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Abstract

We present a human-in-the-loop evaluation
framework for fact-checking novel misinforma-
tion claims and identifying social media mes-
sages that support them. Our approach extracts
check-worthy claims, which are aggregated and
ranked for review. Stance classifiers are then
used to identify tweets supporting novel misin-
formation claims, which are further reviewed
to determine whether they violate relevant poli-
cies. To demonstrate the feasibility of our ap-
proach, we develop a baseline system based on
modern NLP methods for human-in-the-loop
fact-checking in the domain of COVID-19 treat-
ments. We make our data1 and detailed annota-
tion guidelines available to support the evalua-
tion of human-in-the-loop systems that identify
novel misinformation directly from raw user-
generated content.

1 Introduction

As many people now get information from social
networking websites such as Facebook and Twit-
ter, misinformation has become a serious societal
problem. To address this, social media companies
have spent billions on content moderation.2 Prior
work on developing natural language processing
systems to combat misinformation has mainly fo-
cused on various sub-tasks (Lee et al., 2021; Guo
et al., 2022), including claim detection (Eger et al.,
2017; Li et al., 2022), evidence retrieval (Jiang
et al., 2020; Samarinas et al., 2021; Wan et al.,
2021; Aly and Vlachos, 2022), fact verification
(Aly et al., 2021; Wu et al., 2022; Chen et al., 2022;
Gu et al., 2022), stance classification (Thorne et al.,
2017; Conforti et al., 2018; Li et al., 2019), and fal-
lacy recognition (Alhindi et al., 2022). Researchers
have also attempted to perform early detection of
novel misinformation claims (Yue et al., 2022), as it

1https://github.com/ethanm88/hitl-eva
luation-early-misinformation-detection

2https://www.cnbc.com/2021/02/27/cont
ent-moderation-on-social-media.html

is crucial for supporting early interventions such as
pre-bunking (Lewandowsky and Van Der Linden,
2021). However, evaluations are often set up auto-
matically using datasets that were retrospectively
constructed based on a predefined set of debunked
claims.

Recent work by Glockner et al. (2022) pre-
sented convincing evidence that existing NLP fact-
checking pipelines are unsuitable for detecting
novel real-world misinformation. They show these
systems rely on leaked counter-evidence from news
sources that have already fact-checked the claim.
In general, it is unrealistic to assume this type of
evidence will be available for new claims that have
not yet been widely spread.

In this paper, we address this challenge by pre-
senting a more realistic human-in-the-loop detec-
tion and evaluation framework that can measure
a system’s capabilities for detecting novel check-
worthy claims in the wild (see Figure 1). We fo-
cus on discovering new, domain-specific claims
from raw tweets which are then verified by humans,
rather than relying on a pre-defined list of claims
that have already been fact-checked for evaluation.
More importantly, we consider not only the accu-
racy but also the volume, relevance, and timeliness
of misinformation claims automatically identified
by a system, given a collection of raw tweets. We
argue this approach provides more realistic exper-
imental conditions because (1) it does not rely on
leaked counter-evidence from claims that have al-
ready been fact-checked, (2) human expertise is
vital in verifying the truthfulness of claims (Nakov
et al., 2021; Karduni et al., 2018) and (3) it is more
effective for humans to check aggregated claims
within a specific domain (e.g., claims about the effi-
cacy of COVID-19 treatments), before proceeding
to individual social media messages to determine
if they violate specific misinformation policies.

We validate our methodology for end-to-end mis-
information detection in the domain of COVID-19
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Figure 1: Overview of our human-in-the-loop evaluation framework for early misinformation detection. In stage
one (left), a system extracts check-worthy claims directly from raw tweets in the wild (rather than retrieving relevant
tweets based on provided claims), then aggregates trending claims to be validated by human experts. In stage two
(right), the system classifies authors’ stances toward false claims and flags tweets for further manual inspection.

treatments. COVID-19 treatments make an ideal
testbed for human-in-the-loop misinformation ex-
traction because Twitter has provided clearly de-
fined policies in this area, which we use as guide-
lines in a realistic human evaluation of a system’s
output.3 We evaluate our baseline system with
our four defined metrics and find that 18% of the
top-50 trending claims were actually misleading
(relevance), 50% of new misleading claims (un-
approved COVID-19 treatments) are detected be-
fore they are debunked by journalists in a news
article (timeliness), 65% of tweets flagged consti-
tute policy-violations (accuracy), and an average
of 124 policy violations can be confirmed by a
human-annotator per hour (volume) when using
our system.

Our work fills an important gap in the literature,
by showing that it is possible to construct a real-
istic end-to-end evaluation that supports the early
detection of novel rumors directly from raw data.
Instead of classifying individual tweets as rumor-
ous or not, we extract phrase-level claims that can
be aggregated and ranked across a large amount of
data and thus can be reviewed more time-efficiently
by fact-checkers for human evaluation and for real-
world applications. Tweets that are automatically
classified as supporting misinformation claims can
then be reviewed to determine whether they violate
relevant policies.

3
https://tinyurl.com/CovidMisinformationPolicy

2 Related Work

There is a large body of misinformation-related re-
search. Due to space limitations, we only highlight
the most relevant work. See also the excellent sur-
veys by Nakov et al. (2021) and Guo et al. (2022).

