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Abstract

Document-level Event-Event Relation Extrac-
tion (DERE) aims to extract relations between
events in a document. It challenges conven-
tional sentence-level task (SERE) with difficult
long-text understanding. In this paper, we pro-
pose a novel DERE model (SENDIR) for better
document-level reasoning. Different from exist-
ing works that build an event graph via linguis-
tic tools, SENDIR does not require any prior
knowledge. The basic idea is to discriminate
event pairs in the same sentence or span multi-
ple sentences by assuming their different infor-
mation density: 1) low density in the document
suggests sparse attention to skip irrelevant in-
formation. Our module 1 designs various types
of attention for event representation learning to
capture long-distance dependence. 2) High den-
sity in a sentence makes SERE relatively easy.
Module 2 uses different weights to highlight
the roles and contributions of intra- and inter-
sentential reasoning, which introduces support-
ive event pairs for joint modeling. Extensive
experiments demonstrate great improvements
in SENDIR and the effectiveness of various
sparse attention for document-level representa-
tions. Codes will be released later.

1 Introduction

Event-Event Relation Extraction (ERE) is the task
of identifying the relation between two events in
texts. As shown in Figure 1, for any pair of events1,
e.g., (Services, downtime), it shall make the classi-
fications for which relation type it holds. Clearly,
event pairs may be in the same sentence (SERE)
(Kadowaki et al., 2019a; Liu et al., 2020; Kad-
owaki et al., 2019b), or scattered across the entire
document (DERE) (Phu and Nguyen, 2021). In
practice, DERE can benefit a wider range of ap-
plications, such as knowledge graph construction
(Chen et al., 2019) and future event forecasting

∗Corresponding author
1Event is defined as the trigger word in this area.
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Figure 1: Example of document-level ERE from
EventStoryLine. Solid lines denote causal relations;
some events and relations are omitted for clarity. The
red boxes are indicator words for causal relations.

(Hashimoto, 2019) but it remains challenging due
to the difficulty in long-text understanding.

In this paper, we propose to improve the rea-
soning ability among events spanning the entire
document for DERE. Different from conventional
methods, which build an event graph based on lin-
guistic tools (Phu and Nguyen, 2021; Gao et al.,
2019; Xu et al., 2023; Zeng et al., 2021), we fo-
cus more on the nature of document itself and do
not rely on any prior knowledge. To do this, we
highlight the following key questions:

• How to capture events’ dependence that may
be far away?

• Should we treat all event pairs equally consid-
ering the essential difference between SERE
and DERE?

To address them, we propose a novel
DERE model that learns Sparse EveNt repre-
sentations for Discriminating Intra- and inter-
sentential Reasoning, namely SENDIR. Inspired
by MAE (He et al., 2022), we observe a different
information density between sentences and docu-
ments — for an event, most parts of the document
are irrelevant, leading to a low information density.
By contrast, the sentence has a high density and
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usually contains related words as causal indicators.
As shown in Figure 1, problem3

causal−−−−→ damage3
in the third sentence has clear causal word (due
to)2, making the prediction much easier. While,
for problem3

causal−−−−→ damage4 across the third
and fourth sentences, there is no such pattern. This
motivates us the design two modules as follows.

The goal of module 1 is to shorten the depen-
dence distance among events to learn high-quality
local and global context representations. The basic
idea is to learn event-specific sentence embeddings
as local features. Based on that, we further uti-
lize sparse self-attention globally to skip irrelevant
information. We have defined various types of at-
tention masks to reflect specific dependence among
sentences. In addition to conventional random
sparse attention (Tay et al., 2021), we have also ex-
plored Narrative, Flashback, Global→, Global←,
and Banded attention, to reflect specific language
bias according to human writing habits. We name
this module sparse event representation learning,
while these sparse attentions shall also benefit other
long-text understanding tasks.

Module 2 aims to discriminate intra- and inter-
sentential reasoning to help difficult cross-sentence
events with relatively easy within-sentence-level
events. As shown in Figure 1, it is easy to pre-
dict (problem3

causal−−−−→ damage3) with high confi-
dence, which is part of the path problem3

causal−−−−→
damage3

causal−−−−→ affected4
causal−−−−→ damage4

for prediction of (problem3
causal−−−−→ damage4).

Thus, for each event pair, we take the outputs of
module 1 as intra-sentential features. We then en-
hance them with selected supportive event pairs
to constitute possible reasoning chain, and utilize
Gated Attention Unit (GAU) (Hua et al., 2022)
to conduct inter-sentential reasoning. Finally, we
combine these two types of features with varying
weights to differentiate their confidence and roles
in ERE. Thus, we can improve the prediction of
event pairs across sentences without hurting the
performance of the pairs within a sentence.

We summarize the contributions as follows:

• We propose to discriminate intra- and inter-
sentential reasoning considering the essential
difference between SERE and DERE.

• We propose a novel DERE model SENDIR
without any prior knowledge or external tools.

2We use subscript to denote the sentence index.

• Experimental results on three public datasets
demonstrate the effectiveness of SENDIR.
Further studies also verify our proposed sparse
attentions and discriminative reasoning in
long-text understanding.

