. We provide the
overall illustration of RankEncoder in Figure 2.

3.1 Contrastive Learning for Base Encoder

The first step of our framework is to learn a base
sentence encoder E1 via the standard contrastive
learning approach (Chen et al., 2020). Given an
input sentence xi, we first create a positive example
x+i which is semantically similar to xi (Gao et al.,
2021; Chuang et al., 2022); we apply each data aug-
mentation method used by existing unsupervised
sentence representation learning studies (Gao et al.,
2021; Jiang et al., 2022; Wang et al., 2022) and
verify that our approach works in all cases. Then, a
text encoder, e.g., BERT (Devlin et al., 2019) and

15785

RoBERTa (Liu et al., 2019), predicts their sentence
vectors, v⃗i and v⃗+

i . Given a batch of m sentences
{xi}mi=1, the contrastive training objective for the
sentence xi with in-batch negative examples is as
follows:

li = − log
ecos(v⃗i,v⃗

+
i)/τ

∑m
j=1 e

cos(v⃗i,v⃗
+
j)/τ

, (1)

where cos(·) is the cosine similarity function and
τ is the temperature hyperparameter. We then
get the overall contrastive loss for the whole
batch by summing over all the sentences; lcl =∑m

i=1 li. Note that the training objective lcl can
be further enhanced by adding other relevant
losses (Chuang et al., 2022), transforming the input
sentences (Jiang et al., 2022; Gao et al., 2021), or
modifying the standard contrastive loss (Zhou et al.,
2022). For simplicity, we use lcl to represent all
the variants of contrastive learning loss in this pa-
per. By optimizing lcl, we obtain a coarse-grained
sentence encoder E1 for the following steps.

3.2 RankEncoder

RankEncoder computes the orders of sentences
in the corpus with their similarity scores to the
input sentence. For a given corpus with n sen-
tences, C = [x1, ..., xn], and a given base en-
coder, E1, RankEncoder first computes the vec-
tor representation of each sentence in the corpus,
V = [v⃗1, ..., v⃗n], with E1. Then computes the rank
vector of an input sentence, x, by their orders as
follows:

RankEncoderE1(x,V) = g(< r1, r2, ..., rn >),
(2)

where ri is the order of sentence xi. We use co-
sine similarity scores between V and the vector
representation of x, E1(x). The function g is a
normalization function defined as follows:

g(⃗r) =
r⃗− 1

n

∑n
i=1 ri · 1⃗√

n× σ([ri]ni=1)
, (3)

where σ is the standard deviation of the input val-
ues, 1⃗ is a n-dimensional vector of ones. By apply-
ing this function to rank vectors, the inner product
of two normalized rank vectors becomes equiva-
lent to Spearman’s rank correlation, and the simi-
larity is scaled between -1 and 1. We describe the
connection between normalization function g and
Spearman’s rank correlation in Appendix A.1.

Figure 3: The rank vector space of RankEncoder with
corpus C = {a, b, c}. The sentence vectors are com-
puted by the base encoder, E. Each element of r⃗ corre-
sponds to the rank of each sentence within C; the first
element in the vector is the rank of sentence a. Each
line represents the boundary that two rank variables are
converted. For instance, all vectors on the left of the
yellow line are closer to b than c. Sentence vectors in
the same area have the same rank vector; the rank vector
r⃗x of sentence x is the same as r⃗α as it is in the α area.

3.3 Semantic Vector Space of Rank Vectors

The similarity between rank vectors is affected
mainly by their neighbor sentences, even though we
use the entire sentences in a given corpus. Figure 3
shows a simplified example of RankEncoder’s se-
mantic space when the corpus has three sentences.
Each solid line represents the boundary that two
rank variables are converted. For instance, the yel-
low line is the boundary that reverses the orders of
sentences b and c; all the vectors located in the left
part of the yellow line are closer to sentence b than
c. Since we have three sentences in this corpus, we
get six rank vectors, and all vectors in each region
have the same rank vector. In this figure, we see
that the vectors in the red area are more affected by
sentences a, b, and c than vectors in the grey area.
For a given sentence, if its sentence representation
lies in the central area, i.e., the red area, then its
corresponding rank vector can be easily changed by
a small modification of its sentence vector. For vec-
tors having a larger distance from these sentences,
e.g., the vectors in the gray area, the corresponding
rank vectors are much less sensitive to modifica-
tion of the input’s sentence vector. This pattern
also holds when we increase the size of the corpus
as well; we demonstrate this in Section 5.5.

15786

3.4 Model Training

We use similarities predicted by rank vectors to
train another sentence encoder, E2

2; rank vectors
capture a better semantic similarity than their vec-
tor representation computed by base encoder E1.
For a given unsupervised sentence encoder E1 and
corpus C, we compute similarity scores of all sen-
tence pairs in a batch with their rank vectors com-
puted from E1. The similarity scores are computed
by the inner product of these rank vectors. Then,
we define the loss function as the mean square error
of RankEncoder’s similarity scores as follows:

lr =
1

m2

m∑

i=1

m∑

j=1

(
u⃗⊺
i u⃗j − cos

(
E2(xi), E2(xj)

))2
,

(4)
where {xi}mi=1 are the sentences in the batch, E2 is
the sentence encoder in training, u⃗i is a rank vector
of xi computed by RankEncoderE1 , and cos(·) is
the cosine similarity function. Then, we combine
the RankEncoder loss, lr, with the standard con-
trastive loss, lcl, in the form of the hinge loss as
follows:

ltotal = max(λtrain × lr, lcl), (5)

where λtrain is a weight hyperparameter.

