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Abstract

The retrieval model is an indispensable compo-
nent for real-world knowledge-intensive tasks,
e.g., open-domain question answering (ODQA).
As separate retrieval skills are annotated for
different datasets, recent work focuses on cus-
tomized methods, limiting the model transfer-
ability and scalability. In this work, we pro-
pose a modular retriever where individual mod-
ules correspond to key skills that can be reused
across datasets. Our approach supports flexible
skill configurations based on the target domain
to boost performance. To mitigate task inter-
ference, we design a novel modularization pa-
rameterization inspired by sparse Transformer.
We demonstrate that our model can benefit
from self-supervised pretraining on Wikipedia
and fine-tuning using multiple ODQA datasets,
both in a multi-task fashion. Our approach
outperforms recent self-supervised retrievers
in zero-shot evaluations and achieves state-of-
the-art fine-tuned retrieval performance on NQ,
HotpotQA and OTT-QA.

1 Introduction

Gathering supportive evidence from external
knowledge sources is critical for knowledge-
intensive tasks, such as open-domain question an-
swering (ODQA; Lee et al., 2019) and fact ver-
ification (Thorne et al., 2018). Since different
ODQA datasets focus on different information-
seeking goals, this task typically is handled by cus-
tomized retrieval models (Karpukhin et al., 2020;
Yang et al., 2018; Wu et al., 2020; Ma et al., 2022a).
However, this dataset-specific paradigm has lim-
ited model scalability and transferability. For ex-
ample, augmented training with single-hop data
hurts multi-hop retrieval (Xiong et al., 2021b). Fur-
ther, as new information needs constantly emerge,
dataset-specific models are hard to reuse.

† Work done during an internship at Microsoft Research
∗ Equal contribution

Figure 1: Comparison of dense retrievers in terms
of considered query type and supported skill config-
uration [a](Karpukhin et al., 2020) [b](Xiong et al.,
2021b) [c](Wu et al., 2020). Each box represents a
skill ( a =single retrieval, a =expanded retrieval,
a =linking, a =reranking, ) and the arrows represent

the order of execution. In our case, we can flexibly com-
bine and chain the skills at inference time for different
tasks to achieve optimal performance.

In this work, we propose Chain-of-Skills
(COS), a modular retriever based on Transformer
(Vaswani et al., 2017), where each module imple-
ments a reusable skill that can be used for different
ODQA datasets. Here, we identify a set of such re-
trieval reasoning skills: single retrieval, expanded
query retrieval, entity span proposal, entity linking
and reranking (§2). As shown in Figure 1, recent
work has only explored certain skill configurations.
We instead consider jointly learning all skills in
a multi-task contrastive learning fashion. Besides
the benefit of solving multiple ODQA datasets, our
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multi-skill formulation provides unexplored ways
to chain skills for individual use cases. In other
words, it allows flexible configuration search ac-
cording to the target domain, which can potentially
lead to better retrieval performance (§4).

For multi-task learning, one popular approach is
to use a shared text encoder (Liu et al., 2019a), i.e.,
sharing representations from Transformer and only
learning extra task-specific headers atop. However,
this method suffers from undesirable task interfer-
ence, i.e., negative transfer among retrieval skills.
To address this, we propose a new modularization
parameterization inspired by the recent mixture-of-
expert in sparse Transformer (Fedus et al., 2021a),
i.e., mixing specialized and shared representations.
Based on recent analyses on Transformer (Meng
et al., 2022), we design an attention-based alter-
native that is more effective in mitigating task in-
terference (§5). Further, we develop a multi-task
pretraining using self-supervision on Wikipedia so
that the pretrained COS can be directly used for
retrieval without dataset-specific supervision.

To validate the effectiveness of COS, we consider
zero-shot and fine-tuning evaluations with regard
to the model in-domain and cross-dataset gener-
alization. Six representative ODQA datasets are
used: Natural Questions (NQ; Kwiatkowski et al.,
2019), WebQuestions (WebQ; Berant et al., 2013),
SQuAD (Rajpurkar et al., 2016), EntityQuestions
(Sciavolino et al., 2021), HotpotQA (Yang et al.,
2018) and OTT-QA (Chen et al., 2021a), where the
last two are multi-hop datasets. Experiments show
that our multi-task pretrained retriever achieves
superior zero-shot performance compared to re-
cent state-of-the-art (SOTA) self-supervised dense
retrievers and BM25 (Robertson and Zaragoza,
2009). When fine-tuned using multiple datasets
jointly, COS can further benefit from high-quality
supervision effectively, leading to new SOTA re-
trieval results across the board. Further analy-
ses show the benefits of our modularization pa-
rameterization for multi-task pretraining and fine-
tuning, as well as flexible skill configuration via
Chain-of-Skills inference.1

2 Background

We consider five retrieval reasoning skills: single
retrieval, expanded query retrieval, entity linking,
entity span proposal and reranking. Convention-

1Data and code available at https://github.com/
Mayer123/UDT-QA

ally, each dataset provides annotations on a differ-
ent combination of skills (see Table A1). Hence,
we can potentially obtain training signals for in-
dividual skills from multiple datasets. Below we
provide some background for these skills.
Single Retrieval Many ODQA datasets (e.g., NQ;
Kwiatkowski et al., 2019) concern simple/single-
hop queries. Using the original question as input
(Figure 2 bottom-left), single-retrieval gathers iso-
lated supportive passages/tables from target sources
in one shot (Karpukhin et al., 2020).
Expanded Query Retrieval To answer complex
multi-hop questions , it typically requires evidence
chains of two or more separate passages (e.g., Hot-
potQA; Yang et al., 2018) or tables (e.g., OTT-QA;
Chen et al., 2021a). Thus, follow-up rounds of re-
trieval are necessary after the initial single retrieval.
The expanded query retrieval (Xiong et al., 2021b)
takes an expanded query as input, where the ques-
tion is expanded with the previous-hop evidence
(Figure 2 bottom-center). The iterative retrieval
process generally shares the same target source.
Entity Span Proposal Since many questions con-
cern entities, detecting those salient spans in the
question or retrieved evidence is useful. The task is
related to named entity recognition (NER), except
requiring only binary predictions, i.e., whether a
span corresponds to an entity. It is a prerequisite
for generating entity-centric queries (context with
target entities highlighted; Figure 2 bottom-right)
where targeted entity information can be gathered
via downstream entity linking.
Entity Linking Mapping detected entities to the
correct entries in a database is crucial for analyzing
factoid questions. Following Wu et al. (2020), we
consider an entity-retrieval approach, i.e., using the
entity-centric query for retrieving its corresponding
Wikipedia entity description.
Rereanking Previous work often uses a reranker
to improve the evidence recall in the top-ranked
candidates. Typically, the question with a complete
evidence chain is used together for reranking.

3 Approach

In this work, we consider a holistic approach to
gathering supportive evidence for ODQA, i.e., the
evidence set contains both singular tables/passages
(from single retrieval) and connected evidence
chains (via expanded query retrieval/entity linking).
As shown in Figure 2, COS supports flexible skill
configurations, e.g., expanded query retriever and
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Figure 2: Chain-of-Skills (COS) model architecture with three different query types. The left blue box
indicates the single retrieval query input. The middle green box is the expanded query retrieval input based on the
single retrieval results. The right orange case is the entity-centric query with “deep learning” as the targeted entity.

the entity linker can build upon the single-retrieval
results. As all retrieval skill tasks are based on
contrastive learning, we start with the basics for
our multi-task formulation. We then introduce our
modularization parameterization for reducing task
interference. Lastly, we discuss ways to use self-
supervision for pretraining and inference strategies.

