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Abstract

We present SpeechMatrix, a large-scale multi-
lingual corpus of speech-to-speech translations
(S2ST) mined from real speech of European
Parliament recordings. It contains speech align-
ments in 136 language pairs with a total of
418 thousand hours of speech. To evaluate
the quality of this parallel speech, we train
bilingual speech-to-speech translation models
on mined data only and establish extensive
baseline results on Europarl-ST, VoxPopuli and
FLEURS test sets. Enabled by the multilin-
guality of SpeechMatrix, we also explore mul-
tilingual speech-to-speech translation, a topic
which was addressed by few other works. We
also demonstrate that model pre-training and
sparse scaling using Mixture-of-Experts bring
large gains to translation performance. We are
open-sourcing the mined data, speech encoders
used for mining, multilingual HuBERT models
in four language families for target unit gen-
eration, language-specific vocoders for speech
synthesis from discrete units, and S2S models
trained and presented in this work.1

1 Introduction

Research has progressed in the area of speech-to-
speech translation with the goal of seamless com-
munication among people who speak different lan-
guages. Direct S2ST models attract increasing re-
search interest, e.g. (Jia et al., 2019). Compared
to conventional cascaded models, direct models do
not rely on intermediate text representations which
make them applicable to the translation of lan-
guages without a well-defined writing script. More-
over, direct S2ST have the advantage of higher
training and inference efficiency (Lee et al., 2022a).

Despite the benefits of direct approaches, their
training is faced with the major issue of data
scarcity in parallel speech. Human labeled speech

∗Equal contributions
1https://github.com/facebookresearch/

fairseq/tree/ust/examples/speech_matrix

data is expensive to create, there are very few
data resources providing speech alignments, and
the data amount is quite limited. To mitigate the
data scarcity, some works have leveraged multi-
task learning (Jia et al., 2019; Lee et al., 2022a),
data augmentation with speech variations (Jia et al.,
2019), or with synthesized speech (Jia et al., 2022a;
Popuri et al., 2022; Nguyen et al., 2022). It is also
shown useful to leverage knowledge transferred
from pre-trained models (Lee et al., 2022b; Popuri
et al., 2022) such as HuBERT (Hsu et al., 2021),
wav2vec 2.0 (Baevski et al., 2020) and mBART
(Liu et al., 2020).

Recently, Duquenne et al. (2021) is the first
work to make speech mining efforts by learning
a shared multilingual speech and text embedding
space. Speech content is encoded by speech en-
coders into fixed-size representations which are
then used for aligning speech and text across dif-
ferent languages. It demonstrates good empirical
gains to train direct speech-to-text and speech-to-
speech translation systems with the mined data
(Duquenne et al., 2021; Lee et al., 2022b).

In this work, we trained speech encoders for 17
languages2 and mined speech-to-speech alignments
for all possible language pairs from VoxPopuli
(Wang et al., 2021a), a collection of European Par-
liament recordings. To the best of our knowledge,
SpeechMatrix is by far the largest freely available
speech-to-speech translation corpus, with 136 lan-
guage directions and an average of 1,537 hours
of source speech in each direction for a total of
418 thousand hours. We demonstrate that strong
S2ST models can be trained with these mined data
and validate the good quality of the speech align-
ments across languages. We are open-sourcing
the mined data and the speech encoders used for

2Czech (cs), German (de), English (en), Spanish (es), Es-
tonian (et), Finnish (fi), French (fr), Croatian (hr), Hungarian
(hu), Italian (it), Lithuanian (lt), Dutch (nl), Polish (pl), Por-
tuguese (pt), Romanian (ro), Slovak (sk) and Slovenian (sl).
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mining, which could pave the way for future re-
search on S2ST. Moreover, for reproducibility, we
will release model components including multilin-
gual HuBERT models in four language families for
target unit generation, language-specific vocoders
for speech synthesis from discrete units, and S2S
models trained and presented in this work.

2 Related Works

From bitext mining to speech mining. Bitext
mining is to find parallel sentences from mono-
lingual resources, which provides a large amount
of training data for machine translation models.
Early works on bitext mining used document meta-
information (Resnik, 1999), cross-lingual docu-
ment retrieval (Munteanu and Marcu, 2005) or
information retrieval (Abdul-Rauf and Schwenk,
2009; Bouamor and Sajjad, 2018). More re-
cent works use multilingual sentence embeddings
(Artetxe and Schwenk, 2018; Yang et al., 2019;
Schwenk et al., 2021a). The embedding based ap-
proach can be extended to new languages (Reimers
and Gurevych, 2020; Heffernan et al., 2022) or
the speech modality (Duquenne et al., 2021; Khu-
rana et al., 2022) with knowledge distillation, also
called teacher-student approach. These multilin-
gual and multimodal sentence embeddings enabled
us to perform large-scale speech-text mining, or
speech-speech mining for a small set of languages.

Speech-to-speech translation (S2ST). S2ST
started from cascaded systems consisting of auto-
matic speech recognition (ASR), machine trans-
lation (MT) and text-to-speech synthesis (TTS)
(Nakamura et al., 2006; Do et al., 2015). The
reliance on intermediate text outputs poses limi-
tations on cascaded models to support efficient in-
ference and unwritten languages. Given these chal-
lenges, there has been a recent surge of research
interest in direct approaches to speech translation
without the need of texts. Translatotron (Jia et al.,
2019) and Translatotron2 (Jia et al., 2022b) train
end-to-end S2ST to generate target spectrograms
with multitask learning. Another line of research
replaces the target spectrograms in S2ST modeling
with discrete units which are learned from a large
amount of unlabeled speech (Lee et al., 2022a,b).
Discrete units have shown to better capture lin-
guistic content than spectrograms. Despite these
progress on direct S2ST, it is faced with the chal-
lenge of limited parallel speech.

Speech translation corpora. The Fisher dataset,

a collection of approximately 170 hours of tele-
phone conversations in Spanish (Post et al., 2014),
is commonly used as training data for Spanish-
English S2ST. However, it does not provide parallel
English speech. Previous works generate synthe-
sized English speech from English text translations
provided by Fisher. Another S2S dataset containing
synthesized speech is CVSS, which covers parallel
S2ST translations from 21 languages into English.
It is derived from Common Voice (Ardila et al.,
2020) and CoVoST 2 (Wang et al., 2021b), and
it synthesizes speech from translated texts. The
release of VoxPopuli dataset provides the largest
S2S translations in real speech so far (Wang et al.,
2021a). It covers pairwise speech-to-speech trans-
lations among 15 languages, and each direction has
less than 500 hours of speech. In another initiative
named FLEURS, the text-to-text evaluation data
of the FLoRes-101 benchmark (Goyal et al., 2022)
was extended to the speech modality. Supporting
102 languages, FLEURS has a larger language cov-
erage than VoxPopuli, but it only contains around
12 hours of speech per language and it is intended
to be used asN -way parallel test data.

In this work, we present SpeechMatrix, a large-
scale multilingual speech-to-speech corpus mined
from VoxPopuli (Wang et al., 2021a). It contains
speech alignments in 136 language pairs with an
average of 1, 537-hour source speech per direction.
The main characteristics of these speech corpora
are summarized in Table 1.

3 Speech-to-Speech Mining

The mining approach of this work is built upon
the idea of encoding multilingual speech utterances
into a shared embedding space. Speech encoders
project utterances with similar semantic content to
fixed-size representations which are close in the em-
bedding space regardless of their languages. The
closeness of embeddings reflects the similarity of
speech content, and is used as the alignment score
in the mining process. In this section, we discuss
speech encoders and speech mining.