2.1 Detecting Check-worthy Claims

One of the most related works to ours is the CLEF-
2022 CheckThat shared-task (Nakov et al., 2022),
which evaluates three sub-tasks automatically and
separately: (1) determine whether a tweet is worth
fact-checking; (2) given a check-worthy claim in
the form of a tweet, and a set of previously fact-
checked claims, rank the tweets in order of their
usefulness to fact-check; and (3) given the text and
the title of a news article, determine whether the
main claim it makes is true, partially true, false, or
other. In contrast, our experimental setup is more
realistic as it operationalizes over a large amount
(e.g., millions) of raw tweets and requires span-
level extraction to identify the exact claims (e.g.,
claims about the efficacy of COVID-19 treatments)
rather than just “claims in the form of a tweet”
(e.g., tweets that talk about COVID-19 treatments).
We also present an end-to-end human-in-the-loop
evaluation of the entire misinformation detection
pipeline based on the accuracy, volume, and time-
liness of all extracted claims, other than just the
automatic intrinsic evaluation of each component
separately.

Similar to CLEF CheckThat, there exist many
other prior works that treat claim detection (or ru-
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mor detection) as a text classification problem by
predicting check-worthiness (or rumourousness)
given a tweet or sentence. One representative work
is ClaimBuster (Hassan et al., 2017) which classi-
fies 20,617 sentences from the U.S. general elec-
tion debate transcripts as non-factual, unimportant
factual, and check-worthy factual. Researchers
have also developed other datasets (Diggelmann
et al., 2020; Konstantinovskiy et al., 2021; Redi
et al., 2019; Thorne et al., 2018) and automatic
models (Hansen et al., 2019; Jaradat et al., 2018;
Wright and Augenstein, 2020). Another relevant
work is by Sundriyal et al. (2022) which identifies
claims as text fragments, such as “our wine keeps
you from getting #COVID19” and “Better alter-
native to #DisinfectantInjection”. The evaluations
are mostly done automatically over a small fixed
set (normally at the scale of 1k∼50k) of annotated
tweets or sentences.

2.2 Early Rumor Detection

As briefly mentioned in §2.1, rumor detection is
also commonly framed as a text classification task.
The standard rumor detection setup (Zubiaga et al.,
2016; Derczynski et al., 2017; Vosoughi et al.,
2017; Gorrell et al., 2019; Shu et al., 2020) con-
siders only accuracy without temporal information
in the evaluation. More related to our work is a
task called early rumor detection (Liu et al., 2015;
Ma et al., 2017; Yu et al., 2017; Ruchansky et al.,
2017; Zhou et al., 2019; Xia et al., 2020; Bian et al.,
2020), which compares classification model’s ac-
curacy at different time points and has been ex-
tensively surveyed and discussed by Zeng and Gao
(2022). However, as they pointed out, most existing
methods were “designed with oversimplification”
and evaluated automatically on datasets, such as
TWITTER-WEIBO (Ma et al., 2016), PHEME (Zu-
biaga et al., 2016), and BEARD (Zeng and Gao,
2022), that were constructed retrospectively by col-
lecting social media posts using manually curated
search keywords (e.g., names of false treatment)
based on a given set of debunked claims (e.g., from
snopes.com). This setup does not measure sys-
tems’ capability to discover unseen rumors in the
wild as our human-in-the-loop evaluation does. In
real-world scenarios, what exactly is needed from
a misinformation detection system is to automat-
ically figure out what keywords (e.g., names of
potential false treatments) to search for – which we
focus on and evaluate in this paper.

2.3 COVID-19 Misinformation Detection

Given the severity and pervasiveness of the issue,
there exists a lot of research (not limited to NLP)
about COVID-19 misinformation (Hossain et al.,
2020; Glandt et al., 2021; Dimitrov et al., 2020;
Shahi et al., 2021; Agley and Xiao, 2021; Chen
and Hasan, 2021; Biamby et al., 2022). The most
related work to ours is the CONSTRAINT shared-
task (Patwa et al., 2021) at the AAAI-2021, which
considers a binary text classification problem of
10,700 COVID-related tweets about real and fake
news, and in particular, the work by Kou et al.
(2022) that experimented on this dataset with a
human-in-the-loop approach. For each input tweet
(e.g., “Ethylene oxide used in COVID-19 testing
swabs changes the structure of the DNA of human
body”), Kou et al. (2022) asked crowd workers to
write out the main message (e.g., “Ethylene ox-
ide somehow damages human DNA”), which is
then compared with information extracted from
COVID-related fack-checking articles and medi-
cal papers to help automatic system to predict the
tweet’s truthfulness. While they prototyped the
interesting idea of human-in-the-loop misinforma-
tion detection (Shabani et al., 2021), their design
is unrealistic to require humans to manually write
one sentence per tweet.

3 Human-in-the-Loop Evaluation
Framework

One of the most important functions of a misin-
formation detection system is to identify new mis-
information claims in the wild, and in a timely
manner. We thus design our evaluation framework
to measure not only the accuracy but also the vol-
ume, relevance, and timeliness of misinformation
claims identified by a system, given a large collec-
tion of raw tweets (not collected based on already
debunked claims). See Figure 1 for an overview of
our framework.

3.1 Early Detection of Misleading Claims

Problem Definition. Given a large set of tweets
T, the goal is to automatically discover novel
check-worthy claims, each denoted ci, and aggre-
gate a ranked list of claims, C = [c1, c2, ..., cn].
In this task, we use trendiness (e.g. defined with
Fisher’s Exact Test in §4.1.3) as a factor in rank-
ing claims, where a more popular or widely dis-
cussed claim will have a greater trendiness. More
formally, a novel check-worthy claim ci is charac-
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Figure 2: Examples of trending claims regarding notable unapproved treatments detected by our system. We also
show the headline of the news reference identified by our annotators in the mock content moderation experiment.
For each claim, two/three tweets are displayed that were classified as SUPPORTING from the date that the trend was
detected.

terized by (ti, zi,Si), where ti is the first time the
system identified the claim as trending i.e. when
its trendiness first broke a set threshold, zi is the
claim’s trendiness score at time ti, and Si ⊂ T is
the set of tweets supporting the claim. A filtering
heuristic can also be applied to remove obvious
non-misleading claims from consideration (e.g. fil-
tering out claims supporting approved COVID-19
treatments in §4.1.3).