2 Related Work

2.1 Sentence-level ERE
Early ERE methods focus on SERE and exploit
various textual features to represent the relation,
such as syntactic features (Venkatachalam et al.,
2021; Ning et al., 2019), causal patterns (Riaz and
Girju, 2010; Hidey and McKeown, 2016), and sta-
tistical features of causal information (Mirza et al.,
2014; Hu et al., 2017; Tan et al., 2022). Following
the success of pre-trained language models (PLMs)
(Devlin et al., 2019; Liu et al., 2019), recent works
tend to enhance PLMs with external knowledge,
so that SERE models can obtain high-quality con-
textualized event representations for classification.
Hashimoto (2019) exploited the cause and effect en-
tities in Wikipedia and the multilingual inter-wiki
links as weak supervision. Zuo et al. (2021a) intro-
duced external causal statements and adapted a con-
trastive transfer strategy to incorporate them into a
target model. Cao et al. (2021) utilized ConceptNet
(Speer et al., 2017) to learn latent structure of event
causal relation, and Zuo et al. (2021b, 2020) de-
signed a knowledge-guided method to generate new
samples based on several knowledge sources, such
as WordNet (Miller, 1998) and VerbNet (Schuler,
2005). Although the SERE has achieved great suc-
cess, events usually scatter the entire document
in real scenarios. Therefore, DERE has attracted
more and more research attention.

2.2 Document-level ERE
Compared with SERE, DERE has a wider range
of applications but is more challenging due to the
difficult long-text understanding. Thus, researchers
tend to consider event-event structures for global
reasoning. Gao et al. (2019) used integer linear pro-
gramming (ILP) to model causal information by
designing constraints and modifying the objective
function to encourage causal structures and discour-
age the opposite. To build the connections among
the events, Phu and Nguyen (2021) designed var-
ious document-level graphs and used graph con-
volutional networks to learn structure-preserved
features. Chen et al. (2022) proposed to build an
event pair relational graph and converted DERE to
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Figure 2: Architecture of proposed model. The white dotted box is zero embedding, which can supplement matrices.

the node classification, which captures the global
interactions and alleviates the spurious correlation
between events. Man et al. (2022) proposes to
model the important context sentences to identify
relations. However, to capture long-distance in-
formation, these approaches typically construct an
additional document-level graph to assist global
reasoning. The graph introduces unnecessary noise
and decreases efficiency. Instead, we explore the
information in documents without requiring prior
knowledge or external tools. Certainly, our method
can be further improved by incorporating structural
knowledge. We leave it in the future.

3 Methodology

SENDIR aims to learn high-quality event represen-
tations to facilitate both intra- and inter-sentential
reasoning. As shown in Figure 2, our framework
has four main components: Encoder to encode
a document into vector, Sparse Event Represen-
tation Learning (SER) that further learns event
representations based on document embeddings,
Discriminating Intra- and inter sentential Rea-
soning (DIR) that conducts joint inference based
on each pair of event representations, and Classifi-
cation to make final predictions.

3.1 Encoder

We utilize the BERT (Devlin et al., 2019) with Bi-
LSTM to encode the document for long documents
(more than 512 tokens). Given a document D with
n sentences and N events, D = [X1, X2, . . . , Xn],

and the sentence (Xi = [x1, x2, . . . , xl]) contains l
words, the encoder is expressed as follows:
{

H = Bi-LSTM([s1, . . . , si, . . . , sn])
si = BERT(Xi)

, (1)

where H = [h1,h2, . . . ,hn∗l] is the embedding of
token, andhi ∈ Rd. For event ei,p, where i denotes
ith event and p denotes the index of sentence, we
define its embeddings as ei,p = hk, if the event
mention word is xk, the position of the event in the
document is k.

3.2 Sparse Event Representation Learning
SER explores various types of attention to capture
long-distance dependence between sentences for
high-quality document representation, which will
be used to enhance the event representation. In
specific, SER first learns event-specific sentence
embedding as the local context. Based on them, we
then apply sparse self-attention to skip irrelevant
information as global contexts. Particularly, we in-
troduce various types of long-distance dependency
assumptions. Finally, we define event represen-
tations based on local and global contexts. We
highlight the following differences and advantages
of SER from the previous document representation:
(1) The global contexts taking sentences as nodes
shortens the token-level distance between events.
(2) Well-designed sparse attention mechanism will
bring useful language bias that further alleviates the
difficulty of modeling long-distance dependence.
Event-specific Sentence Embedding. Given event
and its sentence embeddings (i.e., ei,p and sp), we
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use the event as a query and compute event-specific
sentence embedding ci as follows:

{
wi = Softmax(spei,p)
ci = wisp

, (2)

where ci is defined as local context of event ei,p,
and wi is the trainable parameters.
Sparse Attention Mask. We apply self-
attention technique to fuse information from the
above event-specific sentence embeddings C1 =
[c1, c2, . . . , cN ] ∈ RN×d as the global context.
Note that N is the number of events rather than
sentences, because each event has its own sentence
embedding, even if two events are located in the
same sentence.

Inspired by Child et al. (2019), we design the
sparse mask matrix to deal with the long-distance
dependency issue. We have designed six types
of masks: Global→, Global←, Random, Banded,
Narrative, and Flashback. Note that the assump-
tions behind them are not always true and we will
give a discussion later. Their intuitive impression
is shown in Figure 2. Formally, we define the
mask matrix as G ∈ RN×N , where each element
Gi,j ∈ {0, 1} denotes if the information of the jth

event in the qth sentence ej,q can be seen by the
ith event in the pth sentence ei,p. We define the
following masks:

• Global→. We assume the events in the first
several sentences (e.g., the first two sentences)
are core topics of the document and should
see all of the other events:

Gi,j =

{
1, if p < 3, or q < 3
0, otherwise

. (3)

• Global←. We assume the events in the last
several sentences (e.g., the last two sentences)
are conclusion topics of the document and
should see all of the other events:

Gi,j =

{
1, if p > N − 3, or q > N − 3
0, otherwise

.

(4)

• Random. Random sparse masks are usu-
ally used to increase the ability of non-local
interactions—we randomly sample 20% ma-
trix element as 0, and others are 1.