3.1 Speech Encoders

We followed the teacher-student approach intro-
duced in (Duquenne et al., 2021) and trained speech
encoders with the supervision of the multilingual
LASER text encoder (Schwenk et al., 2021b). Tran-
scriptions or written translation of the audio utter-
ances are encoded with LASER text encoder as

2
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Dataset # of Languages Avg. duration (h) Source speech Target speech

Fisher (Post et al., 2014) 2 127 Telephone conversation Synthetic
MaSS (Boito et al., 2020) 8 20 Bible reading Bible reading

VoxPopuli (Wang et al., 2021a) 15 82 European Parliament speech Simultaneous interpretation
CVSS (C+T) (Jia et al., 2022c) 21 181 Read Synthetic
FLEURS (Conneau et al., 2022) 102 12 Read Read

SpeechMatrix (ours) 17 1537 European Parliament speech European Parliament speech

Table 1: A comparison of existing speech-to-speech datasets.

target vectors for speech encoder training. Dur-
ing training, we minimize the cosine loss between
fixed-size representations output by speech en-
coders, and the outputs of LASER text encoder
(whose weights are frozen during training). Speech
encoders are initialized with the 2B-parameter
XLS-R model (Babu et al., 2021), which was
pre-trained on nearly half a million hours of pub-
licly available audios in 128 languages. Following
(Duquenne et al., 2022), the fixed-size represen-
tation for speech is obtained with max pooling of
the encoder outputs which appeared to work bet-
ter compared to other pooling methods. We sum-
marize the architecture of the speech encoder in
Figure 1.

We used various publicly available ASR data
sets which cover our languages to train the speech
encoders, including CoVoST 2 (Wang et al., 2020,
2021b), Common Voice (Ardila et al., 2020),
Europarl (Ardila et al., 2020), mTedx (Salesky
et al., 2021), Must-C (Di Gangi et al., 2019) and
VoxPopuli (Wang et al., 2021a), as well as speech
translation data from the foreign languages into En-
glish and from English into German. We removed
training samples whose transcription or the writ-
ten translation consisted of multiple sentences, as
LASER has been trained on single sentences only.
For better training efficiency, we trained speech
encoders for each language family instead of each
language. The language grouping is provided in
Appendix. To better handle imbalanced training

Figure 1: Architecture of speech encoders training.

data, we sample the training data from different lan-
guages with the same approach as (Duquenne et al.,
2021). For English (en), Slovenian (sl), Lithuanian
(lt) and Dutch (nl), we also trained separate mono-
lingual speech encoders that had lower valid cosine
loss compared to multilingual encoders, and these
four monolingual encoders were used for mining.

3.2 Evaluation of speech encoders

Similarity search is frequently used to evaluate mul-
tilingual text encoders (Artetxe and Schwenk, 2018;
Feng et al., 2020; Heffernan et al., 2022). We use
the following score to measure similarity between
the source audio, and the target transcriptions or
translations:

sim(x,y) (1)

= cos(x, y) −
(

∑
z∈NNk(x)

cos(x, z)

2k
+

∑
z∈NNk(y)

cos(y, z)

2k

)

where x and y are the source and target embed-
dings, and NNk(x) denotes the k nearest neigh-
bors of x. We used k = 4. We evaluated sim-
ilarity search of audios against transcriptions on
VoxPopuli ASR test set in Table 2, which is our
target domain as we plan to mine unlabeled speech
from VoxPopuli (see subsection 3.3). We also eval-
uated similarity search of audio against written
translations or transcriptions on CoVoST 2 test set
in order to compare with speech encoders in pre-
vious work (see detailed analysis in Appendix A).
Finally, we report text-to-text similarity search us-
ing the LASER text encoder as lower bound for the
speech translation similarity search error rate since
we use gold transcriptions to search against written
translations. We report error rates (in %) that are
percentage of audio utterances incorrectly matched
with text transcripts from the same test set. We note
that error rates are very low for all languages (be-
low 5% and around 1 or 2% for most languages),
which is an initial validation of good-quality speech
encoders before the large-scale mining.
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Sim Search cs de en es et fi fr hr hu it lt nl pl pt ro sk sl

# test sentences 1k 1.7k 1.5k 1.4k 47 0.4k 1.5k 0.3k 1k 1k 39 1k 1.6k — 1.3k 0.6k 0.3k

Audio vs. transcriptions 0.6 1.0 0.2 0.7 0.0 0.7 0.5 0.3 1.1 4.9 0.0 0.8 0.9 — 0.9 0.7 3.1

Table 2: Similarity search error rates (in %) on VoxPopuli ASR test set.

3.3 Large-scale speech mining

We used VoxPopuli as our source of unlabeled un-
segmented speech for 17 languages in focus. In
principle, performing speech-to-speech or speech-
to-text mining can be done with exactly the same
pipeline as text-to-text mining but with different
encoders. We follow the global mining approach as
described in Schwenk et al. (2021a) and compare
all segments in the source language with all seg-
ments in the target language. Similarity scores are
calculated in both directions using the margin as
described in Equation 1 considering k = 16 neigh-
bors. Segments are considered to be parallel if the
margin score exceeds a threshold, we use 1.06 if
not specified otherwise. The reader is referred to
Schwenk et al. (2021a) for a detailed description
of the generic mining pipeline.

There is however one important difference when
processing speech: it is not straightforward to seg-
ment the audio signal into parts which have the
optimal granularity for mining. The VoxPopuli
recordings have a rather long duration, e.g. one
hour and a half on average for English. We apply
Voice Activity Detection (VAD) using Silero-VAD
(Silero-Team, 2021) which supports over 100 lan-
guages. The resulting segments do not necessarily
correspond to complete sentences. On one hand,
there may be silence in the middle of an utterance,
e.g. a hesitation. On the other hand, two sentences
may follow each other without a long silence sep-
arating them. We follow the “over segmentation”
approach outlined in Duquenne et al. (2021): sev-
eral possible segments are created and we let the
mining algorithm decide which ones match the best.
Initial experiments suggest that segments shorter
than 1 second or longer than 20 seconds are un-
likely to be aligned and therefore were excluded.

After mining, the resulting speech alignments
may have overlap as we over-segment the unlabeled
speech. A post-processing method Duquenne et al.
(2021) is introduced to remove overlaps between
mined speech segments on the source speech side.
We relax the post-processing of the mined data,
allowing for some overlap between mined speech
segments: for two audio segments that overlap on

the source side, if the overlap represents more than
20% of the first segment and of the second seg-
ment, we discard the alignment with the lowest
mining score. We did an ablation study on different
thresholds of overlap ratio for one low-resource,
one mid-resource and one high-resource direction
and found that 20% was the best overlap threshold
in all settings.

We report the statistics of the mined speech-to-
speech translation pairs in Table 3, with a mining
score threshold of 1.06. The mined data totals 418k
hours of parallel speech with an average of 1,537
hours of source speech in all translation directions.
While some high resource languages like English
(en), Spanish (es) or French (fr) can reach up to
5k hours of aligned speech with other spoken lan-
guages; lower resource languages such as Estonian
(et) and Lithuanian (lt) obtain much fewer align-
ments, with only a few hours of aligned speech
for Lithuanian. We also performed mining of the
source speech in sixteen languages against more
than twenty billion English sentences from Com-
mon Crawl. This yielded speech-text alignments
between 827 and 3, 966 hours (c.f. the last column
of Table 3). Training and evaluation of speech-to-
text translation are left for future research.

3.4 Evaluation Data

Besides the speech-to-speech data mined as the
train set, we leverage labeled public speech datasets
as the evaluation sets.