3.5 Sentence Pair Filtering

Previous unsupervised sentence encoders randomly
sample sentences to construct a batch, and ran-
domly sampled sentence pairs are mostly dissim-
ilar pairs. This causes sentence encoders to learn
mostly on dissimilar pairs, which is less impor-
tant than similar sentence pairs. To alleviate this
problem, we filter dissimilar sentence pairs with
a similarity under a certain threshold3. Also, it
is unlikely that randomly sampled sentence pairs
have the same semantic meaning. We regard sen-
tence pairs with high similarity as noisy samples
and filter these pairs with a certain threshold. The
final RankEncoder loss function with sentence pair

2It is also possible to train E1 continuously with the rank
vector similarities. However, this approach yields slightly
lower performance than training another sentence encoder,
E2.

3This method increases RankEncoder’s STS performance
by 0.17% Spearman correlation, resulting in a performance of
80.07 Spearman correlation shown in Table 1.

filtering is as follows:

lr =
m∑

i=1

m∑

j=1

{
1[τl ≤ u⃗⊺

i u⃗j ≤ τu]∑m
p=1

∑m
q=1 1[τl ≤ u⃗⊺

pu⃗q ≤ τu]

×
(
u⃗⊺
i u⃗j − cos

(
E2(xi), E2(xj)

))2}
,

(6)

where τl and τu are the thresholding parameters,
and 1 is the indicator function that returns 1 when
the condition is true and returns 0 otherwise.

3.6 Inference

We can further utilize RankEncoder in inference
stage. Given a sentence pair (xi, xj), we compute
the similarity between the two sentences as follows:

sim(xi, xj) = λinf · z⃗⊺i z⃗j
+ (1− λinf) · cos

(
E2(xi), E2(xj)

)
,

(7)

where E2 is a sentence encoder trained by Eq
5, λinf is a weight parameter, and z⃗i and z⃗j
are the rank vectors of xi and xj computed by
RankEncoderE2 .

4 Experimental Setup

4.1 Base Encoder E1 & Corpus C
RankEncoder computes rank vectors using corpus
C and base encoder E1. We use 100,000 sentences
sampled from Wikipedia4 as the corpus C5, and
we use the following unsupervised sentence en-
coders for E1, SimCSE (Gao et al., 2021), Prompt-
BERT (Jiang et al., 2022), and SNCSE (Wang et al.,
2022). SimCSE is a standard unsupervised sen-
tence encoder that uses a standard contrastive learn-
ing loss with the simple data augmentation method.
We use SimCSE as it is effective to show the effi-
cacy of RankEncoder. We use PromptBERT and
SNCSE, the state-of-the-art unsupervised sentence
encoders, to verify whether RankEncoder is effec-
tive on more complex models.

4We use Wikipedia sentences since they are generally ef-
fective on STS datasets. However, for optimal results, it is best
to use a corpus that closely aligns with the specific domain of
the inputs.

5The performance of RankEncoder increases as the num-
ber of sentences in the corpus increases, and the performance
converges at a size of 10,000. There is a slight but negligi-
ble improvement beyond this point. We sample more than
10,000 sentences to push the performance boundary as much
as possible.

15787

Model STS12 STS13 STS14 STS15 STS16 STS-B SICK-R AVG

ConSERT (Yan et al., 2021) 64.64 78.49 69.07 79.72 75.95 73.97 67.31 72.74
SimCSE (Gao et al., 2021) 68.40 82.41 74.38 80.91 78.56 76.85 72.23 76.25
DCLR (Zhou et al., 2022) 70.81 83.73 75.11 82.56 78.44 78.31 71.59 77.22
ESimCSE (Wu et al., 2021) 73.40 83.27 77.25 82.66 78.81 80.17 72.30 78.27
DiffCSE (Chuang et al., 2022) 72.28 84.43 76.47 83.90 80.54 80.59 71.23 78.49
PromptBERT (Jiang et al., 2022) 71.56 84.58 76.98 84.47 80.60 81.60 69.87 78.54
SNCSE (Wang et al., 2022) 70.67 84.79 76.99 83.69 80.51 81.35 74.77 78.97
RankEncoder 74.88 85.59 78.61 83.50 80.56 81.55 75.78 80.07

Table 1: Semantic textual similarity performance of RankEncoder and baselines in an unsupervised setting.
Following previous sentence embedding studies, we measure the Spearman’s rank correlation between the human
annotated scores and the model’s predictions. The results of the baselines are from the original paper. RankEncoder
uses SNCSE as base encoder E1.

4.2 Datasets & Evaluation Metric

We evaluate RankEncoder on seven semantic tex-
tual similarity benchmark datasets: STS2012-
2016 (Agirre et al., 2012, 2013, 2014, 2015,
2016), STS-B (Cer et al., 2017), and SICK-
Relatedness (Marelli et al., 2014). Each dataset
consists of sentence pairs with human-annotated
similarity scores. For each sentence pair, sentence
encoders predict the similarity, and we measure the
Spearman’s rank correlation between the predicted
similarities and the human-annotated similarities.

4.3 Training Details & Hyper-Parameter
Settings

We train RankEncoder on 106 sentences from
Wikipedia, following existing unsupervised sen-
tence embedding studies. We use two NVIDIA
V100 GPUs for training. The running time for
training RankEncoder is approximately 1.5 hours,
which takes an hour more than the training time of
SimCSE, and its inference takes slightly more time,
about 1.8% more than SimCSE based on BERT-
base. We provide the details in Appendix A.7. We
find the best hyperparameter setting on the devel-
opment sets of the STS-B and SICKRelatedness
datasets. We set λtrain = 0.05, λinf = 0.1, τl = 0.5,
and τu = 0.8. We provide more analysis on the
hyper-parameter, λtrain, in Appendix A.2. For other
hyperparameters, we follow the base encoder’s set-
ting provided by the authors of each base encoder,
E1.