• Banded. We assume that the related infor-
mation is narrowed down into neighbor sen-
tences only. That is, each event can only see

the events in neighbor sentences:

Gi,j =

{
1, if |p− q| < 3
0, otherwise

. (5)

• Narrative. We assume that the events are
mostly described in narrative order, so that the
former event can see the latter one:

Gi,j =

{
1, if q − p > 0
0, otherwise

. (6)

• Flashback. We assume that events are sequen-
tially written, and thus the latter one should
see the former one:

Gi,j =

{
1, if p− q > 0
0, otherwise

. (7)

Discussion of sparsity assumptions. Due to the
complexity of language, we have designed the
above six types of attention masks to capture differ-
ent linguistic biases. Although these masks have
patterns suitable for specific settings, they also have
unsuitable cases where the underlying assumptions
shall fail. However, all of them are designed based
on our core assumption — the information den-
sity in documents is lower than that in sentences.
Thus, we capture long-distance dependence via
the sparse attention mechanism. In the experiment
(Section 4.7), we demonstrate that even the random
attention mask can improve document-level per-
formance, and other types of attention masks (e.g.,
Narrative) have achieved further improvements by
introducing additional language bias.
Event Representation. Given local context
C and attention mask G, we now use self-
attention (Vaswani et al., 2017) to obtain global
context, which is further combined with local con-
text as event representations. The global context
C′ = [c

′
1, c

′
2, . . . , c

′
N ] ∈ RN×d can be computed

as follows:
C′ = αC (8)

whereα is the sparse self-attention matrix and each
element is defined as follows:





atti,j =
(ciWi)(cjWj)

T

√
d

∗Gi,j

αi,j =
exp(atti,j)∑

z∈N−1 exp(atti,z)

, (9)

where d is the dimension of hidden states for scal-
ing, Wi and Wj are the trainable parameters. To
capture different representation subspaces, we also
use multi-head attention (Vaswani et al., 2017).
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Now, we define the sparse contextualized event
representation as follows:

e
′
i = ReLU([ei, ci, c

′
i]We), (10)

where We ∈ R3d×d is the trainable parameters,
and e

′
i ∈ Rd. Given each pair of events (ei, ej), we

define their representation as follows3:

vi,j = ReLU([e
′
i + e

′
j , |e

′
i − e

′
j |]Wc), (11)

where Wc ∈ R2d×d is the trained parameters.

3.3 Discriminating Intra- and inter-sentential
Reasoning

Section 3.2 defines event pair representations based
on local and global contexts. In this section, DIR
takes them as intra-sentential features, indicating
that they have not considered the event pairs in
other sentences to form a reasoning chain. To fur-
ther obtain inter-sentential features for each pair
of events, we first select supportive event pairs for
each event pair and use GAU (Hua et al., 2022) for
information fusion. Then, we combine two types
of features with different weights to differentiate
two types of reasoning — the relatively easy intra-
sentential tasks can help cross-sentence relation
identification without the loss of performance.

First, instead of using all event pairs as sup-
ports, we assume that only the pairs sharing at
least one common event can contribute to the rea-
soning chain. For example, given four events (a,
b, c, d) to predict the relation between (a, c), the
event pairs (a, b) and (b, c) are clearly related, but
(b, d) is clearly irrelevant. By stacking more layers,
our proposed model can implicitly deal with longer
reasoning chains, as any length of chains can be
decomposed into several shorter chains. Take the
chain a −→ b −→ c −→ d for predicting event pair
(a, d) as an example, we indeed will use a −→ c
and c −→ d as supportive evidence, while a −→ c
shall be supported as illustrated above. This is,
the longer chain has been decomposed into two
sub-chains, modeled using multiple layers, and op-
timized jointly. Based on the assumption, we build
a set of supportive event pairs for query (ei, ej),
T1 = [vi,j ,vi,1, . . . ,vN,j ]. Note that we include
the representations of query event pair vi,j . Next,
we utilize GAU to conduct reasoning over the sup-

3For clarity, we delete the index of the sentence.

portive set as follows:




T2 = (U�AV)Wo

U = T1Wu,V = T1Wv,Z = T1Wz

A = (ReLU((ZWq)(ZWk)
T + b))2

,

(12)
where Wo,Wu,Wv,Wz,Wq,Wk, and
b are the trainable parameters, and
T2 = [v

′
i,j ,v

′
i,1, . . . ,v

′
N,j ] are the output

event pair representations enhanced by reasoning
chains. We take v

′
i,j as the inter-sentential

reasoning features of query (ei, ej).
Now, we are to combine two types of features

with different weights. The basic idea is that event
pairs within the same sentence is relatively easy to
predict with high confidence, e.g., causal indicator
words (e.g., due to or lead to) in Figure 1 provide
clear patterns. We thus leverage intra-sentential
features to facilitate the event pairs spanning differ-
ent sentences. To avoid the harm of easier predic-
tions, we assign higher weights to intra-sentential
features if the event pair is within the same sen-
tence. By contrast, we assign higher weights to
inter-sentential features for events from different
sentences to highlight the inter-sentential reason-
ing. Finally, the query event pair representations
for relation between (ei, ej) are defined as follows:

o =





vi,j + β1v
′
i,j , if p− q < 0(

−−−→
inter)

vi,j + β2v
′
i,j , if p− q = 0(intra)

vi,j + β3v
′
i,j , if p− q > 0(

←−−−
inter)

,

(13)
where β1, β2, β3 are the weights that highlight dif-
ferent type of features for different event distribu-
tion. We determine these hyper-parameters by the
heuristic experiments. Note that we separate the
two cases of events in different sentences:

−−−→
inter

and
←−−−
inter.