3.1 Reasoning Skill Modules

All reasoning skills use text encoders based on
Transformer (Vaswani et al., 2017). Particularly,
only BERT-base (Devlin et al., 2019) is consid-
ered without further specification. Text inputs are
prepended with a special token [CLS] and differ-
ent segments are separated by the special token
[SEP]. The bi-encoder architecture (Karpukhin
et al., 2020) is used for single retrieval, expanded
query retrieval, and entity linking. We use dot prod-
uct for sim(·, ·).
Retrieval As single retrieval and expanded query
retrieval only differ in their query inputs, these two
skills are discussed together here. Specifically, both
skills involve examples of a question Q, a positive
document P+. Two text encoders are used, i.e., a
query encoder for questions and a context passage
encoder for documents. For the expanded query
case (Figure 2 bottom-center), we concatenate Q
with the previous-hop evidence as done in Xiong
et al. (2021b), i.e., [CLS] Q [SEP] P+

1 [SEP].
Following the literature, [CLS] vectors from both
encoders are used to represent the questions and

documents respectively. The training objective is

Lret = − exp(sim(q,p+))∑
p′∈P∪{p+} exp(sim(q,p′))

, (1)

where q,p are the query and document vectors
respectively and P is the set of negative documents.
Entity Span Proposal To achieve a multi-task for-
mulation, we model entity span proposal based on
recent contrastive NER work (Zhang et al., 2022a).
Specifically, for an input sequence with N tokens,
x1, . . . , xN , we encode it with a text encoder to
a sequence of vectors hm

1 , . . . ,hm
N ∈ Rd. We

then build the span representations using the span
start and end token vectors, m(i,j) = tanh((hm

i ⊕
hm
j )W a), where i and j are the start and end posi-

tions respectively, ⊕ denotes concatenation, tanh
is the activation function, and W a ∈ R2d×d are
learnable weights. For negative instances, we ran-
domly sample spans within the maximum length
of 10 from the same input which do not correspond
to any entity. Then we use a learned anchor vec-
tor s ∈ Rd for contrastive learning, i.e., pushing it
close to the entity spans and away from negative
spans.

Lpos = − exp(sim(s,m+))∑
m′∈M∪{m+} exp(sim(s,m′))

, (2)

where M is the negative span set which always
contains a special span corresponding to [CLS],
m[CLS] = hm

0 . However, the above objective
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alone is not able to determine the prediction of
entity spans from null cases at test time. To address
this, we further train the model with an extra objec-
tive to learn a dynamic threshold using m[CLS]

Lcls = − exp(sim(s,m[CLS])∑
m′∈M exp(sim(s,m′))

. (3)

The overall entity span proposal loss is computed as
Lspan = (Lpos + Lcls)/2. Thus, spans with scores
higher than the threshold are predicted as positive.
Entity Linking Unlike Wu et al. (2020) where en-
tity markers are inserted to the entity mention con-
text (the entity mention with surrounding context),
we use the raw input sequence as in the entity span
proposal task. For the entity mention context, we
pass the input tokens x1, . . . , xN through the entity
query encoder to get he

1, . . . ,h
e
N ∈ Rd. Then we

compute the entity vector based on its start position
i and end position j, i.e., e = (he

i + he
j)/2. For

entity descriptions, we encode them with the entity
description encoder and use the [CLS] vector pe

as representations. The model is trained to match
the entity vector with its entity description vector

Llink = − exp(sim(e,p+
e ))∑

p′∈Pe∪{p+
e } exp(sim(e,p′))

, (4)

where p+
e is the linked description vector and Pe

is the negative entity description set.
Reranking Given a question Q and a passage P ,
we concatenate them as done in expanded query
retrieval format [CLS] Q [SEP] P [SEP], and
encode it using another text encoder. We use the
pair consisting of the [CLS] vector hr

[CLS] and
the first [SEP] vector hr

[SEP] from the output for
reranking. The model is trained using the loss

Lrank = −
exp(sim(hr+

[CLS],h
r+
[SEP]))∑

pr′∈Pr∪{pr+} exp(sim(hr′
[CLS],h

r′
[SEP]))

,

(5)

where Pr is the set of negative passages concate-
nated with the same question. Intuitively, our for-
mulation encourages hr

[CLS] to capture more in-
formation about the question and hr

[SEP] to focus
more on the evidence. The positive pair where the
evidence is supportive likely has higher similarity
than the negative ones. Our formulation thus spares
the need for an extra task-specific header. As the
model only learns to rerank single passages, we
compute the score for each passage separately for
multi-hop cases.

3.2 Modular Skill Specialization

Implementing all aforementioned modules using
separate models is apparently inefficient. As recent
work finds that parameter sharing improves the bi-
encoder retriever (Xiong et al., 2021b), we thus
focus on a multi-task learning approach.

One popular choice is to share the text encoder’s
parameter of all modules (Liu et al., 2019a). How-
ever, this approach suffers from task interference,
resulting in degraded performance compared with
the skill-specific model (§5.1). We attribute the
cause to the competition for the model capacity,
i.e., conflicting signals from different skills require
attention to individual syntactic/semantic patterns.
For example, the text encoder for entity-centric
queries likely focuses on the local context around
the entity while the expanded query one tends to
represent the latent information based on the rela-
tion between the query and previous hop evidence.

Motivated by recent modular approaches for
sparse Transformer LM (Fedus et al., 2021b), we
propose to mitigate the task interference by mix-
ing skill-specific Transformer blocks with shared
ones. A typical Transformer encoder is built with a
stack of regular Transformer blocks, each consist-
ing of a multi-head self-attention (MHA) sub-layer
and a feed-forward network (FFN) sub-layer, with
residual connections (He et al., 2015) and layer-
normalization (Ba et al., 2016) applied to both sub-
layers. The shared Transformer block is identical to
a regular Transformer block, i.e., all skill inputs are
passed through the same MHA and FFN functions.

As shown in Figure 2, for skill-specific Trans-
former blocks, we select a specialized sub-layer
from a pool of I parallel sub-layers based on the
input, i.e., different skill inputs are processed inde-
pendently. One option is to specialize the FFN ex-
pert sub-layer for individual skills, which is widely
used by recent mixture-of-expert models (Fedus
et al., 2021b; Cheng et al., 2022). As the FFN
sub-layer is found to be important for factual asso-
ciations (Meng et al., 2022), we hypothesize that
using the popular FFN expert is sub-optimal. Since
most reasoning skills require similar world knowl-
edge, specializing FFN sub-layers likely hinders
knowledge sharing. Instead, different skills typ-
ically require the model to attend to distinct in-
put parts. Thus, we investigate a more parameter-
efficient alternative, i.e., MHA specialization. In
our experiments, we find it to be more effective in
reducing task interference (§5.1).
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Figure 3: Expert configuration for COS at pretraining
and fine-tuning. Each numbered box is a skill-specific
expert. The lines denote input routing where solid ones
also indicate weight initialization mappings. Green lines
highlight the expanded query routing which is different
for pretraining and fine-tuning.