Evaluation Metrics. A human-in-the-loop evalu-
ation is performed over the top-K trending claims
in which annotators verify whether a claim is mis-
leading and, if so, find the earliest news article de-
bunking the claim. The evaluation is based on two
metrics: (1) the percentage of misleading claims
in the top-K trending claims (relevance) and (2)
the number of days (or hours), denoted as δ, be-
tween ti and the publication date of the earliest
news article (timeliness). Figure 2 visually depicts
the application of the δ metric for COVID-19 treat-
ment misinformation. See §4.2 for details about
this case study evaluation.

By annotating at the claim level before the tweet
level, we reduce human annotator workload by lim-
iting the total number of tweets evaluated. This
approach also makes our framework more realistic
and efficient, allowing for a more thorough and
accurate evaluation of misinformation detection
systems. In order to facilitate future research in
this area, we provide a collection of raw tweets to
evaluate and a baseline system to compare against.
As most existing systems are not available as open-

source, the release of our evaluation platform will
enable fair and comparable evaluations of these
systems.

3.2 Policy Violation Verification

Problem Definition. The objective of this task
is to identify tweets within the set associated with
a claim ci, Si = {s1, s2, ..., s|Si|}, that violate a
misleading information policy. In general, a tweet
sj , is likely to violate a policy if it expresses a
strong supportive stance towards a claim ci, which
was identified as misleading by the human-in-the-
loop evaluation process from the prior stage (§3.1).

Evaluation Metrics. To evaluate a system’s per-
formance and effectiveness, a human-in-the-loop
evaluation is performed on a random sample of
N tweets that express a supportive stance toward
misleading claims. The evaluation is based on two
metrics: (1) the accuracy of the system in identify-
ing policy-violation tweets and (2) the volume in
terms of the number of policy violations found per
hour by analysts using the system.

To measure the accuracy of the system, human
annotators assign a score to each tweet in the sam-
ple, based on a five-point Likert scale, with 5 cor-
responding to a clear violation of the policy and 1
representing a clear non-violation. We set a thresh-
old of score ≥ 4 to make a binary policy violation
determination. This scoring scheme allows us to
measure the system’s accuracy based on the dis-
tribution of annotator scores for all tweets in the
sample.
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To quantify the volume of policy violations iden-
tified by analysts using the system, we define the
metric policy-violations per hour as the number
of tweets identified by the annotator containing
policy violations, divided by the total number of
hours spent by the annotator during the two-stage
annotation process (§3.1 and 3.2):

policy violations / hr =
V

C × rc + T × rt

where V is the number of policy violations found,
C and T are the numbers of claims and tweets
checked respectively, and rc and rt are the average
annotation rates for claims and tweets respectively.

This metric allows us to assess the efficiency of
the system in identifying policy-violation tweets
and the potential benefits for content moderators
using the system.

4 A Case Study: COVID-19 Treatment
Misinformation

To illustrate the usage of our human-in-the-loop
evaluation framework outlined in §3, we present a
case study for COVID-19 misinformation. Specif-
ically, we target Twitter’s COVID-19 policy on
unapproved treatments, which states that:

“False or misleading information sug-
gesting that unapproved treatments can
be curative of COVID-19”

are grounds for labeling tweets with corrective in-
formation (Twitter, 2021).

4.1 Our System
In this subsection, we describe the three compo-
nents of our COVID-19 treatment misinformation
detection system: claim extraction, stance classifi-
cation, and claim ranking with their task-specific
intrinsic performance. Later, in §4.2, we present
an extrinsic human-in-the-loop evaluation of the
entire system using our defined framework (§3).

4.1.1 Extracting Check-Worthy Claims
Data. We train and evaluate our claim extraction
models on the human-annotated Twitter COVID-
19 event extraction dataset created by Zong et al.
(2022), which is collected between 2020/01/15 and
2020/04/26. In this work, we focus on claims of
the form “X is an effective COVID-19 treatment”,
where X is an extracted span. We split the provided
1, 271 training tweets in the CURE & PREVENTION

category into 60% for training and 15% for devel-
opment, and report token-level F1 scores on the
500 tweets used for evaluation in the 2020 W-NUT
shared task.4

Models. We develop three approaches, outlined
below, to extract claims as a text span from a
sentence with a sequence tagging model and a
question-answering model (Rajpurkar et al., 2018;
Du et al., 2021). Details of training hyperparame-
ters can be found in Appendix D.1.
(1) Sequence Tagging: a standard sequence-
labeling task with a BIO tagging scheme, where
‘B’ and ‘I’ tags are used to identify treatment to-
kens. We follow a similar approach as the named
entity recognition method used by Devlin et al.
(2019) and experiment with two pre-trained mod-
els, including RoBERTalarge (Liu et al., 2019) and
a domain-specific COVID-Twitter-BERTlarge(CT-
BERT) (Müller et al., 2020).
(2) Question-answering (QA): we treat the claim
extraction as a question-answering task and apply
the SQuADv2.0 (Rajpurkar et al., 2018) formu-
lation as some tweets may not include relevant
claims (similar to unanswerable questions). We
experiment with two approaches: a span-prediction
model that predicts start and end positions for an-
swer spans in context using RoBERTa/CT-BERT
as the encoder, in addition to a text-to-text model
that generates answers using T5large (Raffel et al.,
2020; Wang and Lillis, 2020). The question tem-
plate for extracting treatments discussed in tweets
is “What is the mentioned COVID-19 cure?”.
(3) QA-Pretraining: it has been shown that inter-
mediate task pre-training can yield further gains
for low-resource target tasks (Pruksachatkun et al.,
2020; Poth et al., 2021). We thus experiment with
pre-training QA models on the SQuADv2.0 dataset
before fine-tuning on the claim extraction dataset.

