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Abstract

The semi-supervised text classification (SSTC)
task aims at training text classification mod-
els with a few labeled data and massive unla-
beled data. Recent works achieve this task by
pseudo-labeling methods that assign pseudo-
labels to unlabeled data as additional supervi-
sion. However, these models may suffer from
incorrect pseudo-labels caused by underfitting
of decision boundaries and generating biased
pseudo-labels on imbalanced data. We propose
a prototype-guided semi-supervised model to
address the above problems, which integrates a
prototype-anchored contrasting strategy and a
prototype-guided pseudo-labeling strategy. Par-
ticularly, the prototype-anchored constrasting
constructs prototypes to cluster text represen-
tations with the same class, forcing them to
be high-density distributed, thus alleviating the
underfitting of decision boundaries. And the
prototype-guided pseudo-labeling selects re-
liable pseudo-labeled data around prototypes
based on data distribution, thus alleviating the
bias from imbalanced data. Empirical results
on 4 commonly-used datasets demonstrate that
our model is effective and outperforms state-of-
the-art methods.

1 Introduction

Traditional text classification has achieved pro-
found success by leveraging numerous labeled data.
However, acquiring large-scale labeled data is ex-
pensive in many real-world scenarios, making train-
ing effective classifiers using such approaches diffi-
cult. Therefore, semi-supervised text classification
(SSTC), aiming at text classification requiring a
few labeled data and massive unlabeled data, has
become a new appealing technique.

As a promising semi-supervised paradigm, the
pseudo-labeling method (Mukherjee and Awadal-
lah, 2020; Xie et al., 2020; che; Lee et al., 2021; Li
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Figure 1: Illustration of two cases of pseduo-labeling
problems in existing SSTC models: (a) underfitting near
decision boundaries; (b) bias from imbalanced data. ⋆
denotes a prototype consisting of labeled data. Different
symbols indicate different categories of labeled (bor-
dered) and unlabeled data (unbordered). The areas with
different colors indicate different categories.

et al., 2022), which assigns pseudo-labels to unla-
beled data instances as additional supervision, has
drawn attention. They follow the well-known low-
density separation assumption (Chapelle and Zien,
2005) to generate pseudo-labels for the unlabeled
data scattered in the high-density feature space,
helping to identify the boundaries between classes.
Trained with the mixture of labeled and pseudo-
labeled data, the model perceives more abundant
supervision signals and reduces empirical errors.
Existing models attempt to assign soft pseudo-
labels for unlabeled texts (Xie et al., 2020) or keep
pseudo-labels with lower uncertainty (Mukherjee
and Awadallah, 2020) to alleviate the influence
brought by the incorrect pseudo-labeled data.

In practice, the underfitting of decision bound-
aries is usually detrimental to the model learn-
ing (shown in Figure 1(a)). More careful consid-
erations are expected in properly utilizing these
pseudo-labeled data near decision boundaries. In
addition, the pseudo-labeling process may meet
with bias from imbalanced data and will be biased
toward dominant class data (shown in Figure 1(b)).
This problem may further lead the dominant classes
to dominate the follow-up training and assign more
incorrect labels to the unlabeled data.

Believing that addressing both the underfitting
of decision boundaries and the bias from the im-
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balanced data is crucial, we propose a prototype-
guided pseudo labeling (PGPL) model to tackle
the two problems simultaneously. PGPL improves
the SSTC performance with a Prototype-Anchored
Contrasting (PAC) module and a Prototype-Guided
Pseudo Labeling (PGP) module. Specifically, in the
PAC module, we leverage the prototypical learn-
ing (Bien and Tibshirani, 2011) to construct proto-
types with representations of labeled texts and clas-
sify unseen texts according to their distance from
the prototype of each class. In this way, we force
the text representations to locate in high-density
areas, making the unreliable pseudo-labeled data
near the boundary away from decision boundaries
to address the problem, as demonstrated in Fig-
ure 1(a). Furthermore, to alleviate the bias from the
imbalanced data, our PGP module chooses reliable
pseudo-labeled data by reducing the probability of
assigning labels of dominant class for unlabeled
data, and thus prevents the model from biasing on
dominant classes, as demonstrated in Figure 1(b).