Expert Configuration Regarding the modulariza-
tion, a naive setup is to route various task inputs
to their dedicated sub-layers (experts), i.e., two
experts for each bi-encoder task (single retrieval,
expanded query retrieval and entity linking) and
one expert for each cross-encoder task (entity span
proposal and reranking), leading to eight experts in
total. To save computation, we make the following
adjustments. Given that single and expanded query
retrievers share the same set of target passages, we
merge the context expert for both cases. Due to
data sparsity, we find that routing the expanded
queries and reranker inputs which are very similar
to separate experts is problematic (§5.1). Thus, we
merge the expert for expanded queries and reranker
inputs. During self-supervised pretraining with
three bi-encoder tasks, we further share the expert
for single and expanded queries for efficiency. The
overall expert configuration is shown in Figure 3.

Multi-task Self-supervision Inspired by the recent
success of Izacard et al. (2021), we also use self-
supervision on Wikipedia for pretraining. Here,
we only consider pretraining for bi-encoder skills
(i.e., single retrieval, expanded query retrieval, and
entity linking) where abundant self-supervision is
available. Unlike prior work focusing only on
single-type pretraining, we consider a multi-task
setting using individual pages and the hyperlink
relations among them. Specifically, we follow Izac-
ard et al. (2021) and Wu et al. (2020) to construct
examples for single retrieval and entity linking, re-
spectively. For single retrieval, a pair of randomly
cropped views of a passage is used as a positive

example. For entity linking, a short text snippet
with a hyperlinked entity (entity mention context)
is used as the query, and the first paragraph of its
linked Wikipedia page is treated as the target (en-
tity description). For a given page, we construct an
expanded query using a randomly-sampled short
text snippet with its first paragraph, and use one
first paragraph from linked pages as the target.

3.3 Inference

During inference, different skills can be flexibly
combined to boost retrieval accuracy. Those stud-
ied configurations are illustrated in Figure 1. To
consolidate the evidence set obtained by different
skills, we first align the linking scores based on
the same step retrieval scores (single or expanded
query retrieval) for sorting. Documents returned
by multiple skills are considered more relevant and
thus promoted in ranking. More details with run-
ning examples are provided in Appendix A.

4 Experiments

4.1 Datasets

We consider six popular datasets for evaluation,
all focused on Wikipedia, with four single-hop
data, NQ (Kwiatkowski et al., 2019), WebQ (Be-
rant et al., 2013), SQuAD (Rajpurkar et al., 2016)
and EntityQuestions (Sciavolino et al., 2021); two
multi-hop data, HotpotQA (Yang et al., 2018) and
OTT-QA (Chen et al., 2021a). Dataset-specific
corpora are used for multi-hop datasets, because
HotpotQA requires retrieval hopping between text
passages while table-passage hopping is demanded
by OTT-QA. For single-hop data, we use the
Wikipedia corpus from Karpukhin et al. (2020).
More detailed (pretraining/fine-tuning) data statis-
tics and experimental settings are in Appendix B.

4.2 Evaluation Settings

We evaluate our model in three scenarios.
Zero-shot Evaluation Similar to recent self-
supervised dense retrievers on Wikipedia, we con-
duct zero-shot evaluations using the retrieval skill
from our pretrained model on NQ, WebQ, Enti-
tyQuestions and HotpotQA. To assess the model’s
ability to handle expanded query retrieval, we de-
sign an oracle second-hop retrieval setting (gold
first-hop evidence is used) based on HotpotQA. Fol-
lowing Izacard et al. (2021) and Ram et al. (2022),
we report top-k retrieval accuracy (answer recall),

1603



NQ WebQ EntityQuestions HotpotQA Avg
Top-20 Top-100 Top-20 Top-100 Top-20 Top-100 Top-20 Top-100 Top-20 Top-100

BM25 62.9 78.3 62.4 75.5 70.8 79.2 37.5 50.5 58.4 70.9
Contriever (Izacard et al., 2021) 67.8 82.1 65.4 79.8 61.8 74.2 48.7 64.5 60.9 75.2
Spider (Ram et al., 2022) 68.3 81.2 65.9 79.7 65.1 76.4 35.3 48.6 58.7 71.5

COS (pretrain-only) 68.0 81.8 66.7 80.3 70.7 79.1 77.9 87.9 70.8 82.3

Table 1: Zero-shot top-k accuracy on test sets for NQ, WebQ and EntityQuestions, and dev set for HotpotQA.

Top-20 Top-100

DPR-multi (Karpukhin et al., 2020) 79.5 86.1
ANCE-multi (Xiong et al., 2021a) 82.1 87.9

DPR-PAQ (Oguz et al., 2022) 84.7 89.2
co-Condenser (Gao and Callan, 2022) 84.3 89.0
SPAR-wiki (Chen et al., 2021b) 83.0 88.8

COS 85.6 90.2

Table 2: Supervised top-k accuracy on NQ test.

i.e., the percentage of questions for which the an-
swer string is found in the top-k passages.

Supervised In-domain Evaluation We further
fine-tune our pretrained model with two extra skills
(entity span proposal and reranking) on NQ, Hot-
potQA and OTT-QA, again in a multi-task fash-
ion. Unlike multi-hop data with supervision for all
skills, only single retrieval and reranking data is
available for NQ. During training, all datasets are
treated equally without any loss balancing. Differ-
ent from previous retrieval-only work, we explore
Chain-of-Skills retrieval by using different
skill configurations. Specifically, we use skill con-
figuration for task A, B and C shown in Figure 1
for NQ, OTT-QA and HotpotQA, respectively. We
again report top-k retrieval accuracy for NQ and
OTT-QA following previous work. For HotpotQA,
we follow the literature using the top-1 pair of evi-
dence accuracy (passage EM).

Cross-data Evaluation To test the model robust-
ness towards domain shift, we conduct cross-data
evaluations on SQuAD and EntityQuestions. Al-
though considerable success has been achieved for
supervised dense retrievers using in-domain eval-
uations, those models have a hard time general-
izing to query distribution shift (e.g., questions
about rare entities; Sciavolino et al., 2021) com-
pared with BM25. In particular, we are interested
to see whether Chain-of-Skills retrieval is
more robust. Again, top-k retrieval accuracy is
used.

Top-20 Top-50 Top-100

CORE (Ma et al., 2022a) 74.5 82.9 87.1

COS 79.9 88.9 92.2
COS w/ CORE configuration 80.5 88.6 91.8

Table 3: Supervised top-k accuracy on OTT-QA dev.

Passage EM

MDR (Xiong et al., 2021b) 81.20
Baleen (Khattab et al., 2021) 86.10

IRRR (Qi et al., 2021) 84.10
TPRR (Zhang et al., 2021a) 86.19

HopRetriever-plus (Li et al., 2021) 86.94
AISO (Zhu et al., 2021) 88.17

COS 88.89

Table 4: Supervised passage EM on HotpotQA dev.