5 Results and Discussions

In this section, we demonstrate that 1) RankEn-
coder is effective for capturing the semantic simi-
larity scores of similar sentences, 2) RankEncoder

is universally applicable to existing unsupervised
sentence encoders, and 3) RankEncoder achieves
state-of-the-art semantic textual similarity (STS)
performance. We describe the detailed experimen-
tal results in the following sections.

5.1 Semantic Textual Similarity Performance

We apply RankEncoder to an existing unsupervised
sentence encoder and achieve state-of-the-art STS
performance. We use SNCSE (Wang et al., 2022)
fine-tuned on BERT-base (Devlin et al., 2019) as
the base encoder, E1. Table 1 shows the STS perfor-
mance of RankEncoder and unsupervised sentence
encoders on seven STS datasets and their average
performance (AVG). RankEncoder increases the
AVG performance of SNCSE by 1.1 and achieves
state-of-the-art STS performance.

RankEncoder brings a significant performance
gain on STS12, STS13, STS14, and SICK-R, but a
comparably small improvement on STS16 and STS-
B. We conjecture that this is because RankEncoder
is specifically effective on similar sentence pairs.
The STS12, 13, 14, and SICK-R datasets contain
similar sentence pairs more than dissimilar pairs;
we show the similarity distribution of each dataset
in Appendix A.3. This pattern is aligned with the
performance gain on each STS dataset in Table 1.

5.2 Universality of RankEncoder

RankEncoder applies to any unsupervised sentence
encoders. We apply RankEncoder to SimCSE (Gao
et al., 2021), PromptBERT (Jiang et al., 2022),
and SNCSE (Wang et al., 2022). SimCSE rep-
resents the vanilla contrastive learning-based sen-
tence encoder, and PromptBERT and SNCSE rep-
resent the state-of-the-art unsupervised sentence
encoders. We evaluate each encoder’s average per-

15788

72

74

76

78

80
ST

S
pe

rfo
rm

an
ce

 (A
VG

)
SimCSE
RankEncoder-SimCSE

76

77

78

79

80

81

ST
S

pe
rfo

rm
an

ce
 (A

VG
)

PromptBERT
RankEncoder-PromptBERT

76

77

78

79

80

81

ST
S

pe
rfo

rm
an

ce
 (A

VG
)

SNCSE
RankEncoder-SNCSE

Figure 4: STS performance of three unsupervised sentence encoders and RankEncoder. We report the mean
performance and standard deviation of three separate trials with different random seeds. RankEncoder brings
improvement on all base encoders. This result implies that our approach is generally applicable to other unsupervised
sentence embedding approaches.

42

44

46

48

50

S
p

ea
rm

an
’s

rh
o

SimCSE

RankEncoderSimCSE

RankEncoderSimCSE-retrain

RankEncoderSimCSE-retrain-inf

47

48

49

50

51

S
p

ea
rm

an
’s

rh
o

PromptBERT

RankEncoderPromptBERT

RankEncoderPromptBERT-retrain

RankEncoderPromptBERT-retrain-inf

46

47

48

49

50

S
p

ea
rm

an
’s

rh
o

SNCSE

RankEncoderSNCSE

RankEncoderSNCSE-retrain

RankEncoderSNCSE-retrain-inf

Figure 5: STS performance of three unsupervised sentence encoders and RankEncoder on sentence pairs with high
similarity scores; we select sentence pairs with a similarity between 0.67 and 1.0 (0.0-1.0 scale) in the STS-B
dataset. We ablate the two components of RankEncoder, re-training (Eq. 5) and inference (Eq. 7).

formance (AVG) on seven STS datasets. We train
each encoder in three separate trials and report
the mean and the standard deviation of the AVG
performances in Figure 4; the error bar shows the
standard deviation. This figure shows that RankEn-
coder increases the average STS performance on
each unsupervised sentence encoder; the improve-
ments on SimCSE, PromptBERT, and SNCSE are
2.1, 0.9, and 0.9, respectively. We report detailed
experimental results in Appendix A.5. This result
implies that RankEncoder is a universal method
that applies to any unsupervised sentence encoder.

5.3 Overlapping Neighbor Sentences

In Section 3.3, we conjecture that the RankEncoder
is specifically effective for similar sentence pairs
as they have more overlapping neighbor sentences,
which are used to approximate their semantic sim-
ilarity. To support this supposition, we show the
relation between the performance gain caused by

RankEncoder and the number of overlapping neigh-
bor sentences of the input sentences. We group
sentence pairs in the STS-B dataset by cosine simi-
larity scores of their sentence vectors, then compare
the STS performance of SimCSE and RankEncoder
(Eq. 2 without re-training) on each group; we use
SimCSE as the base encoder, E1. We also report
the average number of overlapping neighbor sen-
tences of each group; for each sentence pair, we
count the number of sentences in the intersection
of their top 100 nearest neighbor sentences and
take the average. Figure 6 shows one expected
result of our supposition; the performance gain cor-
relates with the number of overlapping neighbor
sentences.