Test set. In our experiments, we derive test sets
in speech translation from three public corpora,
evaluating translation models trained on mined data
across different domains.

(1) Europarl-ST (EPST) (Iranzo-Sánchez et al.,
2020). It is a multilingual speech-to-text transla-
tion corpus built on recordings of debates from
the European Parliament, containing 72 translation
directions in 9 languages.3

(2) VoxPopuli (Wang et al., 2021a). S2S data, as
part of VoxPopuli release, provides aligned source
and target speech together with source transcrip-
tions. We prepare the speech-to-text data with

3en, fr, de, it, es, pt, pl, ro and nl

4
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Speech targets Text
Src/Tgt cs de en es et fi fr hr hu it lt nl pl pt ro sk sl en

cs - 2381 3208 2290 952 1312 2476 726 1396 2410 84 2377 2516 1867 1190 2146 452 2528
de 2386 - 4734 3113 901 1477 3536 498 1871 3476 41 3384 2632 2250 1281 1646 361 3073
en 3172 4676 - 4715 1585 2169 5178 824 2266 4897 82 4422 3583 3572 2258 2306 586 -
es 2240 3041 4708 - 862 1373 4446 528 1599 4418 47 3067 2646 3484 1857 1603 308 3966
et 943 892 1593 877 - 1201 934 265 1119 1019 39 1055 949 721 419 780 196 1578
fi 1296 1463 2180 1393 1197 - 1449 306 1473 1599 47 1654 1350 1128 621 977 260 1969
fr 2424 3457 5171 4455 923 1435 - 560 1711 4618 50 3273 2822 3384 1991 1657 326 3966
hr 736 507 854 553 273 317 588 - 328 615 24 546 660 433 277 586 136 1311
hu 1417 1897 2346 1672 1140 1507 1787 328 - 1855 68 1839 1566 1315 808 1064 311 2301
it 2404 3460 4948 4500 1028 1614 4700 607 1823 - 103 3414 2848 3421 1995 1656 474 2891
lt 78 38 79 46 37 44 48 21 61 95 - 77 80 35 18 64 6 827
nl 2322 3305 4396 3066 1040 1633 3269 521 1768 3355 80 - 2459 2399 1352 1646 458 2708
pl 2530 2646 3662 2735 967 1378 2913 656 1554 2883 88 2540 - 2121 1301 1892 431 2871
pt 1849 2224 3606 3525 722 1131 3421 421 1279 3403 37 2436 2087 - 1579 1358 247 3540
ro 1187 1275 2290 1894 423 627 2024 271 789 1996 19 1384 1288 1592 - 870 125 2784
sk 2127 1628 2329 1631 781 982 1685 574 1038 1650 69 1676 1869 1361 867 - 370 2090
sl 436 350 579 307 192 254 324 128 295 461 6 454 413 241 121 359 - 1267

# hours of unlabeled speech
18.7k 23.2k 24.1k 21.4k 10.6k 14.2k 22.8k 8.1k 17.7k 21.9k 14.4k 19.0k 21.2k 17.5k 17.9k 12.1k 11.3k

Table 3: Duration statistics (hours of source speech) of speech-to-speech alignments for each pair of 17 languages
(for mining threshold of 1.06). The last column provides statistics for alignments of source speech against 21.5
billion sentences of English texts. The last row provides duration of raw speech from VoxPopuli used for mining.

target speech and source transcription as our test
set. To ensure that there is no overlap between
the mined data and VoxPopuli test sets, we need
to remove speech from mined alignments which
are from the same session as test samples. In order
to keep as much mined data as possible, we use
VoxPopuli test set only when a language direction
is not covered by EPST considering their domain
similarity. Moreover, similarity scores are provided
to indicate the quality of VoxPopuli samples. To
choose high-quality data, we sort all sessions in the
VoxPopuli S2S data in a decreasing order of the
average similarity score of their samples. We keep
adding samples from highly ranked sessions to the
test set until the test size reaches 1000.

(3) FLEURS (Conneau et al., 2022). Built
upon N-way text translations from FLoRes (Goyal
et al., 2022), FLEURS provides speech for aligned
texts and creates speech-to-speech data covering
all mined directions. We take its source speech and
target texts as the test data. In the case where mul-
tiple utterances correspond to one piece of source
text, we generate one test pair for each source ut-
terance respectively. FLEURS texts are from En-
glish Wikipedia, which is a different domain from
VoxPopuli and EPST.

Valid set. Valid sets are prepared for S2S model-
ing using VoxPopuli and FLEURS data in a similar
way as test sets. For VoxPopuli, we extract a valid
set of about 1000 samples by adding data from
highly scored sessions which are not in the test set.
FLEURS valid set is derived from its valid sam-

ples. We prepare speech-to-unit data from these
selected valid samples by transforming the target
speech into target units for speech-to-unit model-
ing, which will be discussed in section 4.

4 Experiments & Results

To evaluate the quality of the mined data, we
trained S2ST models on SpeechMatrix data and
report the translation performance. We hope that
these results will serve as baselines for future stud-
ies in speech-to-speech translation.

HuBERT

VocoderSpeech-to-Unit

source speech

target speech
target units

prediction loss Generated 
target speech

predicted units

ASR Transcriptions

Target texts

BLEU

Figure 2: A Pipeline of Speech-to-Speech Translation
and Evaluation.

Train set Es-En Fr-En En-Es En-Fr

VoxPopuli
S2S

Hours 532 523 415 451
BLEU 13.1 15.4 16.4 15.8

SpeechMatrix
(t = 1.09)

Hours 1,353 1,507 1,366 1,518
BLEU 20.4 20.7 21.9 19.3

Table 4: BLEU scores on EPST test sets by S2ST mod-
els with different training data.
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cs de en es et fi fr hr hu it lt nl pl pt ro sk sl
cs - 12.9 22.7 16.7 - 0.6 21.1 4.4 0.5 10.2 0.1 6.1 8.5 - 4.3 16.9 3.0
de 7.3 - 16.3 11.7 - 1.2 10.7 4.5 0.6 3.8 0.1 10.4 3.5 7.1 5.2 3.0 4.1
en 8.2 10.1 - 21.9 - 1.9 19.2 8.4 1.1 11.5 0.3 15.1 8.2 11.8 7.6 5.7 5.5
es 5.2 6.1 20.4 - - 1.3 16.3 3.6 0.7 11.1 0.1 8.0 3.9 13.3 5.2 2.2 2.2
et - - - - - - - - - - - - - - - - -
fi 3.0 9.0 19.7 11.4 - - 14.1 1.5 0.0 5.8 0.1 6.6 4.5 - 4.4 1.7 1.6
fr 5.4 6.3 20.7 18.4 - 0.8 - 5.4 0.7 10.2 0.1 8.4 4.8 13.4 5.6 1.6 1.5
hr - - - - - - - - - - - - - - - - -
hu 2.6 7.3 15.3 9.5 - 0.7 13.8 1.9 - 6.3 0.1 3.0 1.6 - 2.4 0.9 1.2
it 6.4 4.9 18.9 19.6 - 0.4 15.3 5.2 0.7 - 0.1 6.5 3.6 12.4 3.7 2.1 2.8
lt 0.2 0.0 3.1 0.8 - 0.0 0.7 0.1 0.0 0.6 - 0.7 0.1 - 0.0 0.0 0.1
nl 3.5 8.1 18.0 13.2 - 0.5 13.0 3.3 0.4 5.2 0.1 - 3.4 6.7 4.1 1.7 2.1
pl 7.2 2.8 4.9 6.3 - 1.0 5.5 4.5 0.5 5.8 0.2 1.6 - 6.1 3.2 4.7 2.4
pt - 4.7 21.2 23.2 - - 18.1 - - 4.4 - 5.0 3.6 - 4.4 - -
ro 4.6 6.5 22.6 20.1 - 0.8 18.6 2.4 0.4 8.7 0.1 3.5 4.6 10.3 - 2.3 0.7
sk 28.2 10.7 21.4 15.5 - 1.0 19.2 5.0 0.5 4.7 0.1 4.2 5.3 - 4.4 - 3.6
sl 4.0 11.1 19.5 8.6 - 0.8 13.2 4.8 0.4 6.0 0.1 4.5 6.7 - 1.1 1.7 -

Table 5: BLEU scores of bilingual S2S models on EP/VP test sets. EPST score is underscored.