−−−→
inter indicates that the event pairs are

located in narrative order, while
←−−−
inter denotes a

flashback order. The separation considers the dif-
ferent attention assumptions in Section 3.2, which
captures various language biases. In experiments,
we indeed found such a bias that

←−−−
inter has a high

probability of negative relation, we thus set β3 = 0
and β1 = 0.8, β2 = 0.2 heuristically, but this may
be varying in different scenarios.

3.4 Classification
Given the final representation of an event pair, we
use the linear function to predict relations as fol-
lows:
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Model (%)
Intra-sentence Inter-sentence Intra+Inter
P R F1 P R F1 P R F1

LSIN (Cao et al., 2021) 47.9 58.1 52.5 - - - - - -
KnowDis (Zuo et al., 2020) 39.7 66.5 49.7 - - - - - -
LR+ (Gao et al., 2019) 37.0 45.2 40.7 25.2 48.1 33.1 27.9 47.2 35.1
LIP (Gao et al., 2019) 38.8 52.4 44.6 35.1 48.2 40.6 36.2 49.5 41.9
KMMG (Liu et al., 2020) 41.9 62.5 50.1 - - - - - -
LearnDA (Zuo et al., 2021b) 42.2 69.8 52.6 - - - - - -
RichGCN (Phu and Nguyen, 2021) 49.2 63.0 55.2 39.2 45.7 42.2 42.6 51.3 46.6
ERGO (Chen et al., 2022) 49.7 72.6 59.0 43.2 48.8 45.8 46.3 50.1 48.1
SENDIR 65.8 66.7 66.2 33.0 90.0 48.3 37.8 82.8 51.9

Table 1: Main results on the EventStoryLine. The best results are in bold and the second-best results are underlined.
Intra-sentence denotes that the event pair is in the same sentence, and inter-sentence denotes that the event pair is in
different sentences.

ŷ = σ(oW + b), (14)

where W and b are the trainable parameters, ŷ
is the probability of being positive, and σ is an
activation function. For training, we adopt cross-
entropy as the loss function: L = −∑ei,ej

(1 −
y) log(1− ŷ) + y log(ŷ) (y is the golden). We use
dropout to prevent overfitting.

4 Experiments

4.1 Datasets and Metrics

To demonstrate the performance of our model, we
evaluate the model on two domains three datasets.
EventStoryLine4 (Mostafazadeh et al., 2016) and
Causal-TimeBank5 (Mirza and Tonelli, 2014) are
event causal relation extraction (RE) dataset, and
MATRES6 (Ning et al., 2018) is event temporal RE
dataset. And we use Precision (P), Recall (R), and
F1-score (F1) as evaluation metrics.

EventStoryLine annotates 258 documents, 22
topics, 4, 316 sentences, 5, 334 event mentions,
7, 805 intra-sentential event pairs, and 46, 521 inter-
sentential event pairs. Following (Gao et al.,
2019), we put them in order based on their topic
IDs. Causal-TimeBank (Causal-TB) annotates
184 documents, 6, 813 events, and 7, 608 event
pairs. MATRES annotates 275 documents for
four temporal relations, i.e., BEFORE, AFTER,
EQUAL, and VAGUE.

4https://github.com/tommasoc80/EventStoryLine
5https://github.com/paramitamirza/CATENA/tree/master/data
6https://github.com/qiangning/MATRES

4.2 Parameter Settings

We choose the most widely used BERT-base as
basic PLMs, to avoid exhaustive parameter tun-
ing. The learning rate is set to 1e−5 for pre-
training and 1e−4 for others. We optimize our
model with AdamW. We conduct the grid search to
tune hyperparameters: the size of embedding is in
{64; 128; 256; 512;768}, where bold font denotes
the best setup. The batch size for pre-trained model
is set to 2. The dropout rate is set to 0.4.

4.3 Baseline

We compare SENDIR with state-of-the-art methods
for Event Causal RE and Event Temporal RE.
Event Causal RE. (1) KMMG (Liu et al.,
2020) that proposes a mention masking general-
ization and use external knowledge databases; (2)
KnowDis (Zuo et al., 2020) that investigates a
data augmentation to solve the data lacking; (3)
LSIN (Cao et al., 2021) that employ ConceptNet
to capture the latent causal relational structure; (4)
LearnDA (Zuo et al., 2021b) that augments data
to solve the data lacking; (5) LR+ and LIP (Gao
et al., 2019) that models rich causal structures via
designing constraints and objection function; (6)
RichGCN (Phu and Nguyen, 2021) that builds
multi-level graphs to capture structure-preserved
features; (6) ERGO (Chen et al., 2022) that de-
signs an event relational graph and converts the
event causal identify to a node classification frame-
work.
Event Temporal RE. (1) DEER (Han et al., 2020)
that constructs many training samples to simulate
the machine reading comprehension for event tem-
poral understanding; (2) SMTL (Ballesteros et al.,
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Model (%) P R F1

Causal-TB

KnowDis 36.6 55.6 44.1
RichGCN 39.7 56.5 46.7
LearnDA 41.9 68.0 51.9
ERGO 58.4 60.5 59.4
SENDIR 65.2 57.7 61.2

MATRES

DEER - - 79.3
SMTL - - 81.6
TIMERS 81.1 84.6 82.3
SCS-EERE 78.8 88.5 83.4
SENDIR 81.2 85.6 83.3

Table 2: The results on the Causal-TB and MATRES.

2020) that extract the important text based on event
pairs to identify relations. (3) TIMERS (Mathur
et al., 2021) that uses rhetorical discourse features,
temporal arguments, and syntactic features to ex-
tract the relation information. (4) SCS-EERE
(Man et al., 2022) that seeks to identify the most im-
portant context sentences to identify the temporal
relation.