4.3 Results

Zero-shot Results For zero-shot evaluations, we
use two recent self-supervised dense retrievers,
Contriever (Izacard et al., 2021) and Spider (Ram
et al., 2022), and BM25 as baselines. The results
are presented in Table 1. As we can see, BM25 is a
strong baseline matching the average retrieval per-
formance of Spider and Contriever over considered
datasets. COS achieves similar results on NQ and
WebQ compared with self-supervised dense meth-
ods. On the other hand, we observe significant
gains on HotpotQA and EntityQuestions, where
both dense retrievers are lacking. In summary, our
model shows superior zero-shot performance in
terms of average answer recall across the board,
surpassing BM25 with the largest gains, which in-
dicates the benefit of our multi-task pretraining.
Supervised In-domain Results As various cus-
tomized retrievers are developed for NQ, OTT-
QA and HotpotQA, we compare COS with differ-
ent dataset-specific baselines separately. For NQ,
we report two types of baselines, 1) bi-encoders
with multi-dataset training and 2) models with aug-
mented pretraining. For the first type, we have
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DPR-multi (Karpukhin et al., 2020) and ANCE-
multi (Xiong et al., 2021a), where the DPR model
is initialized from BERT-based and ANCE is ini-
tialized from DPR. For the second type, DPR-PAQ
(Oguz et al., 2022) is initialized from the RoBERTa-
large model (Liu et al., 2019b) with pretraining us-
ing synthetic queries (the PAQ corpus (Lewis et al.,
2021)), co-Condenser (Gao and Callan, 2022) in-
corporated retrieval-oriented modeling during lan-
guage model pretraining on Wikipedia; SPAR-wiki
(Chen et al., 2021b) combine a pretrained lexical
model on Wikipedia with a dataset-specific dense
retriever. Both co-Condenser and SPAR-wiki are
initialized from BERT-base. As shown by results
for NQ (Table 2), COS outperforms all baselines
with or without pretraining. It is particularly en-
couraging that despite being a smaller model, COS
achieves superior performance than DPR-PAQ. The
reasons are two-fold: Oguz et al. (2022) has shown
that scaling up the retriever from base to large size
only provides limited gains after pretraining. More-
over, DPR-PAQ only learns a single retrieval skill,
whereas COS can combine multiple skills for in-
ference. We defer the analysis of the advantage of
chain-of-skills inference later (§5.2).

For OTT-QA, we only compare with the SOTA
model CORE (Ma et al., 2022a), because other
OTT-QA specific retrievers are not directly compa-
rable where extra customized knowledge source is
used. As CORE also uses multiple skills to find evi-
dence chains, we include a baseline where the infer-
ence follows the CORE skill configuration but uses
modules from COS. For HotpotQA, we compare
against three types of baselines, dense retrievers
focused on expanded query retrieval MDR (Xiong
et al., 2021b) and Baleen (Khattab et al., 2021),
sparse retrieval combined with query reformulation
IRRR (Qi et al., 2021) and TPRR (Zhang et al.,
2021a) and ensemble of dense, sparse and hyper-
link retrieval HopRetriever (Li et al., 2021) and
AISO (Zhu et al., 2021). The results on OTT-QA
and HotpotQA are summarized in Table 3 and Ta-
ble 4. It is easy to see that COS outperforms all
the baselines here, again showing the advantage of
our configurable multi-skill model over multiple
types of ODQA tasks. Later, our analyses show
that both Chain-of-Skills inference and pre-
training contribute to the observed gains.

Cross-data Results Given that both EntityQues-
tions and SQuAD are single-hop, we use baselines
on NQ with improved robustness for comparison.

EntityQuestions SQuAD
Top-20 Top-100 Top-20 Top-100

BM25 70.8 79.2 71.1 81.8
DPR-multi (Karpukhin et al., 2020) 56.6 70.1 52.0 67.7
SPAR-wiki (Chen et al., 2021b) 73.6 81.5 73.0 83.6

COS 76.3 82.4 72.6 81.2

Table 5: Cross-dataset top-k accuracy on test sets.

#Params Top-20 Top-100

Chain-of-Skills inference

No Expert 111M 90.2 92.4
FFN Expert(naive) 252M 91.3 93.4
MHA Expert(naive) 182M 92.0 94.0
MHA Expert(COS) 182M 92.0 94.2

Retrieval-only inference

Multi-hop Retriever 110M 85.1 88.9
MHA Expert(naive) 182M 82.8 87.0
MHA Expert(COS) 182M 85.9 89.6

Table 6: Ablation results on HotpotQA dev using top-
k retrieval accuracy. All models are initialized from
BERT-base and trained on HotpotQA only.

Particularly, SPAR-wiki is an ensemble of two
dense models with one pretrained using BM25 su-
pervision on Wikipedia and the other fine-tuned
on NQ. BM25 is included here, as it is found to
achieve better performance than its dense counter-
part on those two datasets. The evaluation results
are shown in Table 5. Overall, our model achieves
the largest gains over BM25 on both datasets, indi-
cating that our multi-task fine-tuned model with
Chain-of-Skills inference is more robust
than previous retrieval-only approaches.

5 Analysis

5.1 Task Interference

We conduct ablation studies on HotpotQA to com-
pare different ways of implementing skill-specific
specialization (discussed in §3.2) and their effects
on task interference. As MHA experts are used for
our model, we consider two variants for compari-
son: 1) the no-expert model where all tasks share
one encoder, and 2) the FFN expert model where
specialized FFN sub-layers are used. Then we also
compare the proposed expert configuration with a
variant where the expanded query retrieval inputs
share the same expert as single retrieval, denoted
as the naive setting. The results are shown in the
upper half of Table 6. Compared with the no-expert
model, both FFN and MHA experts can effectively
reduce task interference, wherein MHA expert is
more effective overall. Our proposed expert config-
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Figure 4: Top-100 retrieval accuracy on inference strat-
egy: Chain-of-Skills vs retrieval-only.

Figure 5: Comparison on the effect of pretraining using
top-100 retrieval accuracy with COS inference.

uration can further help.

5.2 Benefit of Chain-of-Skills Inference

Here we explore the benefits of the chained skill
inference over the retrieval-only version. We ad-
ditionally train a multi-hop retriever following
Xiong et al. (2021b), and compare it with the two
MHA expert models using the same two rounds
of retrieval-only inference. The comparison is
shown in the lower part of Table 6. As we can
see, retrieval-only inference suffers large drops in
performance. Although our proposed and naive
MHA expert configurations have similar perfor-
mance using Chain-of-Skills inference, the
naive configuration model shows severe degrada-
tion caused by task interference compared with
the multi-hop retriever, validating the effective-
ness of our proposed model. We further com-
pare our Chain-of-Skills inference with the
retrieval-only inference on NQ, EntityQuestions
and SQuAD in Figure 4. It is easy to see that
our pretraining can benefit the retrieval-only ver-
sion. However, using better skill configurations via
Chain-of-Skills inference yields further im-
provements, particularly on those unseen datasets.

5.3 Effect of Pretraining

To further demonstrate the benefit of our proposed
multi-task pretraining, we fine-tune another multi-

Query Doc Top-20 Top-100

Single query* 0 1 96.1 98.2
Single query 4 1 90.1 95.2
Single query 2 1 91.8 95.9
Single query 2 3 87.4 92.7

Expanded query 0 1 94.2 97.0
Expanded query* 4 1 95.3 97.4
Expanded query 2 1 74.5 85.8
Expanded query 2 3 67.3 79.6

Table 7: Results of feeding the inputs to different ex-
perts, where the first two columns represent the query
expert id and document expert id. * denotes the pro-
posed setup

task model following the same training protocol
as COS but BERT model weights are used for ini-
tialization. Both COS and the model without pre-
training are then using the same skill configuration
for inference. The results are illustrated in Fig-
ure 5. Similar to the retrieval-only version (Fig-
ure 4), we find that COS consistently outperforms
the multi-task model without pretraining across all
considered datasets using Chain-of-Skills
inference. Again, the pretrained model is found
to achieve improvements across the board, espe-
cially on out-of-domain datasets, which validates
the benefits of our multi-task pretraining.