4.1 Experimental Setup

The training and evaluation pipeline of speech-to-
speech translation is shown in Figure 2. Recent
progress in speech-to-speech modeling suggests to
discretize the target speech waveform into a unit
sequence, relieving models from the complexity
of predicting continuous waveform values. We
borrow the idea of training speech-to-unit (S2U)
model where units are pre-generated from target
speech with a pre-trained HuBERT model (Lee
et al., 2022a). During S2U training, models are
periodically evaluated on the valid set of speech-
to-unit samples, and the best checkpoint with the
lowest valid loss is saved for model inference.

When it comes to inference, speech could be syn-
thesized from the predicted units with a vocoder,
as the output of the S2S pipeline. It is then tran-
scribed into texts by an off-the-shelf ASR model.
The BLEU score is calculated by comparing the
transcriptions against the ground truth target texts,
which serves as the quantitative metric of mined
data quality. We note that the ASR BLEU score
is not a perfect metric for data quality, as it is un-
avoidably affected by the quality of ASR models.
Next we discuss each module of the pipeline.

Speech-to-Unit. The S2U model takes the
source speech and predicts a sequence of target
units. It typically has an encoder-decoder architec-
ture, where the encoder consists of convolutional
and Transformer encoder layers, and the decoder
is a Transformer decoder. We have experimented
with different model variants, and discuss bilingual

and multilingual training in section 5 and section 6.
HuBERT. HuBERT is used to extract speech

features of audio frames, which are then grouped
into k-means clusters. The continuous features
are thus mapped to corresponding clusters. In this
way, speech could be discretized into unit sequence
where units are basically indices of clusters. We
reuse the same HuBERT model and k-means clus-
ters for English, Spanish and French as in (Lee
et al., 2022b) for a fair comparison with existing
results. We also train multilingual HuBERT mod-
els to cover other languages in SpeechMatrix, and
more HuBERT training details can be found in Ap-
pendix B.1.

Vocoder. Unit-based HiFi-GAN vocoders are
trained to synthesize speech from unit sequence
(Polyak et al., 2021). In our experiments, vocoders
are separately trained from S2U model. We train
vocoders on three datasets:

(1) CSS10 (Park and Mulc, 2019). It is a single-
speaker corpus which we use to train vocoders in
German, Finnish, Hungarian and Dutch.

(2) VoxPopuli (Wang et al., 2021a). Given its
ASR data with speaker id, we sort speakers based
on their speech duration, and keep adding the top
speakers until the speech is more than 20 hours.

(3) Common Voice (Ardila et al., 2020). Por-
tuguese and Estonian are not covered by the two
corpora above, and thus we turn to Common Voice.
Again, we select top speakers and prepare 12-hour
and 10-hour speech for the vocoder training in Por-
tuguese and Estonian respectively.
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Data preprocessing and training are included in
Appendix B.3.

ASR. We use off-the-shelf ASR models to tran-
scribe the speech generated by vocoders. Details
about the ASR models and their benchmark results
of word error rates are provided in Appendix B.2.

5 Bilingual Speech-to-Speech Baselines

In this part, we discuss the bilingual S2S mod-
els trained in each of 272 language directions in
SpeechMatrix. The architecture of Textless model
is used for bilingual translation in our experiments
(Lee et al., 2022a). A Textless model consists of a
speech encoder, Transformer encoder and decoder.

Training. For a given direction, we extract units
for source and target speech with their correspond-
ing HuBERT models (Hsu et al., 2021). Taking
source speech, the model is trained to predict target
unit sequence with cross-entropy loss as well as
source unit reconstruction as an auxiliary task.

For the training efficiency of extensive S2ST ex-
periments, we use a subset of mined data as the
train set. Mined samples are selected if their align-
ment scores are above a preset threshold. We per-
formed an analysis of the threshold selection in
subsection B.4.

Comparison with existing results. Since we
adopt the same model as the previous work (Lee
et al., 2022a) and the only difference lies in the train
set, it is straightforward to compare with existing
results. Table 4 shows the results of S2ST models
which are trained on our SpeechMatrix mined data
compared to VoxPopuli S2S data in each of four
language directions: es-en, fr-en, en-es and en-
fr. The threshold of mined data is set as 1.09 to
these four directions, yielding an average of 1, 436-
hour train set. Compared with 480-hour labeled
speech from VoxPopuli, SpeechMatrix achieves an
an average improvement of 5.4 BLEU, indicating
the good quality and usefulness of the mined data.

5.1 Large-Scale Bilingual Evaluation

A large-scale evaluation is launched covering 272
mined languages directions, and bilingual models
are trained for each direction to establish baseline
results in speech-to-speech translation.

Table 5 and Table 6 summarize performance of
bilingual S2ST models on three test sets. In each
direction, Table 5 reports BLEU scores in Euro-
pean Parliament domain, either EPST or VoxPopuli
set. EPST BLEU is underlined to be distinguished

from VoxPopuli BLEU. Table 6 reports BLEU in
Wikipedia domain, i.e., FLEURS test data.

Bilingual results. Empirically we find that trans-
lations into high-resource languages such as en,
es and fr outperform those into low-resource lan-
guages such as lt and sl based on the speech amount
of these languages in Table 3. Another observation
is the performance difference across test domains,
and BLEU on FLEURS is lower than that on EPST
and VoxPopuli data, likely because of the domain
mismatch between train and test data.

It is also found that translation results are not
symmetric for some language pairs, for example,
ro-en has a BLEU of 22.6 while en-ro BLEU
is only 7.6 on EPST. Besides different complex-
ity levels of target languages and test sets, such
asymmetry also results from the dependency of
BLEU scores on the speech synthesis quality of
the vocoder and transcription quality of the ASR
model. For languages whose vocoder and ASR
models are not good, they are likely to receive low
BLEU scores. In this case, Romanian vocoder
and ASR are not as strong as English models as
reflected by its higher word error rate in speech
resynthesis as reported in Appendix B.3.

6 Multilingual Speech-to-Speech
Translation

Multilingual modeling has been explored in tasks
of language understanding and machine transla-
tion, demonstrating knowledge transfer among lan-
guages. However, to our best knowledge, there are
few studies of multilingual S2ST on real speech,
partially due to the lack of multilingual speech-to-
speech resources. With the massively multilingual
data we have mined, we are able to explore multi-
lingual S2ST training.