Intrinsic Evaluation. Table 1 shows the claim
extraction results on the COVID-19 treatment
dataset. We observe QA models outperform tag-
ging models across encoders. RoBERTa outper-
forms the domain-specific encoder (CT-BERT) for
QA extraction. However, after QA pre-training,
CT-BERT improves from 53.1 to 63.8 F1 and out-
performs RoBERTa by 2.3 points. Finally, as the
T5 model achieves the best F1 regardless of QA
pre-training, we use T5SQuADv2 Pre-train as our final

4https://noisy-text.github.io/2020/ext
ract_covid19_event-shared_task.html
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Approach Model F1

Tagging RoBERTa 50.3
CT-BERT 51.2

QA
RoBERTa 61.5
CT-BERT 53.1
T5 63.7

QAPre-train

RoBERTaSQuADv2 Pre-train 59.9
CT-BERTSQuADv2 Pre-train 63.8
T5SQuADv2 Pre-train 63.9

Table 1: Token-level F1 scores for claim extraction ex-
periments on COVID-19 treatment dataset.

claim extraction model.

4.1.2 Task-Specific Stance Classification
Data. Due to the lack of datasets for COVID-
19 treatment stance, we annotate a new dataset
for our evaluation. To collect relevant tweets we
tracked the keywords “cure”, “prevention”, “virus”,
and “COVID-19” from November 2020 to De-
cember 2020 using the Twitter API. We collected
1, 055, 559 tweets and claims extracted using our
model (§4.1.1). Out of 97, 016 tweets for which a
treatment was able to be extracted, we randomly
sample 2, 000 tweets to annotate the author’s stance
on the effectiveness of the treatment. We paid
crowd workers on Amazon MTurk to annotate our
data. Each task consists of a tweet with a high-
lighted treatment. We asked workers to determine
the author’s stance towards the treatment and select
among three options (SUPPORTING, REFUTING,
or NO STANCE). We decided not to include addi-
tional options for irrelevant and sarcastic tweets due
to poor annotator agreement in pilot experiments.
Each tweet is labeled by 5 independent crowd work-
ers. Workers were paid $0.20/HIT, which roughly
equates to $8.50/hour. A screenshot of the anno-
tation interface is provided in Figure 6 and dataset
statistics are summarized in Table 2.

Quality Control. During the annotation process,
we monitored the quality of workers’ annotations
using their agreement with each other and split the
data into 10 batches (200 tweets each) to detect
poor annotations in the early stages. We calculate
the annotation agreement of each worker against
the majority of 5 workers. If the worker’s agree-
ment is less than 0.75 for a SUPPORTING anno-
tation based on a majority vote, we do not allow
them to participate in the subsequent annotation
batch. Across all annotations, we find a 0.65 value
of Cohen’s κ (Artstein and Poesio, 2008) for the

Majority Annotation #Tweets

SUPPORTING 743
REFUTING 631
NO STANCE 400
No Consensus (NO STANCE) 226

Total 2000

Table 2: Distribution of annotated COVID-19 treatment
stance dataset.

inter-annotator agreement between workers. The
distribution of the dataset based on the majority
vote of workers is shown in Table 2. In the case that
there is no majority annotation for a given tweet i.e.
the 5 individual annotators are split 2/2/1 among
the three annotation types, we assign the tweet a
default annotation of NO STANCE. We randomly
split our annotated dataset of 2,000 tweets into a
training set of 1,200 tweets, a development set of
400, and a test set of 400.

Models. Using the annotated corpus, we develop
classifiers to detect the author’s stance toward
a treatment. Specifically, given a claim and a
tweet (ci, sj), our goal is to predict the author’s
stance mi ∈ {SUPPORTING, REFUTING, or NO

STANCE}. We experiment with three models in-
cluding a baseline neural bag-of-words (NBOW)
model, RoBERTalarge (Liu et al., 2019) and a
COVID-Twitter-BERTlarge (CT-BERT) (Müller
et al., 2020). To indicate the position of the claim
in the input, we use relative position encoding
(RPE) (Shaw et al., 2018) for the NBOW model.
For the pre-trained language models, we add spe-
cial markers around the claim following the best-
performing model from Soares et al. (2019), [EN-
TITY MARKERS - ENTITY START]. Details of
training hyperparameters are in Appendix D.2.

Intrinsic Evaluation. Table 3 presents the results
for NBOW, RoBERTa, and CT-BERT. We observe
that CT-BERT outperforms all other models, with
an F1 score of 66.7. Generally, we find that these
models performed best in classifying tweets with
SUPPORTING stance and worst on tweets with a
NO STANCE label. This latter result is possibly due
to annotators classifying those tweets that might be
irrelevant to the task as NO STANCE.

4.1.3 Ranking of Trending Claims
Following Twitter’s COVID-19 misinformation
policy violation guidelines, we focus on tweets that
advocate the efficacy of an unapproved treatment.
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Stance NBOW RoBERTa CT-BERT

SUPPORTING 59.8 70.0 74.9
REFUTING 32.8 61.9 70.6
NO STANCE 56.0 45.9 54.7

Aggregate F1 49.5 59.3 66.7

Table 3: F1 scores on stance classification dataset for
classifying author’s stance towards the extracted claim.