Finally, we conduct experiments on four
commonly-used datasets, and the results demon-
strate that our proposed PGPL model outperforms
the state-of-the-art performance in various semi-
supervised settings. The experimental analysis
also suggests that our PGPL model successfully
separates the different classes and assigns reliable
pseudo-labels to the unlabeled instances. These
results confirm the effectiveness of PGPL.

To summarize, our main contributions are in the
following four folds:

• We propose a prototype-guided pseudo-
labeling model for the semi-supervised text
classification task, which simultaneously ad-
dresses the underfitting of decision boundaries
and the bias from imbalanced data.

• We present a prototype-anchored contrasting
module to generate high-density distributed
representations that reduces the unreliable
pseudo-labeled data chosen for training the
semi-supervised models.

• We leverage a prototype-guided labeling mod-
ule to choose data around prototypes that alle-
viates the bias from imbalanced data.

• Empirical studies indicate that our proposed
model outperforms previous state-of-the-art
methods on four commonly-used benchmarks
and comprehensive analysis confirm the effec-
tiveness of PGPL.

2 Related Works

2.1 Semi-supervised Text Classification

Existing methods for SSTC task can be divided into
three groups: Generative methods, Graph-based
methods and Pseudo-Labeling methods.

Generative methods (Croce et al., 2019, 2020;
Gururangan et al., 2019) attempt to learn a gen-
erative model that establishes a mapping function
based on the distribution of the labeled/unlabeled
data to the classes. However, they usually require
the labeled and unlabeled data strictly obey the
same data distribution, which can hardly be satis-
fied in practical scenarios.

Graph-based methods (Linmei et al., 2019; Li
et al., 2021; Cui et al., 2022) attempt to construct
an graph structure underlying the data, where each
node represents a labeled/unlabeled instance and
each edge represents a pairwise relation in certain
similarity measurement. However, they construct
such graphs upon all the data, inevitably requir-
ing huge computational resources, which can be
impractical on large-scale datasets.

Pseudo-Labeling methods learn the model on the
mixture of labeled data and unlabeled data (anno-
tated with pseudo-labels), thus accessing to addi-
tional beneficial supervision. There exist two major
practices: One line of the methods (Wang et al.,
2021; Mukherjee and Awadallah, 2020; Lee et al.,
2021; Tsai et al., 2022) is based on self-training
strategy , which first trains a base model on labeled
data, and then retrains the model on the unlabeled
data annotated with pseudo-labels of high confi-
dence. Another line of the methods (Najafi et al.,
2019; Xie et al., 2020; Sohn et al., 2020) incor-
porates the idea of consistency learning, which
adopts the unlabeled data to enhance model ro-
bustness with data perturbation, such as adversar-
ial attack (Najafi et al., 2019) and data augmen-
tation (Xie et al., 2020; Sohn et al., 2020; Chen
et al., 2020). Although these methods provide po-
tentiality and flexibility in practices, they still suf-
fer from the underfitting near decision boundaries
problem, and easily encounter learning bias from
imbalanced data. In this paper, we develop the
previous pseudo-labeling studies with prototype
learning, which enhances low-density separation
by exploiting prototypes to cluster text represen-
tations, and alleviates imbalanced class bias with
prototype-guided pseudo labeling.
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Figure 2: Overall architecture of PGPL. For labeled data, the supervised loss is computed to generate class prototypes
for processing the Prototype-Anchored Contrasting module. For unlabeled data, the pseudo-labels are assigned
based on Prototype-Guided Pseudo Labeling to augment the text instances for retraining the model.

2.2 Prototypical Learning
Prototypical learning (Bien and Tibshirani, 2011)
aims to learn representative prototypes to summa-
rize the instances in the same class, and is been
widely used for unsupervised (Li et al., 2020; Pan
et al., 2019) and semi-supervised learning (Snell
et al., 2017; Arik and Pfister, 2020; Gu, 2020; Ren
et al., 2018). In unsupervised scenarios, the most
representative method is PCL (Li et al., 2020),
which introduces a prototype as the center of mass
of a cluster formed by similar samples and assigns
each sample to multiple prototypes of different
granularity. The goal of training is to bring each
image embedding closer to its associated prototype.
In semi-supervised scenarios, the prototypes can
first be estimated with the labeled instances. Then,
the pseudo-labels or classes of unlabeled data are
obtained by calculating distances to the prototypes.
Among these works, Gu (2020) attempts prototype-
based pseudo-labeling for image classification but
neglects the underfitting near the decision bound-
ary and bias from the imbalanced data. We utilize
prototypes to conduct low-density separation and
data selection to alleviate both issues.