5.4 Performance on similar sentence pairs

It is more important to accurately predict the sim-
ilarities between similar texts than those between
dissimilar ones. This is because many NLP down-

15789

0

20

40

60

80

100

N

0.4
0-0

.45

0.4
5-0

.50

0.5
0-0

.55

0.5
5-0

.60

0.6
0-0

.65

0.6
5-0

.70

0.7
0-0

.75

0.7
5-0

.80

0.8
0-0

.85

0.8
5-0

.90

0.9
0-0

.95

0.9
5-1

.00

Sentence-pair groups

20

10

0

10

20
Sp

ea
rm

an
's

Rh
o

Performance diff
overlapping top-k sentences

Figure 6: The performance difference between Sim-
CSE and RankEncoder (blue line) and the number of
overlapping neighbor sentences (yellow bar) on each
sentence pair group. We group sentence pairs in the
STS-B dataset based on the cosine similarity of their
vector representations computed by SimCSE. The num-
ber of overlapping neighbor sentences is the number of
sentences in the intersection of each sentence’s top 100
neighbor sentences.

stream tasks, e.g., retrieval and reranking, aim to
find the most relevant/similar text (or texts) from
candidate texts, and we can easily filter out dis-
similar texts with simple approaches such as a
lexical retriever; we only need rough similarity
scores to identify the dissimilar texts. In this sec-
tion, we demonstrate the efficacy of our approach
on similar sentence pairs. We divide sentence
pairs in the STS-B dataset into three groups by
their human-annotated similarity scores and use
the group with the highest similarity. The similar-
ity range of each group is 0.0-0.33 for the dissim-
ilar groups, 0.33-0.67 for the intermediate group,
and 0.67-1.0 for the similar group; we normalize
the scores to a 0.0-1.0 scale. Figure 5 shows the
performance of three unsupervised sentence en-
coders and the performance gain brought by each
component of RankEncoder. RankEncoderE is
the model with Eq. 2 that uses E as the base en-
coder. RankEncoderE-retrain is the model with
re-training (Eq. 5). RankEncoderE-retrain-inf is
the model with re-training and weighted inference
(Eq. 7). From the comparison between E and
RankEncoderE , we verify that rank vectors effec-
tively increase the base encoder’s performance on
similar sentence pairs. This improvement is even
more significant when using rank vectors for re-
training and inference. We report the detailed re-

(a) PromptBERT (b) RankEncoder

Figure 7: Semantic vector spaces of PromptBERT and
RankEncoder. We randomly sample 1000 sentences
from the STS-B dataset and visualize the vector rep-
resentations of these sentences (grey dots). We use
PromptBERT as the base encoder of RankEncoder. We
use the following equation to compute the distances be-
tween vectors; dist(v⃗i, v⃗j) = 1− cos(v⃗i, v⃗j).

sults in Appendix A.6.

5.5 The Vector Space of RankEncoder

In Section 3.3, we show that rank vectors become
more distinguishable as the number of sharing
neighbor sentences increases. In this section, we
demonstrate that this pattern holds for a larger cor-
pus as well. Figure 7 shows the vector represen-
tations of randomly sampled 1,000 sentences in
the STS-B dataset; Figure 7a is the vector space
of PromptBERT, and Figure 7b is the rank vector
space. We see that the dense sub-spaces in Figure
7a expand as shown in 7b, and their representations
become more distinguishable.

Rank vectors improve the uniformity of the se-
mantic vector space with negligible degradation
in alignment. Uniformity and alignment are met-
rics for measuring the quality of embedding vec-
tors (Gao et al., 2021; Wang and Isola, 2020). Uni-
formity is a measure of the degree of evenness
of the embedding vectors. Alignment is a mea-
sure of the degree of closeness of the embedding
vectors of positive pairs (e.g., sentence pairs with
a similarity score higher than 4.0 in the STS-B
dataset). We show the uniformity and alignment
of each base encoder, E1, and their corresponding
rank vectors, RankEncoderE1 , in Table 2. For each
base encoder, their rank vectors largely improve
uniformity, which is aligned with the results shown
in Figure 7. These results also show that rank vec-
tors bring degradation in alignment. However, this
degradation is relatively negligible compared to the
improvement in uniformity. From these results, we
conjecture that the performance improvement on
the STS benchmark datasets shown in Figure 4 is
mostly related to the improvement in uniformity

15790

Uniformity Alignment

SimCSE -2.42 0.21
+RankEncoder -3.23 0.23

PromptBERT -1.49 0.11
+RankEncoder -3.31 0.22

SNCSE -2.21 0.16
+RankEncoder -3.20 0.21

Table 2: Uniformity and alignment of base encoders and
RankEncoder. Lower is better.

rather than alignment.

6 Conclusion

In this study, we showed that the semantics of a
sentence is also determined by its similar sentence,
not just the words within the sentence itself. We
proposed RankEncoder to overcome the limitation
of the previous sentence representation learning ap-
proaches, which are limited to using only the input
sentence. RankEncoder leverages the distance be-
tween the input sentence and the sentences in a cor-
pus to predict its semantic vector. RankEncoder is
universally applicable to any unsupervised sentence
encoder, resulting in performance improvement,
and we demonstrated this with three unsupervised
sentence encoders. We achieved state-of-the-art se-
mantic textual similarity performance by applying
our approach to the previous best sentence encoder.
We also showed that our approach is specifically
effective for capturing the semantic similarities of
similar sentences.

7 Limitations

This work has been studied on the Wikipedia cor-
pus, following the standard experimental setting
used in previous unsupervised sentence represen-
tation learning studies. We expect to see many
important findings by investigating sentence repre-
sentation learning on various corpora in different
domains such as Bookcorpus (Zhu et al., 2015) and
the C4 corpus (Raffel et al., 2019).

Acknowledgements

This research was supported by the Engineer-
ing Research Center Program through the Na-
tional Research Foundation of Korea (NRF)
funded by the Korean Government MSIT (NRF-
2018R1A5A1059921)

References
Eneko Agirre, Carmen Banea, Claire Cardie, Daniel Cer,

Mona Diab, Aitor Gonzalez-Agirre, Weiwei Guo,
Inigo Lopez-Gazpio, Montse Maritxalar, Rada Mi-
halcea, et al. 2015. Semeval-2015 task 2: Semantic
textual similarity, english, spanish and pilot on inter-
pretability. In SemEval.