Thus, we filter out tweets that mention common ap-
proved treatments listed in Table 8 in Appendix C,
which are prepared according to authorities and
news agencies including the CDC and NYT. Upon
determining stance on the filtered set, we only con-
sider tweets with a SUPPORTING stance towards
the effectiveness of the extracted treatment. Fi-
nally, we remove near-duplicates and cluster the
remaining extracted treatments based on word over-
lap (Jaccard similarity) to enable treatment-level
decision-making similar to Basu et al. (2013).

Ranking Claims. For the claims (treatments)
in each cluster, we count the number of tweets
mentioning the claim both daily and cumulatively.
Based on these counts, we compute the claim’s p-
value on a given date using the one-tailed Fisher’s
Exact Test (Fisher, 1922) which has been shown to
be effective in rare event detection (Moore, 2004;
Johnson et al., 2007; Ritter et al., 2011). A claim’s
p-value is a measure of its trendiness denoted zi
(§3.1) by which it is ranked relative to other claims.

Detecting Novel Claims. Based on the results
of Fisher’s Exact Test, our system automatically
detects novel trending claims and flags them for
manual inspection by content moderators. A claim
is considered as newly trending if it’s p-value is less
than a preset significance threshold (α-level) and it
has never broken this threshold previously (further
details in Appendix E). Using the notation from
§3.1, if the claim (ci) found to be newly trending
on date ti is judged to be misleading by a human
moderator, our system then provides a list of in-
dividual tweets (Si) that SUPPORT the misleading
claim for manual inspection.

4.2 Human-in-the-Loop Evaluation for
Detecting COVID-19 Misinformation

In this section, we evaluate the system outlined
in §4.1 using the human-in-the-loop evaluation
methodology we define in §3. We follow the same
procedure described in §4.1.2 to prepare a new
dataset containing 14, 741, 171 tweets for large-

scale evaluation. We then extract treatments using
our QA-based claim extractor and apply our stance
detection model to classify authors’ stance towards
each treatment. After removing tweets without an
extracted treatment, the resultant evaluation corpus
consists of 1, 905, 424 tweets.

4.2.1 Early Detection of Misleading
COVID-19 Treatments

We first evaluate the ability of our system to detect
newly trending misleading COVID-19 treatment
claims and report metrics measuring relevance and
timeliness as defined in §3.1.

Data Preparation and Human Evaluation. We
set aside tweets collected from 2020/03/01 to
2020/03/31 (1-month time-frame) to serve as an
initial base of historical data to compute cumu-
lative counts for detecting novel trending claims
using the Fisher’s Exact Test. Newly trending treat-
ments are then identified during the time period
of 2020/04/01 to 2022/05/05 (2-year time-frame)
using the methodology described in §4.1.3. The top
300 treatments are selected based on p-values from
Fisher’s Exact Test which equates to a significance
level of α = 1.15e−6.

We employ two in-house annotators, who act as
mock content-moderators, to evaluate these 300
treatments and determine (1) if the extraction is a
treatment (2) if the treatment is unapproved and
(3) the earliest publication date of a news article
debunking the treatment as effective for COVID-19
using the Google News engine. Appendix A con-
tains further details about the annotation process.

Out of the 300 treatments, 100 were annotated by
both annotators to determine inter-rater agreement
on task (2), which was 0.87 as given by Cohen’s κ.
On average, it took 89.7 seconds to complete each
treatment annotation.

Results on Early Detection of Misleading Claims.
In terms of relevance, Table 4 shows the percentage
of the top 5/50/100 trending treatments ranked by p-
value that were determined to be unapproved, and
Figure 3 shows the cumulative number of potential
unapproved trends identified over time along with
the total number of trending treatments. To evalu-
ate the timeliness, we calculate δ, which measures
the number of days our system detects misleading
claims before a debunking news article is published
(§3.1). We find that our system is able to detect
50% of rumors before the publication date of the
relevant news article (δ ≥ 0), with the median δ
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being 21 days. Figure 2 shows three notable unap-
proved treatment examples from early in the pan-
demic with their relevant news article and δ values.
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Figure 3: Cumulative number of potential and actual
unapproved treatments detected.

Top 5 Top 50 Top 100

% unapproved 60.0 18.0 14.0

Table 4: Percentage of top 5/50/100 trending treatments
based on p-value that were classified as unapproved in
the annotation process.

4.2.2 Identifying COVID-19 Policy Violations.
In addition to detecting novel rumors online, we
also evaluate the ability of our system to identify
tweets that violate Twitter’s misleading information
policy and report metrics measuring accuracy and
volume as defined in §3.2.

Data Preparation and Human Evaluation. For
each of the 40 treatments identified as unapproved
in the previous experiment, we randomly sample
10 tweets that have SUPPORTING stance towards
the claim. Near duplicate tweets were identified
and removed leaving 361 unique tweets. The two
in-house annotators then assign a score to each
tweet based on a five-point Likert scale, with 5
corresponding to a clear violation of the policy
and 1 representing a clear non-violation (See score
descriptions in Table 7 in Appendix A).

To investigate the quality of annotations, we
compute agreement on 206 tweets using ordinal
Krippendorff’s α (0 ≤ α ≤ 1) (Krippendorff,
2011).5 We find that annotators agreed moder-
ately with Krippendorff’s α = 0.54, indicating

5We use Krippendorff’s α instead of Cohen’s κ to measure
inter-rater agreement here because it is applicable to ordinal
annotation data.
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Figure 4: Expected distribution of Likert score anno-
tations on full set of tweets mentioning one of the 40
treatments investigated.

fair agreement. On average, it took the annotators
16.1 seconds to annotate each tweet.