3 Problem Formulation

In semi-supervised text classification, we are given
a small set of labeled text data and a large set of un-

labeled text data. Formally, let C be the set of all la-
bels of interest. Dl = { (xl1, y

l
1), · · · , (xlm, ylm) }

is the set of pre-annotated m labeled text instances,
where each xli and yli ∈ C represent a text instance
and its corresponding label. Du = { xu1 , · · · , xun }
is the set of n unlabeled text data, where xui ∈
Du denotes an unlabeled text instance. Semi-
supervised text classification hopes to leverage the
limited annotated data and expand its knowledge to
the unlabeled data for pseudo-labeling and include
them as additional training data.

4 Methodology

We propose a semi-supervised text classification
model PGPL to tackle problems of underfitting
near the decision boundary and bias from the
imbalanced data. In this section, we first illus-
trate the overall model structure and introduce the
fundamental SSTC structure with supervised and
unsupervised losses, then describe the prototype-
anchored contrasting module and finally explain
the prototype-guided pseudo labeling module.

4.1 Model Structure

The model structure of PGPL is illustrated in Fig-
ure 2. The labeled and unlabeled text instances
are first input to the Encoder. Then, the labeled
text embeddings are used to generate pseudo la-
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bels in Prototype Extraction module and encourage
each instance closer to its categorical prototype
and away from the other categorical prototypes
via prototype-anchored contrasting. Finally, we
perform prototype-guided pseudo labeling on the
unlabeled data. The pseudo-labeled data is used to
augment the training set and retrain the model.

4.2 Fundamental SSTC Framework
4.2.1 Backbone Text Classifier
To utilize the power of pre-trained language models
in SSTC, we follow the previous practice (Chen
et al., 2020) that uses BERT (Devlin et al., 2019)
as the text encoder. Specifically, let x represent
either a labeled instance xl ∈ Dl or an unlabeled
instance xu ∈ Du. The function f(x; θ) denotes
the BERT encoding process with mean pooling op-
eration over the token representations. Afterward, a
two-layer MLP with tanh(·) activation is adopted
to derive the relevance score of the input text x
corresponding to each class:

g(x, ϕy, θ) = MLP(f(x; θ);ϕc), (1)

where ϕc is the MLP parameter corresponding to
class c ∈ C. Note that this backbone text classifier
can be trained by two objectives: 1) a supervised
loss function Ls (in Eq. (3)) over the labeled in-
stances; 2) an unsupervised loss function Lu (in
Eq. (5)) over the unlabeled instances.

4.2.2 Annealing Supervised Loss
Since the number of labeled instances is usually
limited and costly in SSTC, we adopt the anneal-
ing supervised loss to fully exploit the labeled data.
There is an existing work that introduces the train-
ing signal annealing (TSA) strategy (Xie et al.,
2020), which releases labeled instances gradually
during the training phase instead of observing them
at once, to prevent the model from early over-fitting
on the labeled data. Intuitively, in the initial train-
ing phase, we expect to learn about the data without
overconfidence, in order not for the model to over-
value the incidental features of the data. Therefore,
we employ a threshold ηt, and at training iteration
t, we select the instances with the highest score
of class confidence lower than the threshold ηt for
loss calculation. The threshold ηt is derived as:

ηt =
t

T
(1− τ) + τ, (2)

where T is the total iterations of the training pro-
cess, and τ is the initial threshold that is set to a

scalar larger than 1
|Y| to all the classes. This strat-

egy encourages the model to observe and learn the
data with relatively lower confidence, and gradually
adapt to perceive all training instances.