In this work, we focus on many-to-English trans-
lation, studying the translation from 6 Slavic lan-
guages to English in subsection 6.1 and the transla-
tion from all 16 languages in SpeechMatrix to En-
glish in subsection 6.2. English-to-many or many-
to-many translation are left to future work. We
present here multilingual models used in our exper-
iments (more details can be found in Appendix C:

(1) Textless model. The same model with 70M
parameters that we use for bilingual evaluation is
reused in the multilingual experiments. Given di-
verse multilingual data, we increase the model size
for larger model capacity, trying multilingual mod-
els with 70M and 260M parameters.
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cs de en es et fi fr hr hu it lt nl pl pt ro sk sl
cs - 2.0 4.2 4.6 0.1 0.2 7.5 2.1 0.2 2.5 0.1 1.0 2.3 2.8 1.4 3.5 1.7
de 2.3 - 8.3 3.8 0.1 0.2 6.5 2.2 0.2 1.8 0.0 1.2 0.9 3.1 2.1 0.8 1.0
en 2.7 2.7 - 6.0 0.7 0.6 10.4 2.4 0.3 3.6 0.1 3.8 1.3 5.1 2.0 1.2 1.2
es 1.9 1.8 7.5 - 0.1 0.2 9.2 1.0 0.2 4.2 0.1 1.5 1.4 5.9 2.3 0.9 0.8
et 2.1 0.7 8.2 3.0 - 0.7 6.3 1.0 0.7 2.3 0.1 1.5 1.2 1.7 1.4 0.4 0.8
fi 1.5 0.9 5.5 3.8 0.5 - 6.2 0.5 0.0 1.2 0.0 0.8 1.2 2.0 1.1 0.7 0.7
fr 1.5 2.1 9.8 7.6 0.1 0.2 - 1.7 0.2 3.1 0.1 1.3 1.5 5.8 2.4 0.6 0.6
hr 2.5 0.9 7.7 3.1 0.2 0.1 5.8 - 0.2 1.1 0.0 0.9 1.1 2.0 0.6 0.9 0.8
hu 1.3 1.0 4.6 3.0 0.1 0.2 5.7 0.7 - 1.2 0.0 0.1 0.4 2.3 0.9 0.2 0.3
it 1.3 1.0 6.3 8.3 0.1 0.1 11.3 1.3 0.2 - 0.0 0.9 1.1 5.6 1.9 0.4 0.6
lt 0.1 0.0 0.9 0.2 0.0 0.0 0.2 0.0 0.0 0.4 - 0.1 0.0 0.0 0.0 0.0 0.0
nl 1.4 3.1 5.7 4.9 0.2 0.2 7.5 1.8 0.2 1.7 0.0 - 0.9 3.3 1.4 0.4 1.0
pl 1.6 1.6 4.9 4.4 0.1 0.2 5.4 1.2 0.1 1.5 0.0 0.3 - 2.5 1.2 1.1 0.7
pt 1.2 1.0 6.1 8.7 0.1 0.3 11.1 1.1 0.1 1.1 0.1 0.6 0.8 - 1.5 0.6 0.6
ro 1.9 2.2 7.8 7.0 0.4 0.3 11.3 0.9 0.2 3.8 0.1 0.9 1.1 6.0 - 0.7 0.2
sk 9.1 2.1 5.5 5.1 0.3 0.2 7.8 3.0 0.4 2.1 0.0 0.7 1.9 2.3 1.9 - 1.5
sl 2.2 2.0 7.3 3.4 0.2 0.3 4.5 1.1 0.1 1.2 0.0 1.0 1.2 1.5 0.1 0.3 -

Table 6: BLEU scores of bilingual S2S models on FLEURS sets.

(2) XM Transformer. Inspired by the recent
finding that crossmodal pre-training is beneficial
for speech translation (Popuri et al., 2022), we
apply XM Transformer to multilingual training,
whose encoder is initialized from pre-trained XLS-
R model with 1B parameters (Babu et al., 2021)
and decoder is initialized from a unit decoder pre-
trained in an mBART style (Popuri et al., 2022).
With multilingual speech-to-unit data, the model
is further finetuned to minimize the cross-entropy
loss in target unit prediction.

(3) XM Transformer with Sparsity. Sparse
modeling, in particular Mixture-of-Experts (MoE),
has been widely studied in multilingual machine
translation. MoE increases the number of parame-
ters without sacrificing computation efficiency.

GShard. GShard is a sparse scaling technique
proposed in (Lepikhin et al.). We replace every
other Transformer layer with an MoE layer. FFN
modules in an MoE transformer layer are shared
across experts. A learnable gating function routes
input tokens to different experts (NLLB Team et al.,
2022). We apply GShard architecture on the de-
coder of XM Transformer, and expert weights are
all initialized with the pretrained unit mBART.

6.1 Slavic-to-English Translation

The six Slavic languages include Czech (cs), Croa-
tian (hr), Lituanian (lt), Polish (pl), Slovak (sk),
and Slovenian (sl). In the multilingual setting, all
mined data into English are combined from each

Bilingual Multilingual
EP/VP FL EP/VP FL EP/VP FL EP/VP FL

Textless 70M 260M 70M 260M
Avg. 14.3 5.1 16.8 6.5 14.1 2.5 22.4 11.2
XM Dense(1.2B) Dense (1.2B) GShard (4.3B)
Avg. 18.1 10.1 26.0 15.2 27.0 15.5

Table 7: Average BLEU of Slavic-to-English models in
EP/VP and FLEURS (FL) domains.

Slavic language as the train set.

We summarize ASR BLEU scores of different
models averaged over six Slavic-to-English direc-
tions in Table 7. For completeness, we report
BLEU of each direction in Appendix C. As is
shown, Textless model benefits from the parameter
increase to 260M, and multilingual training further
brings BLEU gains of 5.6 and 4.7 in EP/VP and
FLEURS. We tried larger models than 260M but
didn’t see more gains.

Comparing against bilingual Textless model
(70M), bilingual XM Transformer achieves +3.8
BLEU in EP/VP and +5.0 BLEU in FLEURS.
Multilingual training further improves dense
XM Transformer by 7.9 and 5.1 BLEU. GShard
with 64 experts brings +1.0 BLEU over dense
XM Transformer to EP/VP, and +0.3 BLEU
to FLEURS. Overall the best Slavic-to-English
translation is achieved by XM Transformer with
GShard trained in multilingual setting. This demon-
strates that multilinguality, pre-training and model
sparsity are of help to speech-to-speech translation.
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Dense (1.2B) GShard (4.3B)
EP/VP FL EP/VP FL

cs 29.9 18.7 30.9 18.2
de 18.8 19.0 19.3 20.3
es 22.8 15.2 23.3 15.9
et - 16.7 - 16.7
fi 26.8 14.1 28.2 14.0
fr 23.5 18.3 24.1 18.9
hr - 16.6 - 16.8
hu 20.2 12.0 21.3 12.5
it 36.3 16.2 37.8 14.9
lt 21.9 9.8 23.8 10.3
nl 21.4 16.4 22.1 17.3
pl 21.2 12.4 21.3 13.4
pt 23.8 21.8 24.2 22.3
ro 25.1 19.7 25.0 19.8
sk 30.8 19.6 32.2 18.2
sl 28.3 13.7 29.9 13.7

avg 25.1 16.3 26.0 16.5

Table 8: BLEU of All-to-English multilingual models
across FLEURS (FL) and EP/VP domains (for EP/VP
column, underlined scores are on EPST data, and others
on VoxPopuli data).

6.2 All-to-English Translation

We move forward to a larger-scale multilinguality
by extending from Slavic language family to all lan-
guages in SpeechMatrix. We adopt the best models
in Slavic-to-English translation, i.e., multilingual
XM Transformer with both dense and sparse archi-
tectures.