Eneko Agirre, Carmen Banea, Claire Cardie, Daniel Cer,
Mona Diab, Aitor Gonzalez-Agirre, Weiwei Guo,
Rada Mihalcea, German Rigau, and Janyce Wiebe.
2014. SemEval-2014 task 10: Multilingual semantic
textual similarity. In SemEval.

Eneko Agirre, Carmen Banea, Daniel Cer, Mona Diab,
Aitor Gonzalez-Agirre, Rada Mihalcea, German
Rigau, and Janyce Wiebe. 2016. SemEval-2016 task
1: Semantic textual similarity, monolingual and cross-
lingual evaluation. In SemEval.

Eneko Agirre, Daniel Cer, Mona Diab, and Aitor
Gonzalez-Agirre. 2012. Semeval-2012 task 6: A
pilot on semantic textual similarity. In SemEval.

Eneko Agirre, Daniel Cer, Mona Diab, Aitor Gonzalez-
Agirre, and Weiwei Guo. 2013. * sem 2013 shared
task: Semantic textual similarity. In SemEval.

Daniel Cer, Mona Diab, Eneko Agirre, Iñigo Lopez-
Gazpio, and Lucia Specia. 2017. SemEval-2017
task 1: Semantic textual similarity multilingual and
crosslingual focused evaluation. In SemEval.

Daniel Cer, Yinfei Yang, Sheng-yi Kong, Nan Hua,
Nicole Limtiaco, Rhomni St John, Noah Constant,
Mario Guajardo-Cespedes, Steve Yuan, Chris Tar,
et al. 2018. Universal sentence encoder. arXiv.

Ting Chen, Simon Kornblith, Mohammad Norouzi, and
Geoffrey Hinton. 2020. A simple framework for con-
trastive learning of visual representations. In ICML.

Yung-Sung Chuang, Rumen Dangovski, Hongyin Luo,
Yang Zhang, Shiyu Chang, Marin Soljačić, Shang-
Wen Li, Wen-tau Yih, Yoon Kim, and James Glass.
2022. Diffcse: Difference-based contrastive learning
for sentence embeddings. arXiv.

Alexis Conneau and Douwe Kiela. 2018. Senteval: An
evaluation toolkit for universal sentence representa-
tions. arXiv.

Alexis Conneau, Douwe Kiela, Holger Schwenk, Loïc
Barrault, and Antoine Bordes. 2017. Supervised
learning of universal sentence representations from
natural language inference data. In EMNLP.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In NAACL.

William B Dolan and Chris Brockett. 2005. Automati-
cally constructing a corpus of sentential paraphrases.
In Proceedings of the Third International Workshop
on Paraphrasing.

15791

Tianyu Gao, Xingcheng Yao, and Danqi Chen. 2021.
SimCSE: Simple contrastive learning of sentence
embeddings. In EMNLP.

Felix Hill, Kyunghyun Cho, and Anna Korhonen. 2016.
Learning distributed representations of sentences
from unlabelled data. In NAACL.

Minqing Hu and Bing Liu. 2004. Mining and summa-
rizing customer reviews. In KDD.

Gautier Izacard, Mathild Caron, Lucas Hosseini, Sebas-
tian Riedel, Piotr Bojanowski, Armand Joulin, and
Edouard Grave. 2021. Unsupervised dense informa-
tion retrieval with contrastive learning. arXiv.

Ting Jiang, Shaohan Huang, Zihan Zhang, Deqing
Wang, Fuzhen Zhuang, Furu Wei, Haizhen Huang,
Liangjie Zhang, and Qi Zhang. 2022. Promptbert:
Improving bert sentence embeddings with prompts.
arXiv.

Yuxin Jiang and Wei Wang. 2022. Deep continuous
prompt for contrastive learning of sentence embed-
dings. arXiv.

Taeuk Kim, Kang Min Yoo, and Sang-goo Lee. 2021.
Self-guided contrastive learning for bert sentence
representations. In ACL.

Ryan Kiros, Yukun Zhu, Russ R Salakhutdinov, Richard
Zemel, Raquel Urtasun, Antonio Torralba, and Sanja
Fidler. 2015. Skip-thought vectors. NeurIPS.

Fangyu Liu, Yunlong Jiao, Jordan Massiah, Emine Yil-
maz, and Serhii Havrylov. 2022. Trans-encoder: Un-
supervised sentence-pair modelling through self- and
mutual-distillations. In ICLR.

Fangyu Liu, Ivan Vulić, Anna Korhonen, and Nigel
Collier. 2021. Fast, effective, and self-supervised:
Transforming masked language models into universal
lexical and sentence encoders. In EMNLP.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
RoBERTa: A robustly optimized BERT pretraining
approach. arXiv.

Lajanugen Logeswaran and Honglak Lee. 2018. An
efficient framework for learning sentence representa-
tions. In ICLR.

Marco Marelli, Stefano Menini, Marco Baroni, Luisa
Bentivogli, Raffaella Bernardi, and Roberto Zam-
parelli. 2014. A SICK cure for the evaluation of
compositional distributional semantic models. In
LREC.

Bo Pang and Lillian Lee. 2004. A sentimental education:
Sentiment analysis using subjectivity summarization
based on minimum cuts. In ACL.

Bo Pang and Lillian Lee. 2005. Seeing stars: Exploiting
class relationships for sentiment categorization with
respect to rating scales. In ACL.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J. Liu. 2019. Exploring the limits
of transfer learning with a unified text-to-text trans-
former. arXiv.