Based on the threshold, we define the supervised
loss at t iteration with cross-entropy:

Ls=− 1

m

m∑

i=1

I(pyli <ηt) log
exp(g(xli, ϕyli

, θ))
∑
c∈C

exp(g(xli, ϕc, θ))
,

(3)
where pyli

is the predicted probability of yli corre-
sponding to instance xli, and I(·) is a binary indica-
tor which equals 1 if pyli < ηt or 0 otherwise.

4.2.3 Selective Unsupervised Loss
To leverage the unlabeled text data, the selective
unsupervised loss module assigns pseudo-labels for
each unlabeled text instance xui ∈ Du to augment
the data. Following recent works (Xie et al., 2020;
Mukherjee and Awadallah, 2020; Sohn et al., 2020)
in semi-supervised learning, the original unlabeled
data is augmented with the pseudo-labeled data and
used to optimize the text classifier.

Specifically, we incorporate the augmented data
x̃ui of xui with its pseudo label ŷui into the new
training dataset to train the classifier with cross-
entropy loss. Formally, for a unlabeled instance xui ,
its pseudo label is determined by:

ŷui = argmax
c∈C

exp(g(xui , ϕc, θ)), (4)

Among the unlabeled instances with pseudo-
labels, we further select high-quality pseudo-
labeled instances that are used in the next training
phase by the following formula:

Lu = − 1

n

n∑

i=1

I(xui ) log
exp(g(x̃ui , ϕyui

, θ))
∑
c∈C

exp(g(x̃ui , ϕc, θ))
,

(5)
where the binary indicator I(·) ∈ {0, 1} is:

I(xui ) = I(ŷui = c) ∧ I(d(f(xuj ), zc) ≤ dc), (6)

where ∧ represents the logic operation AND. d(·, ·)
denotes the distance function that measures the
distance between the text representation f(xuj ) and
prototype zc of class c. dc serves as the threshold
to determine the value in the binary indicator. The
selected instances will be used in the next training
phase as additional training data.
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Dataset Classification Type Class Train Unlabeled Dev Test

AG News News Topic 4 200 5000 2000 1900
DBpedia Wikipedia Topic 14 200 5000 2000 5000
Yahoo! Answer QA Topic 10 200 5000 2000 6000
IMDB Movie Review Sentiment 2 200 5000 2000 12500

Table 1: The dataset statistics for the per-class number of unlabeled, dev and test data.

4.3 Prototype-Anchored Contrasting Module

To alleviate the underfitting near decision bound-
aries problem, inspired by the low-density sepa-
ration hypothesis, the prototype-anchored cluster
contrasting module (PAC) forces each text repre-
sentation to be closer to its categorical prototype
and far away from unrelated prototypes. As such,
the number of text instances lie near the decision
boundaries can be reduced.

4.3.1 Categorical Prototypes Extraction

The prototype of a class is defined by the mean
vector of text embeddings within the class. Con-
cretely, we first obtain the text embedding f(xli) for
each xli ∈ Dl, and generate prototypes according
to their classes. For each c ∈ C, the prototype zc is
computed by:

zc =
1

nc

∑

yli=c

f(xli), (7)

nc =
∑

yli∈Dl

I(yli = c), (8)

where nc is the instance number of class c.

4.3.2 Prototype-Anchored Contrasting

After we obtain the prototype of each class, for a
subset of labeled instances xli ∈ Dl and unlabeled
instances xuj ∈ Du, we expect the embedding f(xli)
(resp. f(xuj )) to be closer to its prototype zyli

(resp.
zŷui ) and away from the others. For the unlabeled
text instances, we migrate them within the repre-
sentation space to make each cluster more distinct
based on the prediction confidence. More specifi-
cally, a confidence score for each instance is calcu-
lated and is used as a weight value for determining
how much it should be migrated. In other words,
as the instances obtained low confidence are more
likely to be assigned with incorrect pseudo-labels,
how far the model allows the instances to migrate
is proportional to confidence score.