Results on Identifying Policy Violations. In Fig-
ure 4, we find that 65% (accuracy) of tweets had
scores indicating that it was either likely or clearly
violating the policy with an average score of 3.54
out of 5. Figure 4 presents the estimated distribu-
tion of Likert scores over 10,246 tweets using the
10 annotated tweets sampled for each treatment and
extrapolated to all tweets mentioning the treatment.
In terms of volume, we estimate that an annotator
can identify approximately 124.2 policy violations
per hour with our system, based on the average
annotation rate of the 300 treatments and the same
extended set of tweets, where a Likert score of 4
or 5 constitutes a policy violation. See Appendix F
for a full calculation of this statistic.

5 Conclusion

In this work, we present a novel end-to-end human-
in-the-loop evaluation framework for the early iden-
tification of novel misinformation on social me-
dia from raw tweets. Unlike previous evaluation
frameworks, our methodology captures the inter-
play between the system and human content mod-
erators while also providing realistic metrics for
early misinformation detection. We validate our
misinformation detection framework for claims in
the domain of COVID-19 treatments. By aggre-
gating and ranking structured representations of
claims, and relying on human fact-checkers to re-
view trending claims, our system is able to detect
50% of misleading claims earlier than the news.
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6 Limitations

While our approach does require domain-specific
information extraction models to extract structured
representations of novel misinformation claims for
easy aggregation and review, there is significant
prior work on event extraction that can be adapted
to extract check-worthy claims (Ritter et al., 2012;
Luan et al., 2019; Du and Cardie, 2020). Fur-
thermore, we argue content moderators or fact-
checkers are likely to be more effective when fo-
cusing on one claim type at a time (e.g. COVID-19
treatments, election integrity, vaccine effectiveness,
etc.), rather than reviewing a mixture of claims on
multiple topics.

Our COVID-19 case study also makes use of
“mock” content moderators, rather than employees
or contractors working for social media companies
or fact-checking websites. However, we believe
this methodology still provides valuable insight
that would not be publicly available otherwise, as
social media companies do not currently publish
extensive details about their content moderation
processes6 and fact-checking websites vary widely
in policy and have been shown to provide incon-
sistent claim classification (Marietta et al., 2015).
Some prior user studies (Nguyen et al., 2018; Pen-
nycook and Rand, 2019; Shabani et al., 2021) have
also shown laypeople (e.g., Amazon Mechanical
Turk workers) can be good at judging the veracity
of claims or reliability of news articles.

As of late November 2022, Twitter has sus-
pended enforcement of its COVID-19 misleading
information policies such as the one we target in
this paper.7 However, per the Associated Press arti-
cle, one of the possible reasons for the suspension
was that Twitter has “struggled to respond to a tor-
rent of misinformation about the virus” with many
“bogus claims about home remedies” still on the site
despite the previous enforcement of policies. While
we do not have details about the internal automated
systems Twitter has in place to assist with content
moderation, an end-to-end early detection system
might have helped stem the spread of misinforma-
tion on the platform. Additionally, despite the lack
of official policy enforcement, our system can still
be used by third-party fact-checking websites or
researchers to measure and report misinformation

6https://www.nytimes.com/2022/05/19/b
usiness/twitter-content-moderation.html

7https://apnews.com/article/twitter-e
nds-covid-misinformation-policy-cc232c9
ce0f193c505bbc63bf57ecad6

on Twitter. Finally, the main goal of our work is not
to create a system for COVID-19 misinformation
detection but rather to propose a framework that
allows for a fair and realistic evaluation of early
misinformation detection systems in any domain.

7 Broader Impact and Ethical
Considerations

We release our corpus of tweets annotated with
stance, and our dataset of trending misinforma-
tion claims under Twitter’s Developer Agreement,8

which grants permissions for academic researchers
to share Tweet IDs and User IDs (less than
1,500,000 Tweet IDs within 30 days) for non-
commercial purposes, as of October 10th. 2022.

Our system is designed for research purposes
and may contain unknown biases towards demo-
graphic groups or individuals (Sap et al., 2019).
Further investigation into systematic biases should
be conducted before our models are deployed in a
production environment.

We believe this study helps shed light on how
NLP tools developed to help combat online misin-
formation might be used in a real content modera-
tion workflow. We hope this will encourage future
research on human-in-the-loop systems and help
shape the design of new tasks and datasets in this
area. We believe it is beneficial for some research
on combating misinformation to take place outside
of social media companies to provide an unbiased
view of the challenges involved in fighting online
misinformation.
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A Annotation Guidelines for the
Human-in-the-Loop Evaluation

Early Detection of Misleading COVID-19 Treat-
ments. Given a list of trending claims (e.g.,
COVID-19 treatments), annotators are required to
determine (1) if the extraction is a treatment (2)
if the treatment is unapproved and (3) the earli-
est publication date of a news article they can find
that debunks the treatment as effective. Annotators
query the Google News engine with a query in the
form of “[treatment] cures COVID-19” and sort
by date to find the earliest published news article
starting from 2020/04/01 that debunks the treat-
ment as effective against COVID-19. Treatments
are only considered to be unapproved if the anno-
tators can identify a reputable news source as a
reference. Table 5 shows the annotation questions
and guidelines as they appeared to annotators dur-
ing the human-in-the-loop evaluation for this task.
Note that March 1st, 2020 was used as the starting
date for the article search because it was the earliest
date for which we had tweet data.

Identifying COVID-19 Policy Violation Tweets.
Given a tweet with SUPPORTING stance towards
the claim that “treatment is effective in treating
COVID-19”, annotators assign a score based on a
five-point Likert scale, with 5 corresponding to a
clear violation of the policy and 1 representing a
clear non-violation. Table 7 shows the Likert score
descriptions and Table 6 shows the annotation ques-
tions and guidelines as they appeared to annotators
during the human-in-the-loop evaluation for this
task.