Nils Reimers and Iryna Gurevych. 2019. Sentence-bert:
Sentence embeddings using siamese bert-networks.
In EMNLP-IJCNLP.

Richard Socher, Alex Perelygin, Jean Wu, Jason
Chuang, Christopher D Manning, Andrew Y Ng, and
Christopher Potts. 2013. Recursive deep models for
semantic compositionality over a sentiment treebank.
In EMNLP.

Ellen M Voorhees and Dawn M Tice. 2000. Building a
question answering test collection. In SIGIR.

Hao Wang, Yangguang Li, Zhen Huang, Yong Dou,
Lingpeng Kong, and Jing Shao. 2022. Sncse: Con-
trastive learning for unsupervised sentence embed-
ding with soft negative samples. arXiv.

Tongzhou Wang and Phillip Isola. 2020. Understanding
contrastive representation learning through alignment
and uniformity on the hypersphere. In ICML.

Janyce Wiebe, Theresa Wilson, and Claire Cardie. 2005.
Annotating expressions of opinions and emotions in
language. Language resources and evaluation.

Xing Wu, Chaochen Gao, Liangjun Zang, Jizhong Han,
Zhongyuan Wang, and Songlin Hu. 2021. Esimcse:
Enhanced sample building method for contrastive
learning of unsupervised sentence embedding. arXiv.

Yuanmeng Yan, Rumei Li, Sirui Wang, Fuzheng Zhang,
Wei Wu, and Weiran Xu. 2021. Consert: A con-
trastive framework for self-supervised sentence rep-
resentation transfer. In ACL.

Yan Zhang, Ruidan He, Zuozhu Liu, Lidong Bing, and
Haizhou Li. 2021. Bootstrapped unsupervised sen-
tence representation learning. In ACL.

Kun Zhou, Beichen Zhang, Xin Zhao, and Ji-Rong Wen.
2022. Debiased contrastive learning of unsupervised
sentence representations. In ACL.

Yukun Zhu, Ryan Kiros, Rich Zemel, Ruslan Salakhut-
dinov, Raquel Urtasun, Antonio Torralba, and Sanja
Fidler. 2015. Aligning books and movies: Towards
story-like visual explanations by watching movies
and reading books. In ICCV.

A Appendix

A.1 The connection between the
normalization function g and Spearman’s
Rank Correlation

The Spearman’s rank correlation of two lists of vari-
ables, u =< u1, ..., un > and v =< v1, ..., vn >,

15792

is the Pearson correlation coefficient, ρ, of their
ranks, ru and rv, as follows:

ρ(ru, rv) =

∑n
i=1

{
1
n(r

u
i − ru)× (rvi − rv)

}

σ(ru)× σ(rv)
,

(8)
where ru and rv are the mean of the rank vari-

ables, σ(r)u and σ(r)v are the standard deviations
of ranks. Then, this can be re-written as follows:

ρ(ru, rv) =
(1√

n
(ru − ru)/σ(ru)

)⊺(1√
n
(rv − rv)/σ(rv)

)
.

(9)

Thus, the inner product of the two rank vec-
tors after normalization with g is equivalent to the
Spearman’s rank correlation of the rank variables.

A.2 λtrain Analysis

The RankEncoder loss, lr, brings a large effect to
RankEncoder’s re-training process even when the
weight parameter, λtrain, is set to a small value. In
this section, we show that the two losses, lcl and
lr, similarly affect to the total loss, ltotal in Eq. 5,
when λtrain = 0.05, which is the default setting
we use for all experiments in this paper. Figure 8
shows the training loss curves of RankEncoder and
SimCSE-unsup with the same random seed. We
show the two losses, lcl and lr, of RankEncoder
separately. SimCSE-unsup’s loss rapidly decreases
at the beginning, and converges to a value less than
0.001. We see a similar pattern in the contrastive
loss of RankEncoder, which is the same loss func-
tion as SimCSE-unsup. In contrast, λtrain × lr starts
from a much lower value than lcl; even without the
weight parameter, lr is still much lower than lcl.
After few training steps, λtrain × lr converges close
to the value of lcl. Given that λtrain determines the
scale of two losses of our hinge loss function (Eq.
5), we expect that increasing λtrain brings RankEn-
coder’s loss curve converged to higher than Sim-
CSE’s loss. This result shows that λtrain = 0.05 is
optimal value that maintaining the RankEncoder’s
loss curve similar to the base encoder’s loss curve,
while balancing the weights of the two losses, lcl
and lr.

The loss curve of a supervised sentence en-
coder provides a reference point for comparison
between the loss curves of unsupervised sentence

0 2000 4000 6000
Steps

0.0

0.1

0.2

100

L
os

s
(1

0°
2
)

SimCSE-unsup (lcl)

RankEncoder (lcl)

RankEncoder (∏train £ lr)

SimCSE-sup (lcl)

Figure 8: The training loss curves of SimCSE and
RankEncoder. X-axis represents a training step, and
Y-axis is a scaled loss. After few training steps, the
three losses converge in a similar value. Setting λtrain
to a small value, 0.05, results in similar weights on the
two loss functions of RankEncoder while maintaining
the loss curve of the base encoder.

encoders. In Figure 8, all unsupervised sentence en-
coders’ loss curves show a rapidly decreasing pat-
tern, which implies overfitting in training. To ver-
ify whether this pattern comes from unsupervised
training, we show the loss curve of the supervised
sentence encoder, SimCSE-sup, in Figure 8. In this
experiment, we measure the same contrastive loss
used in unsupervised sentence encoders but in the
SimCSE-sup’s fully supervised training process.
We see the same pattern also holds for SimCSE-
sup and verify that the rapidly decreasing pattern
is not the problem that only occurs in unsupervised
training.