Thus, the loss function of this module can be
formulated as:

Lp=− 1

m

m∑

i

∑

c

I(yl
i = c) log

exp (−d(f(x̃l
i), zc))∑

k∈C exp(−d(f(x̃l
i), zk))

− λ

n

n∑

j

∑

c

pŷu
j
I(ŷu

j = c) log
exp (−d(f(x̃u

j ), zc))∑
k∈C exp(−d(f(x̃u

j ), zk))
,

(9)

where m and n are the instance number of la-
beled and unlabeled data, respectively. The func-
tion d(·, ·) is a distance metric function and λ is a
weight factor. We use Euclidean distance for the
distance metric between each instance and the pro-
totype embedding, and use softmax normalization
for the instances in the representation space. Here
we also consider the pseudo-label confidence pŷui
(see Eq. (4)) to balance the training.

4.4 Prototype-guided Pseudo Labeling
Module

As discussed in the introduction, the unlabeled
instances are easily misguided by the dominant
classes, inevitably leading to assigning incorrect
pseudo-labels. To alleviate the bias from imbal-
anced data, we propose a prototype-guided pseudo
labeling module (PGP). The idea is to select differ-
ent k-nearest pseudo-labeled instances correspond-
ing to the center (i.e., the prototype) for each class
according to a short training history.

To balance the training process, we expect not
to select (or select fewer) pseudo-labeled instances
for a class that has been over-trained in previous
iterations. Thus, we record a statistic value µc

t dur-
ing training, which returns the number of selected
pseudo-labeled texts for class c at the tth iteration.
For simplicity, we use µc

<t to denote the summa-
tion of µc

t′ (with t′ < t) from a training history of
previous iterations. Then, at each iteration t, we
can find the least trained class and compute its total
number of selected pseudo-labeled texts during the
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training history by:

µc
t =

∑

x̃u
j ∈Bu

I(ŷj = c), (10)

γt = argmin
c∈C

µc
<t. (11)

We hope this least trained class utilizes more
pseudo-labeled instances in the next training iter-
ation than other classes to keep balanced training.
To this end, we determine the number of nearest
text instances kc for class c ∈ C according to:

kc =





µc
t if µc

<t − γt = 0

µc
t − (µc

<t − γt) if 0 ≤ µc
<t − γt < µc

t

0 if µc
<t − γt ≥ µc

t

,

(12)
Here we encourage to select more pseudo-labeled
instances for the less-trained classes, and fewer
pseudo-labeled instances for the over-trained
classes, thus alleviating the imbalanced training
problem. Based on kc, we select the top-kc pseudo-
labeled instances near the categorical prototype of
class c by Euclidean distance d(·, ·) as follows:

dc = TopK(d(f(x̃uj ), zc), kc), (13)

where dc is the distance threshold used in Eq. (6)
to select pseudo-labeled texts. By selecting k-
nearest pseudo-labeled text instances around the
corresponding categorical prototypes, the model
obtains more reliable training data for SSTC.

The overall objective L is combined with three
losses, including the cross-entropy losses on the
labeled and unlabeled data, and the prototype-
anchored contrastive loss:

L = Ls + β1Lu + β2Lp, (14)

where β1 and β2 are harmonic factors to balance
the weight of the different losses and β1 is usually
fixed to 1.

5 Experimental Setup

5.1 Dataset and Pre-processing

We conduct intensive experiments on four
widely used text classification benchmark datasets:
IMDB (Maas et al., 2011), AG News (Zhang et al.,
2015), Yahoo! Answers (Chang et al., 2008), and
DBpedia (Lehmann et al., 2015). We follow the
original setting of test set splitting and randomly
sample from the training set to form the labeled

and unlabeled sets used for the training. The ex-
perimental results are averaged after five runs. The
statistics and splitting information of the dataset
are shown in Table 1.