5.4 Swapping Experts

To understand if different experts in our model
learned different specialized knowledge, we experi-
ment with swapping experts for different inputs on
HotpotQA. In particular, we feed the single query
input and expanded query input to different query
experts and then retrieve from either the context
passage index or the entity description index. For
single query input, we measure if the model can
retrieve one of the positive passages. For expanded
query input, we compute the recall for the other
positive passage as done in (§4.3). The results are
shown in Table 7. Although both the single query
expert and the expanded query expert learn to re-
trieve evidence using the [CLS] token, swapping
the expert for either of these input types leads to a
significant decrease in performance. Also, switch-
ing to the entity query expert and retrieving from
the entity description index results in a large drop
for both types of inputs. This implies that each
specialized expert acquires distinct knowledge and
cannot be substituted for one another.
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Dev Test
EM F1 EM F1

HYBRIDER (Chen et al., 2020) 10.3 13.0 9.7 12.8
FR+CBR(Chen et al., 2021a) 28.1 32.5 27.2 31.5
CARP (Zhong et al., 2022) 33.2 38.6 32.5 38.5
OTTer (Huang et al., 2022) 37.1 42.8 37.3 43.1
CORE (Ma et al., 2022a) 49.0 55.7 47.3 54.1

CORE + FiE 51.4 57.8 - -
COS + FiE 56.9 63.2 54.9 61.5

Table 8: End-to-end QA results on OTT-QA.

6 Question Answering Experiments

Here, we conduct end-to-end question-answering
experiments on NQ, OTT-QA and HotpotQA, using
retrieval results from COS. Following the literature,
we report exact match (EM) accuracy and F1 score.

For NQ and OTT-QA, we re-implement the
Fusion-in-Encoder (FiE) model (Kedia et al., 2022)
because of its superior performance on NQ. For
NQ, the model reads top-100 passages returned
by COS, and for OTT-QA, the model reads top-50
evidence chains, in order to be comparable with
previous work. Here, separate models are trained
for each dataset independently. Due to space con-
straints, we only present the results on OTT-QA
and leave the NQ results to Table A2. The OTT-
QA results are summarized in Table 8. Our model,
when coupled with the FiE, is able to outperform
the previous baselines by large margins on OTT-
QA, and we can see that the superior performance
of our model is mainly due to COS.

Finally, for HotpotQA, since the task requires
the model to predict supporting sentences in addi-
tion to the answer span, we follow Zhu et al. (2021)
to train a separate reader model to learn answer pre-
diction and supporting sentence prediction jointly.
Due to space constraints, we leave the full results
to Table A3. Overall, our method achieves compet-
itive QA performance against the previous SOTA
with improved exact match accuracy.

7 Related Work

Dense retrievers are widely used in recent litera-
ture for ODQA (Lee et al., 2019; Karpukhin et al.,
2020). While most previous work focuses on sin-
gle retrieval (Xiong et al., 2021a; Qu et al., 2021),
some efforts have also been made towards better
handling of other query types. Xiong et al. (2021b)
propose a joint model to handle both single retrieval
and expanded query retrieval. Chen et al. (2021b)
train a dense model to learn salient phrase retrieval.

Ma et al. (2022a) build an entity linker to handle
multi-hop retrieval. Nevertheless, all those mod-
els are still customized for specific datasets, e.g.,
only a subset of query types are considered or sep-
arate models are used, making them un-reusable
and computationally intensive. We address these
problems by pinning down a set of functional skills
that enable joint learning over multiple datasets.

Mixure-of-expert models have also become pop-
ular recently (Fedus et al., 2021b). Methods like
gated routing (Lepikhin et al., 2020) or stochastic
routing of experts (Zuo et al., 2021) do not differ-
entiate the knowledge learned by different experts.
Instead, our work builds expert modules that learn
reusable skills which can be flexibly combined for
different use cases.

Another line of work focus on unsupervised
dense retrievers using self-supervised data con-
structed from the inverse-cloze-task (Lee et al.,
2019), random croppings (Izacard et al., 2021),
truncation of passages with the same span (Ram
et al., 2022), hyperlink-induced passages (Zhou
et al., 2022) or synthetic QA pairs (Oguz et al.,
2022). Other model architecture adjustments on
Transformer for retrieval are proposed (Gao and
Callan, 2021, 2022). Our work can be viewed as a
synergy of both. Our multi-task pretrained model
can perform better zero-shot retrieval. Our modular
retriever can be further fine-tuned in a multi-task
fashion to achieve better performance.

8 Conclusions

In this work, we propose a modular model
Chain-of-Skills (COS) that learns five
reusable skills for ODQA via multi-task learning.
To reduce task interference, we design a new pa-
rameterization for skill modules. We also show that
skills learned by COS can be flexibly chained to-
gether to better fit the target task. COS can directly
perform superior zero-shot retrieval using multi-
task self-supervision on Wikipedia. When fine-
tuned on multiple datasets, COS achieves SOTA
results across the board. For future work, we are
interested in exploring scaling up our method and
other scenarios, e.g., commonsense reasoning (Tal-
mor et al., 2022) and biomedical retrieval (Nentidis
et al., 2020; Zhang et al., 2022b).
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Limitations

We identify the following limitations of our work.
Our current COS’s reranking expert only learns

to rerank single-step results. Thus it can not model
the interaction between documents in case of multi-
passage evidence chains, which might lead to sub-
optimal performance, e.g., when we need to rerank
the full evidence path for HotpotQA. At the same
time, we hypothesize that the capacity of the small
model used in our experiments is insufficient for
modeling evidence chain reranking. We leave the
exploration of learning a full path reranker for fu-
ture work.

Also, our current pretraining setup only includes
the three bi-encoder tasks, and thus we can not
use the pretrained model out-of-box to solve tasks
like end-to-end entity linking. Consequently, the
learned skills from self-supervision can not be
chained together to perform configurable zero-shot
retrieval. It would be interesting to also include
the entity span proposal skill in the pretraining
stage, which could unleash the full potential of
the Chain-of-Skills inference for zero-shot
scenarios.
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ing complex open-domain questions with multi-hop
dense retrieval. International Conference on Learn-
ing Representations.

Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua Bengio,
William Cohen, Ruslan Salakhutdinov, and Christo-
pher D. Manning. 2018. HotpotQA: A dataset for
diverse, explainable multi-hop question answering.
In Proceedings of the 2018 Conference on Empiri-
cal Methods in Natural Language Processing, pages
2369–2380, Brussels, Belgium. Association for Com-
putational Linguistics.

Sheng Zhang, Hao Cheng, Jianfeng Gao, and Hoifung
Poon. 2022a. Optimizing bi-encoder for named en-
tity recognition via contrastive learning.