4.4 Overall Performance

Table 1 and 2 show the overall performance on
EventStoryLine, Causal-TB, and MATRES, respec-
tively. We can see that: (1) SENDIR achieves
better F1 scores on EventStoryLine and Causal-
TB, it also has a competitive result on MATRES,
which demonstrates the effectiveness and general-
ization ability of our model. (2) On the MATRES,
SENDIR is slightly lower than SCS-EERE. Be-
cause event temporal RE is particularly sensitive
to direction between events. (3) All models per-
form better on intra-sentence than inter-sentence in
Table 1. This is consistent with our claim that
intra-sentence is easier to identify. (4) Particu-
larly, SENDIR has much higher precision on intra-
sentence. Because the discriminative reasoning
scheme alleviates the negative impacts of more
difficult cross-sentence reasoning. (5) On inter-
sentence setting, the improvements are mainly from
higher recall. We attribute this to the enhanced
long-distance modeling ability and the supportive
query set — it tends to find relation clues from
broader contexts and other event pairs.

4.5 Ablation Study

To further analyze SENDIR, we also conduct an
ablation analysis to illustrate the effectiveness of
our main modules. We show the results of the

Model (F1 %) Intra Inter Intra+Inter
SENDIR 66.2 48.3 51.9
w/o SER 60.9 46.1 49.5
w/o Sparse Att 61.6 48.1 50.9
w/o Event Repre 66.9 46.2 50.2
w/o DIR 64.0 44.9 48.5
w/o Selection 66.0 46.5 50.5
w/o Weight (β) 63.9 45.7 49.3

Table 3: An ablation study for our model on the
EventStoryLine.

ablation study in Table 37.
SER. We examined the impacts of SER in Ta-

ble 3. w/o Sparse Att, w/o Event Repre, and
w/o SER denote that we gradually remove the
key designs in Section 3.2: remove sparse atten-
tion mask, use local context only as event rep-
resentations, and remove the entire SER module.
(1) w/o SER. The performance becomes sharply
poor without SER, especially on intra-sentence.
Specifically, the experimental results are reduced
by 5.3%/2.2%/2.4% F1 on intra-sentence, inter-
sentence, and intra+inter. This demonstrates that
SER can capture high-quality document represen-
tation, and intra-sentence event pairs rely more on
high quality event representation, so intra-sentence
drops more. (2) w/o Sparse Att. The experimental
results are reduced. Specifically, the sparse atten-
tion mask has a more significant impact on intra-
sentence, and this sparsity is the key to improving
the quality of the document representation. We
will do further analysis of multiple attention masks
in Section 4.7. (3) w/o Event Repre. The main
performance is the decline in inter-sentence, while
intra-sentence is even slightly up. We attribute the
reason that the inter-sentence relies more on global
context and the intra-sentence relies more on local
context. Moreover, the number of inter-sentence is
much more than intra-sentence. Therefore, when
inter-sentence drops, results of inter+inter drops,
even though intra-sentence arises.

DIR. In Table 3, we can also observe the follow-
ing insights. Note that w/o DIR, w/o Selection, and
w/o Weight denote the deletion of our entire DIR
module, taking all other event pairs as supports,
and regarding intra- and inter-sentential reasoning
the same by using the same weight 1. (1) w/o DIR.
Compared with SER, removed DIR mainly brings a

7Intra and inter indicate intra-sentence and inter-sentence
setting, respectively.
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Figure 3: Impacts of the weight (β) on the EventStory-
Line. Weight (Inter) is the weight of

−−−→
inter.

decrease on inter-sentence, which is consistent with
the method’s motivation and validates the DIR’s
effectiveness. (2) w/o Selection. The experimental
results are reduced. The major reason is that con-
sidering all event pairs as candidates will increase
the noisy information. (3) w/o Weight. The drop
on intra-sentence is very significant. Because of the
lack of distinction in cross-sentence reasoning, the
over-reasoning of simple event pairs leads to poor
results. And using different weights facilitates sim-
ple tasks and global enhancements. We will follow
up with a detailed discussion in Section 4.6.

4.6 Effects of Weights

As shown in Figure 3, we show the performance
of Intra+Inter with different values for β1 (

−−−→
inter)

and β2 (intra). The darker the color, the higher
the F1 value. We did not include β3 due to the
serious bias in datasets (β3 = 0 always leads to
better results), which makes further investigation
trivial. The darker the color, the higher the F1
value. We can find that: (1) The scores in the bot-
tom right part is better than in other parts, where the
weight of inter-sentence increases and the weight of
intra-sentence decreases. This agrees with our as-
sumption that inter-sentential event pairs rely more
on cross-sentence reasoning than intra-sentential
event pairs. (2) In general, the performance of
the right part is better than the left. There are
two reasons: first, as the weight of inter-sentence
increases, we highlight more cross-sentence rea-
soning, which improves the performance of inter-
sentence; second, there are far more inter-sentence
than intra-sentence, and the improvements of inter-
sentential results will significantly improve the
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Figure 4: Impacts of Sparse Attention Mask on the
EventStoryLine.

overall experimental performance. (3) The sub-
diagonal elements indicate that intra-sentence and
inter-sentence have the same weight. Clearly, the
performance is unsatisfactory. The reason is that
inter-sentential event pairs are usually difficult
to predict and have lower confidence than intra-
sentential event pairs. Thus, treating them equally
negatively impacts the easier sentence-level tasks.