5.2 Baselines

To verify the effectiveness of our method, we com-
pare our method to the several baselines:

BERT (Devlin et al., 2019) adopts a pre-trained
model for text classification, trained with only la-
beled data.
Delta-training (Jo and Cinarel, 2019) distin-
guishes the instances with incorrect prediction and
correct prediction by two separate classifiers.
VAMPIRE (Gururangan et al., 2019) pretrains a
variational autoencoder, and uses its internal states
as features in a downstream classifier.
UDA (Xie et al., 2020) makes soft predictions with
original data to train the augmented data.
MixText (Chen et al., 2020) makes predictions by
mixing the original data with the augmented data.
UST (Mukherjee and Awadallah, 2020) makes pre-
dictions by selecting pseudo labels with the same
prediction multiple times.
SALNet (Lee et al., 2021) makes predictions with
the help of categorical dictionary.
FLiText (Liu et al., 2021) adopts A lighter frame-
work with convolution networks, predicted pseudo-
labels through knowledge distillation.
CEST (Tsai et al., 2022) proposes a certainty-
driven sample selection method and a contrast-
enhanced similarity graph in self-training.
SAT (Chen et al., 2022) trains a meta-learner to
predict the labels with weakly-augmented data.

For fairness, we implement BERT, UDA, Mix-
Text with the code provided by Chen et al. (2020)
in our experiments. For other baselines, we use the
reported results provided from the original research
paper to avoid re-implementation bias.

5.3 Implementation

We used PyTorch1 for implementation. For all com-
pared models, the maximum sentence length is set
to 256. For sentences that exceed the limit, we
keep the first 256 tags. All hyper-paramters are
selected by grid search on the validation set. We
choose 1e-5 as the learning rate for the BERT en-
coder and 1e-3 for the MLP. For the unlabeled data,
we choose German as the intermediate language

1https://pytorch.org/
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Model
AG News IMDB Yahoo! Answer DBpedia

10 30 200 10 30 200 10 30 200 10 30 200

Bert 81.0 84.3 87.2 70.6 73.3 86.1 60.1 64.1 69.3 96.6 98.2 98.6
UDA 86.4 86.4 88.3 86.4 86.4 88.7 64.3 68.3 70.2 97.8 98.3 98.8
Mixtext 87.3 87.4 88.2 74.2 85.3 89.1 67.7 68.5 70.6 98.5 98.8 98.9

PGPL 87.8 88.5 89.2 88.9 90.2 90.3 67.4 69.1 70.7 98.7 99.0 99.0

Table 2: Comparison with state-of-the-arts on the AG News, DBpedia, Yahoo! Answer and IMDB test set under
different partition protocols. The Wilcoxons test shows significant difference (p<0.05) between our model and
baselines averaged after five runs except on Yahoo! Answer (10 labels).

for back translation augmentation using FairSeq22,
with a random sampling temperature of 0.9. We
use AdamW (Loshchilov and Hutter, 2018) to opti-
mize model parameters. The train epoch number
is set to 20. In the training process, we choose
16 unlabeled samples for each batch. And for the
labeled data, the number of labeled data is the num-
ber of classes of each dataset in each batch. The
factor λ is set to 0.2 in IMDB and AG News and
0.5 in Yahoo!Answer and DBpedia. The history t
iteration is set to 5. The harmonic factor β1 and β2
are set to 1 and 0.5, respectively.

5.4 Overall Results
We first compare our model with the BERT, UDA
and Mixtext. We run these models with the same
setting of our model. The training set consists of
5000 unlabeled data and respectively 10, 30, and
200 labeled data for each class.

Table 2 shows the results on 5000 unlabeled data
and different amount of labeled data. The results
show that our method is superior to all baselines.
Especially when there are only 10 labeled instances
for each class, our model outperforms by 6.8% for
AG News, 18.3% for IMDB, and 7.3% for Yahoo
Answers, respectively. On DBpedia, due to the
performance of the initially trained classifier being
already outstanding (98% as shown in the table),
the performance improvement is limited. Com-
pared to the state-of-the-art methods, our method
outperforms under the settings of different numbers
of labeled data in AG News, IMDB, and DBpedia.
On Yahoo! Answer, it also performs better than the
state-of-the-art methods except under 10 labeled
data. These results verify the effectiveness of our
PGPL model for the SSTC task.

As some models use a different number of la-
beled and unlabeled texts during training, we con-

2https://github.com/pytorch/fairseq

Datasets Model K Acc.

