@inproceedings{mendes-etal-2023-human,
title = "Human-in-the-loop Evaluation for Early Misinformation Detection: A Case Study of {COVID}-19 Treatments",
author = "Mendes, Ethan and
Chen, Yang and
Xu, Wei and
Ritter, Alan",
editor = "Rogers, Anna and
Boyd-Graber, Jordan and
Okazaki, Naoaki",
booktitle = "Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)",
month = jul,
year = "2023",
address = "Toronto, Canada",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2023.acl-long.881",
doi = "10.18653/v1/2023.acl-long.881",
pages = "15817--15835",
abstract = "We present a human-in-the-loop evaluation framework for fact-checking novel misinformation claims and identifying social media messages that support them. Our approach extracts check-worthy claims, which are aggregated and ranked for review. Stance classifiers are then used to identify tweets supporting novel misinformation claims, which are further reviewed to determine whether they violate relevant policies. To demonstrate the feasibility of our approach, we develop a baseline system based on modern NLP methods for human-in-the-loop fact-checking in the domain of COVID-19 treatments. We make our data and detailed annotation guidelines available to support the evaluation of human-in-the-loop systems that identify novel misinformation directly from raw user-generated content.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="mendes-etal-2023-human">
<titleInfo>
<title>Human-in-the-loop Evaluation for Early Misinformation Detection: A Case Study of COVID-19 Treatments</title>
</titleInfo>
<name type="personal">
<namePart type="given">Ethan</namePart>
<namePart type="family">Mendes</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yang</namePart>
<namePart type="family">Chen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Wei</namePart>
<namePart type="family">Xu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Alan</namePart>
<namePart type="family">Ritter</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2023-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Anna</namePart>
<namePart type="family">Rogers</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jordan</namePart>
<namePart type="family">Boyd-Graber</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Naoaki</namePart>
<namePart type="family">Okazaki</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Toronto, Canada</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>We present a human-in-the-loop evaluation framework for fact-checking novel misinformation claims and identifying social media messages that support them. Our approach extracts check-worthy claims, which are aggregated and ranked for review. Stance classifiers are then used to identify tweets supporting novel misinformation claims, which are further reviewed to determine whether they violate relevant policies. To demonstrate the feasibility of our approach, we develop a baseline system based on modern NLP methods for human-in-the-loop fact-checking in the domain of COVID-19 treatments. We make our data and detailed annotation guidelines available to support the evaluation of human-in-the-loop systems that identify novel misinformation directly from raw user-generated content.</abstract>
<identifier type="citekey">mendes-etal-2023-human</identifier>
<identifier type="doi">10.18653/v1/2023.acl-long.881</identifier>
<location>
<url>https://aclanthology.org/2023.acl-long.881</url>
</location>
<part>
<date>2023-07</date>
<extent unit="page">
<start>15817</start>
<end>15835</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Human-in-the-loop Evaluation for Early Misinformation Detection: A Case Study of COVID-19 Treatments
%A Mendes, Ethan
%A Chen, Yang
%A Xu, Wei
%A Ritter, Alan
%Y Rogers, Anna
%Y Boyd-Graber, Jordan
%Y Okazaki, Naoaki
%S Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
%D 2023
%8 July
%I Association for Computational Linguistics
%C Toronto, Canada
%F mendes-etal-2023-human
%X We present a human-in-the-loop evaluation framework for fact-checking novel misinformation claims and identifying social media messages that support them. Our approach extracts check-worthy claims, which are aggregated and ranked for review. Stance classifiers are then used to identify tweets supporting novel misinformation claims, which are further reviewed to determine whether they violate relevant policies. To demonstrate the feasibility of our approach, we develop a baseline system based on modern NLP methods for human-in-the-loop fact-checking in the domain of COVID-19 treatments. We make our data and detailed annotation guidelines available to support the evaluation of human-in-the-loop systems that identify novel misinformation directly from raw user-generated content.
%R 10.18653/v1/2023.acl-long.881
%U https://aclanthology.org/2023.acl-long.881
%U https://doi.org/10.18653/v1/2023.acl-long.881
%P 15817-15835
Markdown (Informal)
[Human-in-the-loop Evaluation for Early Misinformation Detection: A Case Study of COVID-19 Treatments](https://aclanthology.org/2023.acl-long.881) (Mendes et al., ACL 2023)
ACL