4.7 Effects of Sparse Attention Mask
To investigate the impacts of various sparse atten-
tion masks on the SER, we report the results using
different sparse attention masks: Narrative, Flash-
back, Global→, Global←, Random, and Banded.
From the Figure 4, we can find that: (1) On intra-
sentence, these sparse attention masks have similar
results except for Global→. This result is consis-
tent with the previous results that event pairs rely
more on local contexts rather than long-distance
dependence on global contexts. (2) Random is
unexpectedly good, indicating there is numerous
redundant information in the document, and the
sparse mask matrix can mitigate the effect of noise.
(3) Narrative has achieved the best performance,
which reflects a language bias from human writing
habits — always talk about the main topic at first.

4.8 Case Study
As shown in Figure 5, we present a case
study to better understand the effect of
SENDIR compared to the baseline model
(i.e., BERT). We can notice that: BERT and
SENDIR can identify the intra-sentential event
pair (dead causal−−−−→6.1 magnitude quake)
and some easy inter-sentential event pairs
(dead causal−−−−→6.1 magnitude earthquake and
6.1magnitude quake

causal−−−−→ rescue). However,
for some complex event pairs that span multiple
sentences, SENDIR can employ DIR to infer
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6-0-dead
35-0-6.1.
13-3-quake
22-6-quake
7-2-6.1

6-35
6-13
6-22
6-7
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15-4-killed
33-2-rescue
17-5-killed
29-6-lanslides
8-2-dead
18-5-injured
23-6-evacuated
19-5-damage
12-2-injured

[0] Indonesia earthquake: 24 dead and over 200 injured as 6.1

magnitude quake hits Aceh province … [2] Soldiers and police are

leading rescue operations in Indonesia after a 6.1 magnitude

earthquake hit Aceh province leaving 24 dead and over 200 injured.

[3] The quake struck yesterday afternoon …[4] Twelve people were

killed and 70 others were injured … [5] … 10 people were killed,

140 were injured and about 1500 houses and buildings …

Event Pair

dead 0, 6 . 1 magnitude quake 0

dead 0, quake 3

dead 0, 6 . 1 magnitude earthquake 2

6 . 1 magnitude quake 0, rescue 2

6 . 1 magnitude quake 0, killed 4

6 . 1 magnitude quake 0, injured 5

…

GT

YES

YES

YES

YES

YES

YES

…

BERT

…

SENDIR

…

Figure 5: The case study of our proposed SENDIR and
BERT models on EventStoryLine, where GT denotes
ground truth. Red numbers are the sentence numbers.

causal relations, but BERT fails, such as dead
causal−−−−→ quake and 6.1 magnitude quake

causal−−−−→
injured. These demonstrate the significant advan-
tages of SENDIR in dealing with inter-sentential
event pairs to identify hard-to-identify causal
relations by cross-sentence reasoning.

5 Conclusion

In this paper, we exploit a novel Discriminative
Reasoning with Sparse Event Representation for
DERE. It can learn high-quality event represen-
tation and facilitate inter-sentential reasoning for
document-level understanding. Experimental re-
sults show that our method is effective and sig-
nificantly better than competitive baselines, im-
proving inter-sentence cases without harming intra-
sentence event pairs. The extensive analysis also
provides interesting insights about various lan-
guage biases for sparse long-text representation
learning. In the future, we will combine various
sparse assumptions for high-quality document rep-
resentations and incorporate graph reasoning.

6 Limitation

The limitations of SENDIR include the following
two points: (1) It has not extended to document-
level entity-centric relations tasks. Our work is
event-centric, and future work extends it with
entity-centric cases. Document-level entity-centric
RE needs to consider multiple mentions of an entity
and different relations in different directions of the

same entity pair. (2) It does not bring in external
commonsense knowledge. Knowledge can be used
to enrich events and improve the accurate ERE.

Acknowledgements

We appreciate the comments from anonymous
reviewers which will help further improve our
work.This study is supported by National Natu-
ral Science Foundation of China (No.U19B2020),
Singapore Ministry of Education (MOE) Academic
Research Fund (AcRF) Tier 1 grant, and Beijing
Institute of Technology Southeast Academy of In-
formation Technology.

References
Miguel Ballesteros, Rishita Anubhai, Shuai Wang,

Nima Pourdamghani, Yogarshi Vyas, Jie Ma, Par-
minder Bhatia, Kathleen R. McKeown, and Yaser
Al-Onaizan. 2020. Severing the edge between before
and after: Neural architectures for temporal ordering
of events. In Proceedings of the 2020 Conference on
Empirical Methods in Natural Language Processing,
EMNLP 2020, Online, November 16-20, 2020, pages
5412–5417. Association for Computational Linguis-
tics.

Pengfei Cao, Xinyu Zuo, Yubo Chen, Kang Liu, Jun
Zhao, Yuguang Chen, and Weihua Peng. 2021.
Knowledge-enriched event causality identification
via latent structure induction networks. In Proceed-
ings of ACL/IJCNLP, pages 4862–4872. Association
for Computational Linguistics.

Meiqi Chen, Yixin Cao, Kunquan Deng, Mukai Li,
Kun Wang, Jing Shao, and Yan Zhang. 2022.
ERGO: event relational graph transformer for
document-level event causality identification. CoRR,
abs/2204.07434.

Zi-Yuan Chen, Chih-Hung Chang, Yi-Pei Chen, Jij-
nasa Nayak, and Lun-Wei Ku. 2019. Uhop: An
unrestricted-hop relation extraction framework for
knowledge-based question answering. In Proceed-
ings of NAACL-HLT, pages 345–356.

Rewon Child, Scott Gray, Alec Radford, and Ilya
Sutskever. 2019. Generating long sequences with
sparse transformers. CoRR, abs/1904.10509.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of NAACL-HLT, pages
4171–4186. Association for Computational Linguis-
tics.

Lei Gao, Prafulla Kumar Choubey, and Ruihong Huang.
2019. Modeling document-level causal structures for
event causal relation identification. In Proceedings
of NAACL-HLT, pages 1808–1817. Association for
Computational Linguistics.