Sheng Zhang, Hao Cheng, Shikhar Vashishth, Cliff
Wong, Jinfeng Xiao, Xiaodong Liu, Tristan Nau-
mann, Jianfeng Gao, and Hoifung Poon. 2022b.
Knowledge-rich self-supervision for biomedical en-
tity linking. In Findings of the Association for Com-
putational Linguistics: EMNLP 2022, pages 868–
880, Abu Dhabi, United Arab Emirates. Association
for Computational Linguistics.

Xinyu Zhang, Ke Zhan, Enrui Hu, Chengzhen Fu, Lan
Luo, Hao Jiang, Yantao Jia, Fan Yu, Zhicheng Dou,
Zhao Cao, and Lei Chen. 2021a. Answer complex
questions: Path ranker is all you need. In Proceed-
ings of the 44th International ACM SIGIR Confer-
ence on Research and Development in Information
Retrieval, SIGIR ’21, page 449–458, New York, NY,
USA. Association for Computing Machinery.

Yuyu Zhang, Ping Nie, Arun Ramamurthy, and Le Song.
2021b. Answering any-hop open-domain questions
with iterative document reranking. Proceedings of
the 44th International ACM SIGIR Conference on
Research and Development in Information Retrieval.

Chen Zhao, Chenyan Xiong, Corby Rosset, Xia
Song, Paul Bennett, and Saurabh Tiwary. 2020.

Transformer-xh: Multi-evidence reasoning with ex-
tra hop attention. In International Conference on
Learning Representations.

Wanjun Zhong, Junjie Huang, Qian Liu, Ming Zhou,
Jiahai Wang, Jian Yin, and Nan Duan. 2022. Reason-
ing over hybrid chain for table-and-text open domain
qa.

Jiawei Zhou, Xiaoguang Li, Lifeng Shang, Lan Luo,
Ke Zhan, Enrui Hu, Xinyu Zhang, Hao Jiang, Zhao
Cao, Fan Yu, Xin Jiang, Qun Liu, and Lei Chen. 2022.
Hyperlink-induced pre-training for passage retrieval
in open-domain question answering. In Proceedings
of the 60th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 7135–7146, Dublin, Ireland. Association for
Computational Linguistics.

Yunchang Zhu, Liang Pang, Yanyan Lan, Huawei Shen,
and Xueqi Cheng. 2021. Adaptive information seek-
ing for open-domain question answering. In Proceed-
ings of the 2021 Conference on Empirical Methods
in Natural Language Processing, pages 3615–3626,
Online and Punta Cana, Dominican Republic. Asso-
ciation for Computational Linguistics.

Simiao Zuo, Xiaodong Liu, Jian Jiao, Young Jin Kim,
Hany Hassan, Ruofei Zhang, Tuo Zhao, and Jianfeng
Gao. 2021. Taming sparsely activated transformer
with stochastic experts.

1611

https://doi.org/10.1145/1390156.1390306
https://doi.org/10.1145/1390156.1390306
https://openreview.net/forum?id=zeFrfgyZln
https://openreview.net/forum?id=zeFrfgyZln
https://openreview.net/forum?id=zeFrfgyZln
https://doi.org/10.18653/v1/D18-1259
https://doi.org/10.18653/v1/D18-1259
http://arxiv.org/abs/2208.14565
http://arxiv.org/abs/2208.14565
https://aclanthology.org/2022.findings-emnlp.61
https://aclanthology.org/2022.findings-emnlp.61
https://doi.org/10.1145/3404835.3462942
https://doi.org/10.1145/3404835.3462942
https://doi.org/10.1145/3404835.3462853
https://doi.org/10.1145/3404835.3462853
https://openreview.net/forum?id=r1eIiCNYwS
https://openreview.net/forum?id=r1eIiCNYwS
http://arxiv.org/abs/2201.05880
http://arxiv.org/abs/2201.05880
http://arxiv.org/abs/2201.05880
https://doi.org/10.18653/v1/2022.acl-long.493
https://doi.org/10.18653/v1/2022.acl-long.493
https://doi.org/10.18653/v1/2021.emnlp-main.293
https://doi.org/10.18653/v1/2021.emnlp-main.293
http://arxiv.org/abs/2110.04260
http://arxiv.org/abs/2110.04260


A Inference Pipeline

At inference time, our model utilizes the retrieving
skill or the linking skill or both in parallel to gather
evidence at every reasoning step. When both skills
are used, one problem is that the scores associ-
ated with the evidence found by different skills are
not aligned, i.e., naively sorting the retrieved doc-
uments and linked documents together may cause
one pool of documents to dominate over the other.
Thus we propose to align the linking scores based
on the same step retrieval score:

lsi = lsi/max({ls} ∪ {rs})× max({rs}), (6)

where lsi represents the linking score of the docu-
ment i and {ls}, {rs} represent the set of linking
scores and retrieving scores for top-K documents
from each skill. Effectively, if the raw linking score
is larger than the retrieving score, we would align
the top-1 document from each set. On the other
hand, if the raw linking score is smaller, it would
not get scaled. The reason is that certain common
entities may also be detected and linked by our
model e.g., United States, but they usually do not
contribute to the answer reasoning, thus we do not
want to encourage their presence.

In the case of a document being discovered by
both skills, we promote its ranking in the final list.
To do so, we take the max of the individual score
(after alignment) and then multiply by a coefficient
α, which is a hyper-parameter.

si = α max(lsi, rsi). (7)

Finally, we use the reranking skill to compute a
new set of scores for the merged evidence set, and
then sort the documents using the combination of
retrieving/linking score and reranking score:

si + β rankscorei. (8)

β is another hyper-parameter. For multi-hop ques-
tions, the same scoring process is conducted for
the second-hop evidence documents and then the
two-hop scores are aggregated to sort the reasoning
chains. The inference pipeline is also illustrated in
Figure A1.

B Experimental Details

B.1 Data Statistics
The detailed data statistics are shown in Table A1.
Pretraining We follow Izacard et al. (2021) and
Wu et al. (2020) to construct examples for single

retrieval and entity linking, respectively. For single
retrieval, a pair of randomly cropped views of a
passage is treated as a positive example. Similar
to Spider (Ram et al., 2022), we also use the pro-
cessed DPR passage corpus based on the English
Wikipedia dump from 2018/12/20. For entity link-
ing, we directly use the preprocessed data released
by BLINK (Wu et al., 2020) based on the English
Wikipedia dump from 2019/08/01. For expanded
query retrieval, we construct the pseudo query us-
ing a short text snippet with the first passage from
the same page, and we treat the first passage from
linked pages as the target. As no hyperlink informa-
tion is preserved for the DPR passage corpus, we
use the English Wikipedia dump from 2022/06/01
for data construction. In each Wikipedia page, we
randomly sample 30 passages with hyperlinks. (If
there are less than 30 passages with hyperlinks,
we take all of them.) Each sampled passage, to-
gether with the first passage of the page, form a
pseudo query. Then, in each sampled passage, we
randomly pick an anchor entity and take the first
passage of its associated Wikipedia page as the tar-
get. To avoid redundancy, if an anchor entity has
been used 10 times in a source page, we no longer
pick it for the given source. If the query and the
target together exceed 512 tokens, we will truncate
the longer of the two by randomly dropping its first
token or its last token.