A.3 Similarity Distribution of STS
Benchmark Datasets

Semantic textual similarity datasets have differ-
ent similarity distributions. Since RankEncoder
is specifically effective for similar sentence pairs,
we expect that RankEncoder brings a more per-
formance increase on datasets with more similar
sentence pairs. We show the similarity distribution
of each STS dataset in Figure 9. In this figure, we
normalize the similarity scores between 0 and 1.
The result shows that the similarity distributions
of STS12, STS14, and SICK-R are skewed to a
high similarity score and STS13’s similarity distri-
bution has a distinct peak at a high similarity score.
From the results in Table 1, we see that RankEn-
coder is more effective on STS12, STS13, STS14,
SICK-R, and show the relation between the perfor-
mance increase and the similarity distribution of

15793

Model MR CR SUBJ MPQA SST TREC MRPC AVG

SimCSE 81.18 86.46 94.45 88.88 85.50 89.80 74.43 85.81
SimCSE w/ MLM 82.92 87.23 95.71 88.73 86.81 87.01 78.07 86.64
RankEncoder-SimCSE w/ MLM 82.14 87.31 95.35 89.05 86.66 91.00 76.06 86.80

Table 3: Transfer task results of baselines and RankEncoder. We use RankEncoder with base encoder SimCSE.
MLM represents that the model is trained by both loss functions: its loss function and the masked language modeling
loss used in pre-trained language models such as BERT. We set the weight parameter of the MLM loss function to
0.1.

Model STS12 STS13 STS14 STS15 STS16 STS-B SICK-R AVG

SimCSE 68.1±3.3 81.4±1.6 73.8±2.4 81.8±1.4 78.3±0.6 77.3±2.3 71.0±0.4 76.0±1.5

+ RankEncoder 75.0±0.6 82.0±0.7 75.2±0.2 83.0±0.1 79.8±0.1 80.4±0.6 71.1±1.2 78.1±0.1

PromptBERT 72.1±0.2 84.6±0.3 76.8±0.1 84.2±0.3 80.4±0.3 81.8±0.3 69.5±0.2 78.5±0.0

+ RankEncoder 74.2±0.3 85.2±0.2 77.7±0.2 84.4±0.3 80.7±0.5 82.1±0.4 71.2±0.2 79.4±0.2

SNCSE 70.2±0.5 84.1±0.5 77.1±0.4 83.2±0.5 80.7±0.1 80.7±0.6 75.0±0.1 78.7±0.3

+ RankEncoder 73.9±0.6 84.5±0.5 78.0±0.3 83.0±0.5 81.0±0.2 81.2±0.2 75.3±0.1 79.6±0.2

Table 4: Semantic textual similarity performance of sentence encoders. We measure Spearman’s rank correlation
between the human-annotated scores and the model’s predictions. We report the mean performance and standard
deviation of three separate trials with different random seeds.

each dataset.

A.4 Transfer Tasks

We verify that applying our approach to an ex-
isting unsupervised sentence encoder increases
the performance on transfer tasks. We use the
following seven transfer tasks to evaluate sen-
tence embeddings: MR (Pang and Lee, 2005),
CR (Hu and Liu, 2004), SUBJ (Pang and Lee,
2004), MPQA (Wiebe et al., 2005), SST (Socher
et al., 2013), TREC (Voorhees and Tice, 2000), and
MRPC (Dolan and Brockett, 2005). These transfer
tasks employ an additional single-layer neural net-
work to transform sentence embeddings into the ap-
propriate output format for a given task. The single-
layer neural network is trained with the training set
of each task. We use the SentEval toolkit (Conneau
and Kiela, 2018) for evaluation. Table 3 shows
the performance of SimCSE and RankEncoder on
these transfer tasks. We use SimCSE as the base
encoder of RankEncoder. Recently, SimCSE (Gao
et al., 2021) has shown that training sentence en-
coders with auxiliary masked language modeling
(MLM) loss enhances their performance on transfer
tasks. Inspired by this finding, we use MLM loss
when training RankEncoder. The experimental re-
sults show that our approach increases the average
performance on transfer tasks by 0.16%p. This per-

formance gain is relatively small when we compare
it with the performance gain on STS benchmark
datasets shown in Table 1. This is because the sen-
tence embedding quality is not directly connected
to the objective of transfer tasks (Gao et al., 2021).

A.5 Universality of RankEncoder

In this section, we report the detailed experimental
results of Figure 4. Table 4 shows the results.

A.6 The performance of RankEncoder on
Similar Sentence Pairs

We report the detailed results of Figure 5 in Table
5.

A.7 Computational Cost

In this section, we describe the details of the com-
putational efficiency of RankEncoder.

Pre-Computation: We pre-compute sentence
vectors of corpus C for training and inference. This
takes a few seconds on a single V100 GPU.

Training: Most of the additional training time
comes from calculating a rank vector similarity
matrix (the matrix in Figure 2). First, we calculate
a rank vector for every sentence in a given batch.
The time complexity of calculating a rank vector is

15794

Base Encoder E1

SimCSE PromptBERT SNCSE

E1 44.59 49.56 48.19
RankEncoderE1 46.73 50.06 49.44
RankEncoderE1 − retrain 48.41 50.75 49.80
RankEncoderE1 − retrain − inf 48.73 50.93 49.92

Table 5: Semantic textual similarity performance of variations of RankEncoder. E is the base encoder.
RankEncoderE is RankEncoder with Eq. 2. RankEncoder − retrain is RankEncoder with Eq. 5. RankEncoder −
retrain − inf is RankEncoder with Eq. 7.