16230

https://doi.org/10.18653/v1/2020.emnlp-main.436
https://doi.org/10.18653/v1/2020.emnlp-main.436
https://doi.org/10.18653/v1/2020.emnlp-main.436
https://doi.org/10.18653/v1/2021.acl-long.376
https://doi.org/10.18653/v1/2021.acl-long.376
https://doi.org/10.48550/arXiv.2204.07434
https://doi.org/10.48550/arXiv.2204.07434
https://doi.org/10.18653/v1/n19-1031
https://doi.org/10.18653/v1/n19-1031
https://doi.org/10.18653/v1/n19-1031
http://arxiv.org/abs/1904.10509
http://arxiv.org/abs/1904.10509
https://doi.org/10.18653/v1/n19-1423
https://doi.org/10.18653/v1/n19-1423
https://doi.org/10.18653/v1/n19-1423
https://doi.org/10.18653/v1/n19-1179
https://doi.org/10.18653/v1/n19-1179


Rujun Han, Xiang Ren, and Nanyun Peng. 2020. DEER:
A data efficient language model for event temporal
reasoning. CoRR, abs/2012.15283.

Chikara Hashimoto. 2019. Weakly supervised multilin-
gual causality extraction from wikipedia. In Proceed-
ings of EMNLP-IJCNLP, pages 2986–2997. Associa-
tion for Computational Linguistics.

Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li,
Piotr Dollár, and Ross B. Girshick. 2022. Masked au-
toencoders are scalable vision learners. In IEEE/CVF
Conference on Computer Vision and Pattern Recog-
nition, CVPR 2022, New Orleans, LA, USA, June
18-24, 2022, pages 15979–15988. IEEE.

Christopher Hidey and Kathy McKeown. 2016. Iden-
tifying causal relations using parallel wikipedia ar-
ticles. In Proceedings of ACL. The Association for
Computer Linguistics.

Zhichao Hu, Elahe Rahimtoroghi, and Marilyn A.
Walker. 2017. Inference of fine-grained event causal-
ity from blogs and films. In Proceedings of the
Events and Stories in the News Workshop@ACL 2017,
Vancouver, Canada, August 4, 2017, pages 52–58.
Association for Computational Linguistics.

Weizhe Hua, Zihang Dai, Hanxiao Liu, and Quoc V.
Le. 2022. Transformer quality in linear time. CoRR,
abs/2202.10447.

Kazuma Kadowaki, Ryu Iida, Kentaro Torisawa, Jong-
Hoon Oh, and Julien Kloetzer. 2019a. Event causal-
ity recognition exploiting multiple annotators’ judg-
ments and background knowledge. In Proceedings
of EMNLP-IJCNLP, pages 5815–5821. Association
for Computational Linguistics.

Kazuma Kadowaki, Ryu Iida, Kentaro Torisawa, Jong-
Hoon Oh, and Julien Kloetzer. 2019b. Event causal-
ity recognition exploiting multiple annotators’ judg-
ments and background knowledge. In Proceedings
of EMNLP-IJCNLP, pages 5816–5822, Hong Kong,
China. Association for Computational Linguistics.

Jian Liu, Yubo Chen, and Jun Zhao. 2020. Knowledge
enhanced event causality identification with mention
masking generalizations. In Proceedings of IJCAI,
pages 3608–3614. ijcai.org.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized BERT pretraining
approach. CoRR, abs/1907.11692.

Hieu Man, Nghia Trung Ngo, Linh Ngo Van, and
Thien Huu Nguyen. 2022. Selecting optimal con-
text sentences for event-event relation extraction. In
Thirty-Sixth AAAI Conference on Artificial Intelli-
gence, AAAI 2022, Thirty-Fourth Conference on In-
novative Applications of Artificial Intelligence, IAAI
2022, The Twelveth Symposium on Educational Ad-
vances in Artificial Intelligence, EAAI 2022 Virtual
Event, February 22 - March 1, 2022, pages 11058–
11066. AAAI Press.

Puneet Mathur, Rajiv Jain, Franck Dernoncourt, Vlad I.
Morariu, Quan Hung Tran, and Dinesh Manocha.
2021. TIMERS: document-level temporal relation
extraction. In Proceedings of the 59th Annual Meet-
ing of the Association for Computational Linguis-
tics and the 11th International Joint Conference on
Natural Language Processing, ACL/IJCNLP 2021,
(Volume 2: Short Papers), Virtual Event, August 1-6,
2021, pages 524–533. Association for Computational
Linguistics.

George A Miller. 1998. WordNet: An electronic lexical
database. MIT press.

Paramita Mirza, Rachele Sprugnoli, Sara Tonelli, and
Manuela Speranza. 2014. Annotating causality in
the TempEval-3 corpus. In Proceedings of EACL),
pages 10–19, Gothenburg, Sweden. Association for
Computational Linguistics.

Paramita Mirza and Sara Tonelli. 2014. An analysis of
causality between events and its relation to temporal
information. In COLING 2014, 25th International
Conference on Computational Linguistics, Proceed-
ings of the Conference: Technical Papers, August 23-
29, 2014, Dublin, Ireland, pages 2097–2106. ACL.

Nasrin Mostafazadeh, Alyson Grealish, Nathanael
Chambers, James F. Allen, and Lucy Vanderwende.
2016. Caters: Causal and temporal relation scheme
for semantic annotation of event structures. In
Proceedings of the Fourth Workshop on Events,
EVENTS@HLT-NAACL 2016, San Diego, Califor-
nia, USA, June 17, 2016, pages 51–61. Association
for Computational Linguistics.