Results. Compared with XM Transformer
(1.2B) dense model, MoE-GShard64 (4.3B) with
the same forward computation time brings gains
of +0.9 and +0.2 BLEU to EP/VP and FLEURS
respectively. Similar to our findings in Slavic-to-
English setting, increasing the capacity with sparse
modeling benefits in-domain (EP/VP) more than
out-of-domain FLEURS test set.

Given sparse architecture of XM Transformer
with GShard, all-to-English model shows +0.6 and
-0.4 BLEU difference compared with Slavic-to-
English model on EP/VP and FLEURS respec-
tively, averaged over Slavic languages. Multilin-
gual sparse model benefits from the additional in-
domain data in other languages when evaluated in
EP/VP domain, while sees performance degrada-
tion in out-of-domain data.

7 Limitations and Risks

Limitations. The HuBERT model quality is crit-
ical to speech-to-speech translation performance,
as its extracted units are used by both speech-to-
unit model and vocoder. We have not explored the
optimal strategy of multilingual HuBERT training.
One research question is how to choose a group of
languages so that a multilingual HuBERT model
could be well trained. For example, it is arguable
whether Lithuanian (lt) should be included in Slavic
or Uralic family. Other questions could be whether
a larger HuBERT with more model capacity should
be used and how we should deal with language
imbalance in multilingual training.

We provide benchmark results of bilingual
speech translation with mined data selected by
heuristics. One of our future directions is to come
up with a better strategy of mined data selection
to improve translation performance and training
efficiency.

As mentioned in our results analysis, the re-
ported BLEU scores are heavily dependent on the
ASR quality, which may not reflect the speech
translation performance accurately. Future direc-
tions could be improving ASR quality or exploring
other evaluation metrics without reliance on ASR
models.

Potential Risks. As a technology used for
speech generation, the presented speech transla-
tion models or the translation models that will be
trained with SpeechMatrix dataset might have sys-
temic bias or produce inappropriate outputs.

8 Conclusion

In this paper, we introduce a large-scale mul-
tilingual speech-to-speech corpus mined from
VoxPopuli. It is the largest resource of speech
alignments with a coverage of 17 languages. We
perform an extensive evaluation of the mined par-
allel speech, showing good quality of the speech
alignments. Multilingual speech-to-speech models
can be efficiently trained on this corpus and we
suggest different methods, such as sparse scaling
using Mixture-of-Experts, to further boost transla-
tion performance in the multilingual setting.
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A Speech Encoder

A.1 Similarity search on CoVoST

We compared our similarity search results with
previous work (Duquenne et al., 2021) in Table 9.
We notice that our new speech encoders have lower
error rates compared to previous work.

Audio vs. en translations de es fr
Previous work 3.36 1.66 2.05
This work 3.27 1.26 1.55

Table 9: Similarity search error rates (in %) on
CoVoST 2 test set.

We also provide similarity search of audios
against written translations or transcriptions on
CoVoST 2 test set for other languages covered by
our speech encoders in Table 10, in order to evalu-
ate cross-modal similarity search.

de en es et fr it nl pt sl
# test sentences 14k 16k 13k 2k 15k 9k 2k 4k 0.4k
Audio

vs. transcriptions 1.4 2.9 0.4 0.1 0.5 0.5 1.0 1.1 1.7
vs. en translations 3.3 — 1.3 1.0 1.5 1.7 4.4 1.9 4.4

Text transcription
vs. en translations 2.0 — 1.0 0.1 1.0 1.3 2.4 0.7 0.8

Table 10: Similarity search error rates (in %) on
CoVoST 2 test set.

B Bilingual Speech-to-Speech Translation

We describe experiment details of bilingual speech-
to-speech translation.

B.1 HuBERT

Family Languages

Romance es, fr, it, pt, ro
Slavic cs, pl, sk, sl, hr, lt

Germanic en, de, nl
Uralic fi, et, hu

Table 11: Language families in VoxPopuli data.

We train a multilingual HuBERT model for each
family on the collection of speech in each compo-
nent language as shown in Table 11. We collect
unlabeled VoxPopuli speech for all languages of
the same family as the training data. The HuBERT
model consists of 7 convolutional layers and 12
Transformer encoder layers. Each encoder layer
has 12 attention heads, the embedding dimension
of 768 and the forward dimension of 3072. Models
are trained for 3 iterations, and in each iteration
pseudo-labels are prepared as the training target for
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Lang cs de
ASR comodoro/wav2vec2-xls-r-300m-cs-250 jonatasgrosman/wav2vec2-xls-r-1b-german
Lang et fi
ASR RASMUS/wav2vec2-xlsr-1b-et jonatasgrosman/wav2vec2-large-xlsr-53-finnish
Lang hr hu
ASR classla/wav2vec2-xls-r-parlaspeech-hr jonatasgrosman/wav2vec2-large-xlsr-53-hungarian
Lang it lt
ASR jonatasgrosman/wav2vec2-large-xlsr-53-italian sammy786/wav2vec2-xlsr-lithuanian
Lang nl pl
ASR jonatasgrosman/wav2vec2-xls-r-1b-dutch jonatasgrosman/wav2vec2-xls-r-1b-polish
Lang pt ro
ASR jonatasgrosman/wav2vec2-xls-r-1b-portuguese gigant/romanian-wav2vec2
Lang sk sl
ASR anuragshas/wav2vec2-xls-r-300m-sk-cv8-with-lm anuragshas/wav2vec2-xls-r-300m-sl-cv8-with-lm

Table 12: HuggingFace ASR models for each language.

utterances. In the first iteration, the target labels are
MFCC features. In the second iteration, we extract
speech features from the 6-th layer of the trained
HuBERT model and apply k-means clustering to
derive a set of 500 labels. In the third iteration,
speech features from the 9-th layer are clustered
into 500 labels. Lastly after these three iterations,
we try feature extraction from different layers in-
cluding layer 10, 11 and 12 of trained HuBERT. As
for feature clustering, we also try different numbers
of clusters, 800, 1000 and 1200, to derive multiple
sets of target units.

To choose the optimal setup, we launch a resyn-
thesis evaluation to select the HuBERT layer to
extract speech features and the number of k-means
clusters. We train a vocoder on each set of target
units, i.e., vocoder takes the units and synthesizes
target speech. The synthesized speech is sent to
off-the-shelf ASR models, and Word Error Rate
(WER) is reported to measure the speech quality.
The resynthesis experiments are discussed in sub-
section B.3. The optimal HuBERT layer and la-
bel size is selected if their corresponding vocoder
achieves the lowest WER.

B.2 ASR models

We use ASR models publicly released on Hugging-
Face to transcribe the generated speech in order
to calculate WER or BLEU scores in comparison
with ground truth texts. ASR models used in our
evaluation are listed in Table 12.

B.3 Vocoder

Data preprocessing. We applied a denoiser4 (De-
fossez et al., 2020) to the speech of VoxPopuli
and Common Voice as the speech preprocessing
to increase signal-to-noise ratio (SNR) given that
they are noisier than CSS10 audios. Then we pre-
pare vocoder labels with HuBERT models gen-
erating k-means cluster labels for each utterance.
Single-speaker vocoders are trained in CSS10, and
languages from VoxPopuli and Common Voice
have multi-speaker vocoders where speaker em-
beddings are learned. During inference, we select
the speaker with the longest speech duration to syn-
thesize speech from predicted unit sequences, who
has the most data for the vocoder to learn good
speaker embeddings.