Finetuning For NQ, we adopted the retriever
training data released by Ma et al. (2022b) and
further used them for the reranking skill. Note
that data from Ma et al. (2022b) also contains
table-answerable questions in NQ, and we simply
merged the corresponding training splits with the
text-based training split. That’s why the number
of examples in the last column is greater than the
number of questions in the training set.

For HotpotQA, we adopted single retrieval and
expanded query retrieval data released by Xiong
et al. (2021b). For question entity linking data,
we heuristically matched the entity spans in the
question with the gold passages’ title to construct
positive pairs, and we use the same set of negative
passages as in single retrieval. For passage entity
linking, we collected all unique gold passages in
the training set and their corresponding hyperlinks
for building positives and mined negatives using
BM25. Finally, the reranking data is the same as
single retrieval.

For OTT-QA, we adopt the single retrieval and ta-
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Figure A1: The reasoning pipeline of Chain-of-Skills (COS). Given a question, COS first identifies salient
spans in the question, then the retrieving and linking skills are both used to find first-hop evidence, using the [CLS]
token and entity mention representation respectively. Then we merge all the evidence through score alignment and
the reranking skill. For top-ranked evidence documents, we concatenate each of them with the question and perform
another round of retrieving and linking. Then the second hop evidence are merged and reranked in the same fashion.
Finally, the reasoning paths are sorted based on both hops’ scores

ble entity linking data released by Ma et al. (2022a).
For expanded query retrieval, we concatenate the
question with the table title, header, and row that
links to the answer-containing passage as the query,
and the corresponding passage is treated as a pos-
itive target. The negatives are mined with BM25.
Finally, reranking data is the same copy as in single
retrieval except that we further break down tables
into rows and train the model to rank rows. This
is because we want to make the reranking and ex-
panded query retrieval more compatible.

Since iterative training is shown to be an ef-
fective strategy by previous works (Xiong et al.,
2021a; Ma et al., 2022b), we further mined harder
negatives for HotpotQA and OTT-QA skill train-
ing data. Specifically, we train models using the
same configuration as in pretraining (four task-
specific experts, with no reranking data or span
proposal data) for HotpotQA and OTT-QA respec-
tively (models are initialized from BERT-based-
uncased). Then we minded harder negatives for
each of the data types using the converged model.
The reranking and the entity span proposal skills
are excluded in this round because the reranking
can already benefit from harder negative for single
retrieval (as two skills share the same data) and
the entity span proposal does not need to search
through a large index. Finally, the data splits cou-
pled with harder negatives are used to train our
main Chain-of-Skills (COS) and conduct
ablation studies.

B.2 Training Details
Pretraining Similar to Contriever (Izacard et al.,
2021), we adopt a continual pretraining setup based

on the uncased BERT-base architecture, but our
model is initialized from the Contriever weights.
We train the model for 20 epochs with the batch
size of 1024 and the max sequence length of 256.
Here, we only use in-batch negatives for contrastive
learning. The model is optimized using Adam with
the initial learning rate of 1e-4. The final check-
point is used for fine-tuning later.
Finetuning When initializing from pretrained COS,
the weights mapping for the first 5 experts are illus-
trated in Figure 3 and the last expert is initialized
from BERT-base-uncased. For all experiments, we
train models for 40 epochs with the batch size of
192, the learning rate of 2e-5, and the max sequence
length of 256. During training, each batch only con-
tains training data for one of the skills from one
dataset, thus the model can effectively benefit from
the in-batch negatives. To train the entity span pro-
posal skill, we use the same data as entity linking.
In particular, we route the data to span proposal ex-
perts 20% of the time otherwise the data go through
entity linking experts.

B.3 Inference Details
Zero-shot-evaluation We directly use the single
retrieval skill to find the top100 documents and
compute the results in Table 1.
Supervised and Cross-dataset For NQ, Enti-
tyQuestions and SQuAD, the reasoning path has a
length of 1, i.e., only single passages. We use both
single retrieval and linking skills to find a total of
top 1000 passages first, and then reduce the set to
top 100 using the reranking skill.

Both HotpotQA and OTT-QA have reasoning
paths with max length 2. For OTT-QA, we first
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Dataset Train Dev Test Skill Training Data # Examples

Pretraining - - -
single retrieval 6M
expanded query retrieval 6M
passage entity linking 9M

NQ 79,168 8,757 3,610
single retrieval 86,252
reranking 86,252

HotpotQA 90,447 7,405 7,405

single retrieval 90,447
expanded query retrieval 90,447
question entity linking 80,872
passage entity linking 104,335
reranking 90,447

OTT-QA 41,469 2,214 2,158

single retrieval 41,469
expanded query retrieval 31,638
table entity linking 19,764
reranking 41,479

EntityQuestions - 22,068 22,075 - -
WebQ - - 2,032 - -
SQuAD - - 10,570 - -

Table A1: Statistics of datasets used in our experiments, columns 2-4 represent the number of questions in each
split. The last two columns contain the type of training data and the corresponding number of instances

find top 100 tables using the single retrieval skill
following (Ma et al., 2022a). Then we break down
tables into rows and use the reranking skill to keep
only top 200 rows. Then for each row, expanded
query retrieval and linking skills are used to find the
second-hop passages, where we keep top 10 pas-
sages from every expanded query retrieval and top
1 passage from every linked entity. Finally, we ap-
ply the same heuristics, as done in Ma et al. (2022a)
to construct the final top 100 evidence chains.

For HotpotQA, single retrieval and linking are
used jointly to find the first-hop passages where we
keep top 200 passages from single retrieval and top
5 passage from each linked question entity. The
combined set is then reranked to keep the top 30
first-hop passages. Then expanded query retrieval
and passage entity linking are applied to these 30
passages, where we keep top 50 passages from ex-
panded query retrieval and top 2 passages from
every linked passage entity. Next, another round of
reranking is performed on the newly collected pas-
sages and then we sort the evidence passage chains
based on the final aggregated score and keep top
100 chains. Since all of the baselines on HotpotQA
adopt a large passage path reranker, we also trained
such a model following (Zhu et al., 2021) (dis-
cussed in Appendix C) to rank the top 100 passage

#Params EM

FiD (Izacard and Grave, 2021) 770M 51.4
UnitedQA-E (Cheng et al., 2021) 330M 51.8
FiD-KD (Izacard and Grave, 2020) 770M 54.4
EMDR2 (Singh et al., 2021) 440M 52.5
YONO (Lee et al., 2021) 440M 53.2
UnitedQA (Cheng et al., 2021) 1.87B 54.7
R2-D2 (Fajcik et al., 2021) 1.29B 55.9
FiE (Kedia et al., 2022) 330M 58.4

FiE (ours implementation) 330M 56.3
COS + FiE 330M 56.4

Table A2: End-to-end QA Exact Match score on NQ

chains to get the top 1 prediction.
The hyperparameters for OTT-QA and Hot-

potQA inference are selected such that the total
number of evidence chains are comparable to previ-
ous works (Ma et al., 2022a; Xiong et al., 2021b).