Qiang Ning, Sanjay Subramanian, and Dan Roth. 2019.
An improved neural baseline for temporal relation
extraction. In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Nat-
ural Language Processing, EMNLP-IJCNLP 2019,
Hong Kong, China, November 3-7, 2019, pages 6202–
6208. Association for Computational Linguistics.

Qiang Ning, Hao Wu, and Dan Roth. 2018. A multi-
axis annotation scheme for event temporal relations.
In Proceedings of the 56th Annual Meeting of the As-
sociation for Computational Linguistics, ACL 2018,
Melbourne, Australia, July 15-20, 2018, Volume 1:
Long Papers, pages 1318–1328. Association for Com-
putational Linguistics.

Minh Tran Phu and Thien Huu Nguyen. 2021. Graph
convolutional networks for event causality identifica-
tion with rich document-level structures. In Proceed-
ings of NAACL-HLT, pages 3480–3490. Association
for Computational Linguistics.

Mehwish Riaz and Roxana Girju. 2010. Another look at
causality: Discovering scenario-specific contingency
relationships with no supervision. In Proceedings of
ICSC, pages 361–368. IEEE Computer Society.

16231

http://arxiv.org/abs/2012.15283
http://arxiv.org/abs/2012.15283
http://arxiv.org/abs/2012.15283
https://doi.org/10.18653/v1/D19-1296
https://doi.org/10.18653/v1/D19-1296
https://doi.org/10.1109/CVPR52688.2022.01553
https://doi.org/10.1109/CVPR52688.2022.01553
https://doi.org/10.18653/v1/p16-1135
https://doi.org/10.18653/v1/p16-1135
https://doi.org/10.18653/v1/p16-1135
https://doi.org/10.18653/v1/w17-2708
https://doi.org/10.18653/v1/w17-2708
http://arxiv.org/abs/2202.10447
https://doi.org/10.18653/v1/D19-1590
https://doi.org/10.18653/v1/D19-1590
https://doi.org/10.18653/v1/D19-1590
https://doi.org/10.18653/v1/D19-1590
https://doi.org/10.18653/v1/D19-1590
https://doi.org/10.18653/v1/D19-1590
https://doi.org/10.24963/ijcai.2020/499
https://doi.org/10.24963/ijcai.2020/499
https://doi.org/10.24963/ijcai.2020/499
http://arxiv.org/abs/1907.11692
http://arxiv.org/abs/1907.11692
https://ojs.aaai.org/index.php/AAAI/article/view/21354
https://ojs.aaai.org/index.php/AAAI/article/view/21354
https://doi.org/10.18653/v1/2021.acl-short.67
https://doi.org/10.18653/v1/2021.acl-short.67
https://doi.org/10.3115/v1/W14-0702
https://doi.org/10.3115/v1/W14-0702
https://aclanthology.org/C14-1198/
https://aclanthology.org/C14-1198/
https://aclanthology.org/C14-1198/
https://doi.org/10.18653/v1/W16-1007
https://doi.org/10.18653/v1/W16-1007
https://doi.org/10.18653/v1/D19-1642
https://doi.org/10.18653/v1/D19-1642
https://doi.org/10.18653/v1/P18-1122
https://doi.org/10.18653/v1/P18-1122
https://doi.org/10.18653/v1/2021.naacl-main.273
https://doi.org/10.18653/v1/2021.naacl-main.273
https://doi.org/10.18653/v1/2021.naacl-main.273
https://doi.org/10.1109/ICSC.2010.19
https://doi.org/10.1109/ICSC.2010.19
https://doi.org/10.1109/ICSC.2010.19


Karin Kipper Schuler. 2005. VerbNet: A broad-
coverage, comprehensive verb lexicon. University of
Pennsylvania.

Robyn Speer, Joshua Chin, and Catherine Havasi. 2017.
Conceptnet 5.5: An open multilingual graph of gen-
eral knowledge. In Proceedings of AAAI, pages 4444–
4451. AAAI Press.

Fiona Anting Tan, Ali Hürriyetoğlu, Tommaso Caselli,
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to understand experimental results. For example, small differences in accuracy on large test sets may
be significant, while on small test sets they may not be.
No response.

C �3 Did you run computational experiments?
Section 4

�3 C1. Did you report the number of parameters in the models used, the total computational budget
(e.g., GPU hours), and computing infrastructure used?
Section 4.2

The Responsible NLP Checklist used at ACL 2023 is adopted from NAACL 2022, with the addition of a question on AI writing
assistance.
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�3 C2. Did you discuss the experimental setup, including hyperparameter search and best-found
hyperparameter values?
Section 4

�3 C3. Did you report descriptive statistics about your results (e.g., error bars around results, summary
statistics from sets of experiments), and is it transparent whether you are reporting the max, mean,
etc. or just a single run?
Section 4

�3 C4. If you used existing packages (e.g., for preprocessing, for normalization, or for evaluation), did
you report the implementation, model, and parameter settings used (e.g., NLTK, Spacy, ROUGE,
etc.)?
Section 4

D �7 Did you use human annotators (e.g., crowdworkers) or research with human participants?
Left blank.

� D1. Did you report the full text of instructions given to participants, including e.g., screenshots,
disclaimers of any risks to participants or annotators, etc.?
No response.

� D2. Did you report information about how you recruited (e.g., crowdsourcing platform, students)
and paid participants, and discuss if such payment is adequate given the participants’ demographic
(e.g., country of residence)?
No response.

� D3. Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? For example, if you collected data via crowdsourcing, did your instructions to
crowdworkers explain how the data would be used?
No response.

� D4. Was the data collection protocol approved (or determined exempt) by an ethics review board?
No response.

� D5. Did you report the basic demographic and geographic characteristics of the annotator population
that is the source of the data?
No response.
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