B Annotation Interface for Stance
Classification

Our stance data collection procedures (§4.1.2) on
Amazon MTurk were approved by an ethics board.
Before individuals were allowed to annotate data
for our task, they were required to give consent
by electronically signing off on the ethics state-
ment found in Figure 5 (some portions have been
redacted for anonymity purposes). Note that all an-
notators were MTurk workers in the United States
who had previously annotated 1000 HITs with a
pass-rate ≥ 95%. Figure 6 shows the interface
used for collecting these stance annotations.

C Approved Treatments

Table 8 shows the approved treatments that were
used for filtering in §4.1.3.

D Implementation Details

All experiments are performed with NVIDIA A40
GPUs. All hyperparameters are selected using a
held-out development set.

D.1 Claim Extraction Models

Hyperparameters can be found in Table 9.

Sequence Tagging Models. We apply sequence-
labeling models with a standard BIO tagging
scheme (‘B’ and ‘I’ tags are used to identify
treatment tokens), similar to the named entity
recognition method used by Devlin et al. (2019).
We experiment with RoBERTalarge(354M) (Liu
et al., 2019) and a domain-specific COVID-Twitter-
BERTlarge(345M) (Müller et al., 2020).

Question Answering Models. We experiment
with QA-based slot filling models (Du et al., 2021),
which model claim extraction as a SQuADv2.0
question-answering task (Rajpurkar et al., 2018).
We experiment with two approaches: a span-
prediction model that predicts start and end po-
sitions for answer spans in context using RoBERTa
or CT-BERT as the encoder, in addition to a
text-to-text model that generates answers using
T5large(770M) (Raffel et al., 2020; Wang and Lillis,
2020).

Pre-training QA Models. We pre-train QA mod-
els on the SQuADv2.0 dataset for 2 epochs with a
learning rate of 2e-5 and batch size of 16, followed
by fine-tuning for claim extraction.

D.2 Stance Classification Models

Hyperparameters can be found in Table 10.

NBOW. We use an NBOW model and a relative
position encoding (RPE) (Shaw et al., 2018) to indi-
cate the position of the claim in the input sentence.
Specifically, the 1D RPE encodes the relative dis-
tance of each token to the extracted treatment. We
then concatenate NBOW with the RPE embedding
and pass the concatenation through one layer of a
feed-forward neural network.

RoBERTa/CT-BERT. We finetune a
RoBERTalarge (Devlin et al., 2019) and COVID-
Twitter-BERT (CT-BERT) (Müller et al., 2020)
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Question Annotation Guidance

Should the extraction be consid-
ered for consideration of a new
treatment?

• Answer “Repeat” if the same trend has been seen previously.
• Answer“Approved” if treatment should have been marked as approved

based on the approved trending list or is otherwise an obvious valid
treatment.

• Answer “Unsure” if the treatment was in clinical trials at the time or
you are otherwise unsure if the treatment is a valid cure.

• Answer “Not a Treatment” for extraction errors, preventative measures,
etc.

• Answer “General health advice" for any general strategies for staying
healthy such as “hand washing”, “exercise”, “hygiene”, etc.

• Answer “Unapproved” otherwise.

What is the date of publication
of the earliest article stating that
it is misinformation that this
treatment cures COVID-19?

• Answer “NA” if you answered “Approved”, “Unsure”, “Repeat” in the
previous question or if no such article can be found in the time frame
of [03/01/2020 - Present]. Otherwise, provide the date of the earliest
article found.

• How to search for articles:
1. If X is the treatment, search: “X cures COVID-19” on the News

tab in Google - correct any obvious misspellings - try some
obvious variations if do not find appropriate results (e.g. “hcq”
and “hydroxychloroquine”)

2. Set date range to [03/01/2020 - Present] (or narrow the date range
i.e. month by month range if too many search results)

3. Select the option to order results by date
4. Go to the last page in search results (earliest)
5. Find the earliest article that debunks the claim - answer “NA” if

no appropriate article is found
• Make sure to verify the correct date of the article publication from the

article webpage as the date on google news is not always updated and
reliable

What is a link to the article?
• Article URL or "NA" is the answer to the previous question was "NA"

Table 5: Human evaluation question and guidelines provided to annotators during the early detection of misleading
COVID-19 claims task

Question Annotation Guidance

Is the tweet a duplicate (already
seen)? • “Yes” or [BLANK]

Does this tweet violate Twitter’s
COVID-19 unapproved treat-
ment policy?

• Answer “NA” if previous answer was [BLANK], otherwise answer “1”
- “5” based on the attached table (Table 7)

Table 6: Human evaluation question and guidelines provided to annotators during the COVID-19 policy violation
verification task

using a linear classification layer. We use the
best-performing model from Soares et al. (2019),
[ENTITY MARKERS - ENTITY START], which
uses special tokens [Cstart], [Cend] to mark
treatment span in a sentence. The modified
sentence is then fed into BERT/CT-BERT and the
representation of the starting marker [Cstart] is
sent into a linear classification layer.