O(N ×D), where N is the number of pre-indexed
vectors, and D is the dimension of the vectors.
Assuming a batch size of B, the time complexity of
this step is O(B ×N ×D). Second, we calculate
a B × B rank vector similarity matrix. This is
O(B × B × N) since the dimension size of the
rank vector is N . The total time complexity is
O(B×D×N+B×B×N), which is O(B×D×
N), assuming the batch size is much smaller than
the dimension size. As a result, the total training
time is 1.5 hours, 0.5 hours (the base encoder’s
training time) + 1.0 hours (the additional training
time brought by our approach).

Inference: RankEncoder’s inference process
comprises two steps: 1) predicting the sentence
vector of an input sentence and 2) computing sim-
ilarity scores between the input sentence vector
and the pre-indexed vectors; we exclude the index-
ing time since indexing is completed before infer-
ence. The first step takes the same inference time as
BERT-base (0.07 seconds for a given sentence on
a single V100 GPU) as RankEncoder uses BERT-
base. The second step entails matrix multiplication
of an N ×D matrix and a D× 1 matrix (this takes
0.0013 seconds), which takes 1.8% of the whole
inference time. Thus, our method increases the
inference time by 1.8%.

15795

0.00 0.25 0.50 0.75 1.00
Similarity

0

100

200

300

400

N

STS12

0.00 0.25 0.50 0.75 1.00
Similarity

0

20

40

60

80

100

N

STS13

0.00 0.25 0.50 0.75 1.00
Similarity

0

50

100

150

200

250

300

N

STS14

0.00 0.25 0.50 0.75 1.00
Similarity

0

50

100

150

200

250

N

STS15

0.00 0.25 0.50 0.75 1.00
Similarity

0

50

100

150

200

N

STS16

0.00 0.25 0.50 0.75 1.00
Similarity

0

20

40

60

80

100

N

STS-B

0.00 0.25 0.50 0.75 1.00
Similarity

0

50

100

150

200

250

300

350

N

SICK-R

Figure 9: Similarity distributions of semantic textual similarity benchmark datasets. We scale the similarity scores
between 0.0 and 1.0.

15796

ACL 2023 Responsible NLP Checklist

A For every submission:
�3 A1. Did you describe the limitations of your work?

Section 7

� A2. Did you discuss any potential risks of your work?
Not applicable. Left blank.

�3 A3. Do the abstract and introduction summarize the paper’s main claims?
Abstract, Section 1

�7 A4. Have you used AI writing assistants when working on this paper?
Left blank.

B �3 Did you use or create scientific artifacts?
Section 3, Section 4

�3 B1. Did you cite the creators of artifacts you used?
Section 3, Section 4

�3 B2. Did you discuss the license or terms for use and / or distribution of any artifacts?
Section 3, Section 4

�3 B3. Did you discuss if your use of existing artifact(s) was consistent with their intended use, provided
that it was specified? For the artifacts you create, do you specify intended use and whether that is
compatible with the original access conditions (in particular, derivatives of data accessed for research
purposes should not be used outside of research contexts)?
Section 3, Section 4

� B4. Did you discuss the steps taken to check whether the data that was collected / used contains any
information that names or uniquely identifies individual people or offensive content, and the steps
taken to protect / anonymize it?
Not applicable. Left blank.

� B5. Did you provide documentation of the artifacts, e.g., coverage of domains, languages, and
linguistic phenomena, demographic groups represented, etc.?
Not applicable. Left blank.

�3 B6. Did you report relevant statistics like the number of examples, details of train / test / dev splits,
etc. for the data that you used / created? Even for commonly-used benchmark datasets, include the
number of examples in train / validation / test splits, as these provide necessary context for a reader
to understand experimental results. For example, small differences in accuracy on large test sets may
be significant, while on small test sets they may not be.
Section 4

C �3 Did you run computational experiments?
Section 5

�3 C1. Did you report the number of parameters in the models used, the total computational budget
(e.g., GPU hours), and computing infrastructure used?
Section 4, Section 5

The Responsible NLP Checklist used at ACL 2023 is adopted from NAACL 2022, with the addition of a question on AI writing
assistance.

15797

https://2023.aclweb.org/
https://2022.naacl.org/blog/responsible-nlp-research-checklist/
https://2023.aclweb.org/blog/ACL-2023-policy/
https://2023.aclweb.org/blog/ACL-2023-policy/

�3 C2. Did you discuss the experimental setup, including hyperparameter search and best-found
hyperparameter values?
Section 4

�3 C3. Did you report descriptive statistics about your results (e.g., error bars around results, summary
statistics from sets of experiments), and is it transparent whether you are reporting the max, mean,
etc. or just a single run?
Section 5

�3 C4. If you used existing packages (e.g., for preprocessing, for normalization, or for evaluation), did
you report the implementation, model, and parameter settings used (e.g., NLTK, Spacy, ROUGE,
etc.)?
Section 4

D �7 Did you use human annotators (e.g., crowdworkers) or research with human participants?
Left blank.

� D1. Did you report the full text of instructions given to participants, including e.g., screenshots,
disclaimers of any risks to participants or annotators, etc.?
No response.

� D2. Did you report information about how you recruited (e.g., crowdsourcing platform, students)
and paid participants, and discuss if such payment is adequate given the participants’ demographic
(e.g., country of residence)?
No response.

� D3. Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? For example, if you collected data via crowdsourcing, did your instructions to
crowdworkers explain how the data would be used?
No response.

� D4. Was the data collection protocol approved (or determined exempt) by an ethics review board?
No response.

� D5. Did you report the basic demographic and geographic characteristics of the annotator population
that is the source of the data?
No response.

15798