Vocoder training and evaluation. Vocoders are
trained to synthesize speech from a given sequence
of units. The train sets are speech data from CSS10,
VoxPopuli and Common Voice. As mentioned be-
fore, units are derived from HuBERT models for
these speech. Table 13 summarizes WER of ASR
models, which reflects the transcription quality in
each language. Besides, we report the training
data, vocoder WER of synthesized speech from
vocoders, and here we include the vocoder results
obtained from the optimal HuBERT layer and k-
means cluster size. Layer 11 is the best HuBERT
layer for feature extraction in all languages, and
most languages have the best k-means size of 1000
except Italian (it) whose best label size is 800.

As shown in Table 13, ASR models are of good
quality for high-resource languages such as de, fi

4https://github.com/facebookresearch/
denoiser
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Lang Data ASR WER HuBERT Vocoder WER Lang Data ASR WER HuBERT Vocoder WER

de CSS10 0.10
Germanic HuBERT
layer 11, km 1000

0.16 nl CSS10 0.19
Germanic HuBERT
layer 11, km 1000

0.27

fi CSS10 0.02
Uralic HuBERT

layer 11, km 1000
0.15 hu CSS10 0.21

Uralic HuBERT
layer 11, km 1000

0.21

et
Common

Voice
0.14

Uralic HuBERT
layer 11, km 1000

0.44 it VoxPopuli 0.23
Uralic HuBERT
layer 11, km 800

0.27

pt
Common

Voice
0.06

Uralic HuBERT
layer 11, km 1000

0.31 ro VoxPopuli 0.42
Uralic HuBERT

layer 11, km 1000
0.50

cs VoxPopuli 0.15
Slavic HuBERT

layer 11, km 1000
0.23 pl VoxPopuli 0.14

Slavic HuBERT
layer 11, km 1000

0.23

hr VoxPopuli 0.21
Slavic HuBERT

layer 11, km 1000
0.29 lt VoxPopuli 0.38

Slavic HuBERT
layer 11, km 1000

0.57

sk VoxPopuli 0.28
Slavic HuBERT

layer 11, km 1000
0.41 sl VoxPopuli 0.37

Slavic HuBERT
layer 11, km 1000

0.46

Table 13: Benchmark results of ASR models and vocoder resynthesis.

and pt, while suffering from high error rates in lan-
guages such as ro, lt and sl. It is expected to have
higher vocoder WER than ASR WER since the
former is for synthesized speech. By measuring
the gap between the two error rates, we can tell
how good a vocoder is and also infer the quality of
HuBERT units. For et, pt and lt, the gaps are obvi-
ously larger than other languages. It not surprising
since we do not have much good-quality vocoder
data for these languages. For example, there is only
around 10-hour noisy speech from Common Voice
for et and pt vocoder training.

B.4 Training

Textless model. A Textless model consists of a
speech encoder with 2 convolution layers and 12
Transformer encoder layers. Transformer layer has
the embedding dimension of 512 and the forward
dimension of 2048. It has two unit decoders with
6 and 2 Transformer decoder layers for target and
source unit prediction respectively. The target unit
decoder has the embedding dimension of 512 and
the forward dimension of 2048, and the source unit
decoder’s dimensions are 256 and 2048.

Hyperparameters. We tried learning rates of
0.0003 and 0.0005, and dropout rates of 0.1 and
0.3. The best setup is a learning rate of 0.0005
and a dropout of 0.3 for bilingual Textless model
training. Bilingual models are trained with a batch
of 20k tokens for 400k steps. A label smoothing
weight of 0.2 is applied to the cross-entropy loss.

As for decoding of speech-to-unit models, we set
the beam size of 10 in all bilingual and multilingual
experiments.

Mined data selection. We performed an analy-
sis of translation performance varying with thresh-
olds from 1.06 to 1.09 on three language pairs:
es-en, ro-en and hr-en. Figure 3 shows the thresh-

Figure 3: Bilingual S2S BLEU by mined data at differ-
ent thresholds.

old, the corresponding speech data size and BLEU
score.

For low-resource directions such as hr-en, it is
best to include all the mined data. For high- and
medium-resource directions, es-en and ro-en, the
optimal amount of mined data is around 1k hours
and it does not bring further gains to go beyond
that data size. Given these observations, we choose
the highest threshold that keeps the source speech
duration in mined data more than 1k hour for each
direction. For example, we use a threshold of 1.09
for es-en and of 1.06 for hr-en.

Computation. Each bilingual model is trained
on 16 A100 GPUs for 3 days on average.

C Multilingual Speech-to-Speech
Translation

We provide details of models and experiment se-
tups in multilingual speech-to-speech translation.

C.1 Slavic-to-English Translation

Textless model. Textless model (260M) has a
speech encoder with 4 convolution layers and 12
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Transformer encoder layers with the embedding
dimension of 1024 and the forward dimension of
4096. It has two unit decoders with 6 and 2 Trans-
former decoder layers for target and source unit
prediction respectively. The target unit decoder has
the embedding dimension of 1024 and the forward
dimension of 4096, and the source unit decoder’s
dimensions are 256 and 2048.

For the Textless model (424M), its speech en-
coder contains 6 convolution layers and 16 Trans-
former encoder layers with the embedding dimen-
sion of 1024 and the forward dimension of 4096.
It has two unit decoders with 12 and 2 Transformer
decoder layers for target and source unit prediction
respectively. The target unit decoder has the embed-
ding dimension of 1024 and the forward dimension
of 4096, and the source unit decoder’s dimensions
are 256 and 2048.

XM Transformer. XM Transformer (1.2B) is
initialized from XLS-R encoder with 7 convolu-
tion layers and 48 Transformer encoder layers with
the embedding dimension of 1280 and the forward
dimension of 5120. Its unit decoder is initialized
from a pre-trained mbart-style decoder with 12 lay-
ers, embedding dimension of 1024 and forward
dimension of 4096.

Hyperparameters. For Textless model, we
reuse a learning rate of 0.0005, a dropout of 0.3

Bilingual Multilingual
70M 260M 70M 260M 424M

EP/VP FL EP/VP FL EP/VP FL EP/VP FL EP/VP FL
cs 22.7 4.2 24.7 11.2 19.7 2.3 27.5 13.7 25.3 10.2
hr - 7.7 - 4.6 - 3.1 - 12.8 - 9.2
lt 3.1 0.9 0.2 0.0 2.8 0.3 14.7 4.8 10.7 3.3
pl 4.9 4.9 17.6 7.7 14.4 1.9 19.9 9.5 16.4 6.9
sk 21.4 5.5 24.4 11.0 18.9 4.1 27.2 15.4 24.9 11.1
sl 19.5 7.3 16.9 4.7 14.6 3.1 22.9 10.7 21.0 7.6

avg 14.3 5.1 16.8 6.5 14.1 2.5 22.4 11.2 19.7 8.1

Table 14: BLEU of Slavic-to-English multilingual
Textless model across FLEURS (FL) and EP/VP do-
mains (for EP/VP column, underlined scores are on
EPST data, and others on VoxPopuli data).

Bilingual (1.2B) Multiling. Dense (1.2B) Multiling. GShard (4.3B)
EP/VP FL EP/VP FL EP/VP FL

cs 28.3 17.8 29.7 18.2 30.6 19.3
hr - 12.1 - 17.1 - 17.6
lt 0.0 0.0 20.9 9.6 22.2 10.2
pl 17.4 7.4 21.1 12.9 21.4 12.6
sk 24.7 14.5 30.8 19.3 31.8 20.0
sl 20.1 8.5 27.4 14.0 29.1 13.0

avg 18.1 10.1 26.0 15.2 27.0 15.5

Table 15: BLEU of Slavic-to-English multilingual
XM Transformer models across FLEURS (FL) and
EP/VP domains (for EP/VP column, underlined scores
are on EPST data, and others on VoxPopuli data).

and a label smoothing weight of 0.2 for Slavic-to-
English training. The 70M model has 20k tokens
in one batch. The 260M model has batch tokens of
6k and a update frequency of 4. The 424M model
has tokens of 4000 and a update frequency of 6.
For XM Transformer model, we use a learning rate
of 0.0001, a dropout of 0.1 and a label smoothing
weight of 0.2. In a batch, token sizes of 1500 and
9000 with update frequency of 15 and 2 are used
for V100 and A100 training respectively.