E Ranking Extracted Claims

To generate a list of treatments mentioned on a spe-
cific day sorted by trendiness or significance we
cannot simply use the daily frequency counts of
treatments mentioned, as more popular treatments
will consistently be mentioned at a higher volume.
In our evaluation dataset used in §4.2, for exam-
ple, chloroquine and its variants are mentioned in
a tweet with SUPPORTING stance approximately
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“You are being asked to be a volunteer in a research study. The purpose of this study is to advance research on
Computational Linguistics. The annotation form will take approximately 3 minutes to complete. You must be 18
years of age or older to participate. Your judgments will be used by researchers worldwide to help advance research
on Computational Linguistics. They will enable machine learning techniques to be applied to problems in natural
language understanding. We will keep your personal information (Mechanical Turk ID, etc.) confidential. The risks
involved are no greater than those involved in daily activities. We will comply with any applicable laws and regulations
regarding confidentiality. To make sure that this research is being carried out in the proper way, the [REDACTED]
may review study records. The [REDACTED] may also look at study records. If you have any questions about the
study, you may contact [REDACTED]. If you have any questions about your rights as a research subject, you may
contact [REDACTED] at [REDACTED]. Thank you for participating in this study. By completing the online survey,
you indicate your consent to be in the study. Subjects located in the EU are not allowed to join this study.”

Figure 5: Amazon MTurk ethics statement which was shown to annotators before stance labeling task

Figure 6: Amazon MTurk interface for stance annota-
tion towards extracted claims in tweets.

Score Description

1 Clearly not in violation of Twitter’s policy.
2 Probably not violating the policy, but does seem

to suggest a questionable treatment may be ef-
fective. For example, the treatment is in clinical
trials at the time the tweet was written, or the
tweet does not make a strong claim about effec-
tiveness.

3 Unclear whether or not this violates the policy.
4 Most likely violating Twitter’s policy. Seems like

the treatment is not effective based on official
sources or reputable news organizations, and the
tweet is making a relatively strong claim that the
treatment is effective.

5 Clearly in violation of Twitter’s policy.

Table 7: Likert score descriptions that are presented to
annotators. These are used to evaluate whether tweets
supporting a misinformation claim are in violation of
Twitter’s policies.

11.5 times per day on average while 56% of total
treatments encountered were mentioned less than
one time in the period studied. Therefore, we re-
quire a method that takes into account the historical
frequency of treatments to calculate the strength of
the association between the trendiness of treatment
and the date.

To do this, we use a one-tailed Fisher’s Exact
Test (Fisher, 1922), which has been shown to be
effective in rare event detection applications in the

Source Treatments

CDC(*) Mask, Face Mask, Social Distanc-
ing, Stay Home, Wash Hands, Hand
Washing, Cover Coughs, Cover
Sneezes

New York Times(**) Remdesivir, REGEN-COV, Bam-
lanivimab, Etesevimab, Sotrovimab,
Dexamethasone, Prone positioning,
Ventilators, Evusheld, Paxlovid, Mol-
nupiravir, Lagevrio, Baricitinib, Olu-
miant, Tocilizumab, Actemra

Table 8: Approved COVID-19 treatments used in evalu-
ation based on lists from the New York Times (Zimmer
et al., 2020) and the Centers for Disease Control (CDC,
2021).

Tagging/QA (non-T5) QA (T5)

learning rate 1e-5,2e-5,3e-5 1e-4,2e-4,3e-4
batch size 8,16 8,16
epoch 50 10

Table 9: Hyperparameters of claim extraction models.

NBOW RoBERTa/CT-BERT

learning rate 1e-4,5e-5,1e-3,5e-3 8e-6,1e-5,3e-5
batch size 4,16 8,16
epoch 50 12

Table 10: Hyperparameters of stance classification mod-
els.

domain of statistical natural language processing
(Moore, 2004; Johnson et al., 2007; Ritter et al.,
2011).

To apply this test, we first calculate the hyperge-
ometric probability, the probability of a particular
distribution of treatment frequencies assuming in-
dependence between the treatment and the date.
We define T and D as the events when a tweet’s ex-
tracted treatment is t and when a tweet is published
on date d respectively. Also, we let C(X) be the
observed frequency of event X and C(X,Y ) be
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the joint frequency of event X and event Y . Given
these definitions, we can calculate the hypergeo-
metric probability, pT,D, as follows:

pT,D = C(T )!C(¬T )!C(D)!C(¬D)!
N !C(T,D)!C(¬T,D)!C(T,¬D)!C(¬T,¬D)!

where N is the sample size.
Given this formula of the hypergeometric proba-

bility for a distribution with a treatment t and date
d, we calculate the p-value of the test by summing
the hypergeometric probabilities of this distribu-
tion and all more extreme distributions. In our case,
more extreme distributions are hypothetical distri-
butions where the joint frequency of a tweet with
a specific treatment published on a specific date is
greater than C(T,D).

A treatment is flagged by our system if its p-
value is less than the threshold or α-value as set
by the content moderator and it has not previously
broken this threshold.

F Policy Violations Per Hour Calculation

Here we detail the calculation of the 124.2 policy
violations per hour statistic reported in §4.2. First,
we calculate the total amount of time required by
each of the phases of the human annotation:

1. Stage 1: Detecting Misleading COVID-19
Treatments (§4.2.1)

• # of claims = 300 claims
• time of verifying a claim = 89.7s/claim
• time spent on claim annotation = 300 ∗
89.7s = 7.5 hours

2. Stage 2: Identifying COVID-19 Policy Viola-
tions (§4.2.2)

• # of tweets mentioning an unapproved
claim in the full batch = 10246 claims

• time to annotate an individual tweet =
16.1s/tweet

• estimated time spent on tweet annotation
= 10246 ∗ 16.1s = 45.8 hours

Next, we detail the calculation steps using these
calculated times:

1. Total annotation time = 7.5 + 45.8 =
53.3 hours

2. Estimated # of tweets (considering the full
batch - see scores 4 and 5 bars in Figure 4)
containing policy violation = 3151+ 3467 =
6618 tweets

3. # policy violated identified per hour of
annotation time = 6618/53.3 hours =
124.2 tweets/hours

4. total # tweets judged per hour of an-
notation time = 10246/53.3 hours =
192.2 tweets/hour
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