C Question Answering Results

C.1 Training Details
We follow descriptions in (Kedia et al., 2022) for
re-implementation of FiE model and the model is
initialized from Electra-large (Clark et al., 2020).
For NQ, we train the model for 5,000 steps with
the effective batch size of 64, the learning rate
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of 5e-5, the layer-wise learning rate decay of 0.9,
the max answer length of 15, the max question
length of 28, the max sequence length of 250, and
10 global tokens. Note that although Kedia et al.
(2022) reports that training with 15,000 steps leads
to better performance, we actually found it to be
the same as 5,000 steps. Thus we train with fewer
steps to save computation. For OTT-QA, we used
the same set-up of hyperparameters except that the
max sequence length is changed to 500.

For HotpotQA path reranker and reader, we pre-
pare the input sequence as follows: "[CLS] Q
[SEP] yes no [P] P1 [P] P2 [SEP] ", where
[P] is a special token to denotes the start of a
passage. Then the input sequence is encoded by
the model and we extract passage start tokens rep-
resentations p1, ...pm and averaged sentence em-
beddings for every sentence in the input s1, ...sn
to represent passages and sentences respectively.
The path reranker is trained with three objectives:
passage ranking, supporting sentence prediction
and answer span extraction, as we found the latter
two objectives also aid the passage ranking training.
For answer extraction, the model is trained to pre-
dict the start and end token indices as commonly
done in recent literature (Xiong et al., 2021b; Zhu
et al., 2021). For both passage ranking and support-
ing sentence prediction, the model is trained with
the ListMLE loss (Xia et al., 2008). In particular,
every positive passage in the sequence is assigned
a label of 1, and every negative passage is assigned
0. To learn a dynamic threshold, we also use the
[CLS] token p0 to represent a pseudo passage and
assign a label of 0.5. Finally, the loss is computed
as follows:

Lp = −
m∑

i=0

log
exp(piWp)∑

p′∈P∪{pi} exp(p
′Wp)

. (9)

where P contains all passages representations that
have labels smaller than pi. Wp ∈ Rd are learnable
weights and d is the hidden size. In other words,
the model learns to assign scores such that positive
passages > thresholds > negative passages. The
supporting sentence prediction is also trained us-
ing Equation 9. Overall, use the following loss
weighting:

Lpath = Lp + La + 0.5× Ls (10)

where La is the answer extraction loss and Ls is
the supporting sentence prediction loss.

During training, we sample 0-2 positive passages
and 0-2 negative passages from the top 100 chains
returned by COS, and the model encodes at most 3
passages, i.e., the passage chain structure is not pre-
served and the passages are sampled independently.
We train the model for 20,000 steps with the batch
size of 128, the learning rate of 5e-5, the layer-wise
learning rate decay of 0.9, the max answer length
of 30, the max question length of 64, and the max
sequence length of 512. For inference, the model
ranks top 100 passage chains with structure pre-
served. We sum the scores of the two passages
in every chain and subtract the dynamic threshold
score and sort the chains based on this final score.

Next, we train a reader model that only learns
answer extraction and supporting sentence predic-
tion. We only train the model using the two gold
passages with the following loss weighting.

Lreader = La + 0.5× Ls (11)

The model uses the same set of hyperparameters
as the path reranker except that the batch size is
reduced to 32. At inference time, the model di-
rectly read the top 1 prediction returned by the path
reranker. Both models here are initialized from
Electra-large.

C.2 Results
The NQ results are presented in Table A2. Overall,
our model achieves a similar performance as our
own FiE baseline. FiE baseline uses the reader data
released by the FiD-KD model, which has an R100
of 89.3 (vs 90.2 of COS). Considering that the gap
between our method and FiD-KD model’s top 100
retrieval recall is relatively small, this result is not
surprising.

The HotpotQA results are shown in Table A3.
Overall our results are similar to previous SOTA
methods on the dev set. At the time of the paper
submission, we have not got the test set results on
the leaderboard.

We adopted DPR evaluation scripts 2for all the
retrieval evaluations and MDR evaluation scripts 3

for all the reader evaluations.

D Computation

Our COS has 182M paramteres. For COS pretrain-
ing, we use 32 V100-32GB GPUs, which takes

2https://github.com/facebookresearch/
DPR

3https://github.com/facebookresearch/
multihop_dense_retrieval
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Dev Test
Ans Sup Joint Ans Sup Joint

EM F1 EM F1 EM F1 EM F1 EM F1 EM F1

MUPPET (Feldman and El-Yaniv, 2019) 31.1 40.4 17.0 47.7 11.8 27.6 30.6 40.3 16.7 47.3 10.9 27.0
CogQA (Ding et al., 2019) 37.6 49.4 23.1 58.5 12.2 35.3 37.1 48.9 22.8 57.7 12.4 34.9
GoldEn Retriever (Qi et al., 2019) - - - - - - 37.9 49.8 30.7 64.6 18.0 39.1
Semantic Retrieval (Nie et al., 2019) 46.5 58.8 39.9 71.5 26.6 49.2 45.3 57.3 38.7 70.8 25.1 47.6
Transformer-XH (Zhao et al., 2020) 54.0 66.2 41.7 72.1 27.7 52.9 51.6 64.1 40.9 71.4 26.1 51.3
HGN (Fang et al., 2020) - - - - - - 59.7 71.4 51.0 77.4 37.9 62.3
GRR (Asai et al., 2020) 60.5 73.3 49.2 76.1 35.8 61.4 60.0 73.0 49.1 76.4 35.4 61.2
DDRQA (Zhang et al., 2021b) 62.9 76.9 51.3 79.1 - - 62.5 75.9 51.0 78.9 36.0 63.9
MDR (Xiong et al., 2021b) 62.3 75.1 56.5 79.4 42.1 66.3 62.3 75.3 57.5 80.9 41.8 66.6
IRRR+ (Qi et al., 2021) - - - - - - 66.3 79.9 57.2 82.6 43.1 69.8
HopRetriever-plus (Li et al., 2021) 66.6 79.2 56.0 81.8 42.0 69.0 64.8 77.8 56.1 81.8 41.0 67.8
TPRR (Zhang et al., 2021a) 67.3 80.1 60.2 84.5 45.3 71.4 67.0 79.5 59.4 84.3 44.4 70.8
AISO (Zhu et al., 2021) 68.1 80.9 61.5 86.5 45.9 72.5 67.5 80.5 61.2 86.0 44.9 72.0

COS 68.2 81.0 61.1 85.3 46.4 72.3 67.4 80.1 61.3 85.3 45.7 71.7

Table A3: End-to-end QA results on Hotpot-QA.

about 3 days. For COS finetuning, we used 16
V100-32GB GPUs which takes about 2 days. Our
reader model FiE has 330M parameters. We used
16 V100-32GB GPUs for training which takes
about 1.5 days. For HotpotQA, both the path
reranker and the reader have 330M parameters. We
used 16 V100-32GB GPUs for training, the path
reranker takes about 12 hours and the reader takes
about 4 hours to train. We train all of our models
once due to the large computation cost.

E Licenses

We list the License of the software and data used
in this paper below:

• DPR: CC-BY-NC 4.0 License

• MDR: CC-BY-NC 4.0 License

• Contriever: CC-BY-NC 4.0 License

• BLINK: MIT License

• NQ: CC-BY-SA 3.0 License

• HotpotQA: CC-BY-NC 4.0 License

• OTT-QA: MIT License

• EntityQuestions: MIT License

• SQuAD: CC-BY-SA 4.0 License

• WebQuestions: CC-BY 4.0 License
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