Results. We first extend Textless model from
the bilingual to multilingual setting. Translation
results are presented for Textless models with dif-
ferent parameter sizes in Table 14. Multilingual
Textless model works best with 260M parameters.
Compared with its bilingual counterparts, an aver-
age gain of 5.6 BLEU is achieved in EP/VP and
the gain of 4.7 BLEU in FLEURS.

With the Textless model size fixed as 70M, mul-
tilingual training hurts the performance of most
languages compared with bilingual training. This
is due to the insufficient model capacity, and the
language interference is reflected by an average
of −2.6 BLEU in FLEURS. We increase model
parameters to 260M in both bilingual and mul-
tilingual settings. With a larger model capacity,
bilingual models achieve gains in high-resource
languages including cs, pl and sk, while suffering
from performance loss in low-resource directions
such as hr, lt and sl.

Given model sizes of 260M, we observe consis-
tent gains of multilingual models over the bilingual
models across different language directions and test
domains. An average gain of 5.6 BLEU is achieved
in EP/VP and the gain of 4.7 BLEU in FLEURS. It
demonstrates the positive transfer enabled by mul-
tilingual training. As the multilingual model size
continues to increase to 424M, we don’t observe
further gains likely due to the bottleneck of training
data amount.

XM Transformer leveraging pre-trained mod-
ules is also trained on Slavic-to-English data.
Pre-training is shown to be beneficial, and re-
sults are reported in Table 15. Comparing
against bilingual Textless model (70M), bilingual
XM Transformer outperforms it in all directions
except lt-en. The gain in EP/VP is 3.8 BLEU on av-
erage, and a larger gain of 5.0 BLEU is achieved in
FLEURS. Multilingual training brings further gains
to XM Transformer with +7.9 and +5.1 BLEU over
bilingual training in EP/VP and FLEURS test set
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respectively.
Comparing against dense XM Transformer,

GShard with 64 experts has 1.0 BLEU gains on av-
erage over 5 directions on EP/VP, and +0.3 BLEU
gains for FLEURS. We believe that it is due to a
phenomena mentioned in (Zoph et al., 2022), i.e.,
MoE specializes in multilingual settings but not
by language. GShard in our setting brings larger
improvements to in-domain test sets.

Computation. Textless models used 32 A100
GPUs, the 70M model was trained for 3 days,
the 260M model was for 5 days, and the 424M
model was for 6 days. It took 2 days to train
XM Transformer on 32 A100 GPUs for Slavic-to-
English translation.

C.2 All-to-English Translation

In this work, we experiment with two variants of
sparse modeling, GShard and Base Layer.

Dense (1.2B) MoE-GShard64 (4.3B) Base Layer (1.7B)
EP/VP FL EP/VP FL EP/VP FL

cs 29.9 18.7 30.9 18.2 29.9 17.3
de 18.8 19.0 19.3 20.3 19.4 19.5
es 22.8 15.2 23.3 15.9 22.9 14.9
et - 16.7 - 16.7 - 16.4
fi 26.8 14.1 28.2 14.0 28.5 13.9
fr 23.5 18.3 24.1 18.9 23.4 18.2
hr - 16.6 - 16.8 - 16.3
hu 20.2 12.0 21.3 12.5 20.5 12.1
it 36.3 16.2 37.8 14.9 37.4 14.0
lt 21.9 9.8 23.8 10.3 23.4 10.0
nl 21.4 16.4 22.1 17.3 21.5 16.6
pl 21.2 12.4 21.3 13.4 20.9 12.5
pt 23.8 21.8 24.2 22.3 23.8 21.1
ro 25.1 19.7 25.0 19.8 25.3 19.0
sk 30.8 19.6 32.2 18.2 31.5 18.4
sl 28.3 13.7 29.9 13.7 28.8 13.5

avg 25.1 16.3 26.0 16.5 25.5 15.9

Table 16: BLEU of All-to-English multilingual models
across FLEURS (FL) and EP/VP domains (for EP/VP
column, underlined scores are on EPST data, and others
on VoxPopuli data).

XM Transformer-GShard. XM Transformer
(1.2B) is initialized with the same XLS-R encoder
and unit decoder used in Slavic-to-English exper-
iments. On the decoder side of XM Transformer-
GShard, each expert is initialized with the same
unit decoder. We set MoE frequency as 2, i.e.,
every other Transformer layer is an MoE layer.

XM Transformer-Base Layer. For our
XM Transformer with Base Layer sparsity (1.7B),
the encoder is initialized with the same XLS-R
encoder, and the dense layers of the decoder is ini-
tialized with the same unit decoder as GShard. We

add an additional Base Layer which is randomly
initialized as the 7th layer of decoder. There is one
expert in each GPU and we used 64 GPUs in our
experiments, which means we have 64 Base Layer
experts in total.

The sparse variant, Base Layer (1.7B) performs
comparably to the dense XM Transformer, with
an average of +0.4 BLEU in EP/VP test sets and
-0.4 BLEU in FLEURS. The sparsity in Base Layer
does not bring obvious gains to all-to-English trans-
lation. This is likely because we only add one
Base Layer to the decoder with a small expert size.
The number of increased model parameters is only
0.5B in Base Layer, while it is 3.1B in GShard. As
suggested by (Lewis et al., 2021), the Base Layer
performance might improve with more GPUs and
a larger expert size.

Hyperparameters. For dense XM Transformer,
hyperparameters are the same as that for Slavic-to-
English. GShard also shares the same set of hy-
perparameters. As for expert-specific parameters,
we use 64 experts with each running on a single
GPU with the frequency of 2 so that every other
Transformer decoder layer becomes an MoE layer.
The capacity token fraction is set as 0.5 so that if
more than half of tokens in a sample get routed to
one expert, extra tokens would overflow and get
dropped.

Computation. It took 3 days to train dense
XM Transformer for all-to-English with 32 A100
GPUs. It took 5 days to train the GShard counter-
part with 64 A100 GPUs.

D License and Terms of Scientific
Artifacts

D.1 Third-Party Artifacts

Data. Common Voice is released under CC0 li-
cense, VoxPopuli and CoVoST 2 data are also un-
der CC0 license. As for EuroParl, it is released
under a Creative Commons license. The multilin-
gual TEDx corpus is released under a CC BY-NC-
ND 4.0 license. FLEURS dataset is under Creative
Commons license (CC-BY-4.0). These datasets are
publicly accessible and freely downloadable for
research purposes.
Models. XLS-R model used for the speech encoder
initialization is open sourced under Apache-2.0 li-
cense. Text LASER used as the teacher model
in training is released under BSD license. ASR
models avaliable on HuggingFace are released un-
der Apache-2.0 license. These models are publicly
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available.
Code. The implementations of Textless model,
XM Transformer, HuBERT and Vocoder are open
sourced under MIT license.

D.2 SpeechMatrix and translation models
The mined resource, SpeechMatrix, will be re-
leased under CC0 license, and the trained speech-
to-speech translation models will be released under
CC BY-NC 4.0. The data and models are intended
for research purposes.
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