AG News

PGPL 10 87.8
SAT 20 86.4
CEST 30 87.1
UST 30 87.7
VAMPIRE 200 83.9

IMDB

PGPL 30 90.2
SAT 10 69.0
CEST 30 90.2
SALNet 21 75.7
VAMPIRE 200 82.2
Delta-training 212 75.0

Yahoo!
Answer

PGPL 10 67.4
SAT 20 61.5
SALNet 34 53.7
VAMPIRE 200 59.9
FLiText 500 65.1

DBpedia

PGPL 10 98.7
SALNet 20 98.2
UST 30 98.6
CEST 30 98.6

Table 3: SSTC methods with K training labels per class
(UST, VAMPIRE, SALNet, FLiText, Delta-training,
CEST, SAT).

duct experiments using their original settings and
compare them as in Table 3. The compared models
includes UST (Mukherjee and Awadallah, 2020),
VAMPIRE (Gururangan et al., 2019), CEST (Tsai
et al., 2022), SALNet (Lee et al., 2021), FLi-
Text (Liu et al., 2021), SAT (Chen et al., 2022) and
Delta-training (Jo and Cinarel, 2019). For consis-
tency, we take the results from the original papers
and round some of the results to one decimal place.
The results show that our model outperforms other
SOTA models under the same experimental set-
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ting keeps its superiority when applied to different
experimental settings.

5.5 Impact of Labeled and Unlabeled Data
Distribution

In order to evaluate our results more accurately,
we performed four experiments with different con-
straints for further comparison: (a) keep the origi-
nal proportion of data with balanced labeled data
balance and imbalanced unlabeled data; (b) keep
the original proportion of balanced unlabeled data,
but perform a random imbalanced operation on
labeled data; (c) keep the original proportion of
balanced labeled data, but perform a random imbal-
anced operation on unlabeled data; (d) perform a
random imbalanced operation on labeled data and
unlabeled data. The balance here means that the
number of data in each class is the same. In the
imbalanced setting, for convenience, the number
of half classes is twice that of the other half. The
experimental result is averaged after three runs on
the verification set.

Data setting (labeled/unlabeled) Model Result

UDA 64.3
balanced / balanced Mixtext 68.1

PGPL 68.3

UDA 64.8
imbalanced / balanced Mixtext 67.7

PGPL 68.8

UDA 57.9
balanced / imbalanced Mixtext 67.6

PGPL 67.8

UDA 64.1
imbalanced / imbalanced Mixtext 65.5

PGPL 67.3

Table 4: Experimental results on different data balance
settings, grouped by labeled/unlabeled data.

From Table 4, we find UDA show the worst
result under the condition (c) and Mixtext under
the condition (d) that have inconsistent distribution
proportions though the two baselines have simliar
results in balanced condition. Our model shows
consistently good results in the four settings. Es-
pecially when only unlabeled data is imbalanced,
the result is improved from 57.9% to 67.8% com-
pared with UDA. In summary, under four different
data distribution settings, our model is superior to

other baselines, indicating that our model is more
capable of complex data distribution scenarios.

5.6 Qualitative Evaluation

To investigate whether the PAC module helps to
separate the clusters of different classes, we com-
pare the visualized embeddings of full PGPL and
PGPL without PAC model in Figure 3.
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Figure 3: Comparison of t-SNE visualization results
with and without PAC module on the AG News dataset.

It is observed from the visualized results that
when PGPL is implemented without PAC module
(e.g., Figure 3 (a)), the boundaries of different clus-
ters are unclear. Concretely, the clusters of different
classes are separated to some extent, but not as dis-
tinct as those of full PGPL with PAC implemented.
This suggests that the PAC module successfully
separates the clusters of different classes and re-
duces the chance of data instances lying near the
class boundaries.

5.7 Class Significance Evaluation

It is observed from Table 5 that PGPL with PGP
applied improves the performance on all individual
classes, especially in World class and Sports class.

5.8 Ablation Study

In order to investigate the impact of each compo-
nent in the model, we conduct variants on PGPL.

Table 6 shows the results of PGPL by removing
each component at a time, averaged after three runs
on valid set with 10 labeled data and 5,000 unla-
beled data per class. It is observed that both the
PAC and PGP individually improve the final model
performance, and the combination of PAC and PGP
achieves the best performance. TSA module is
also advantageous for improving the performance,
while applying to DBpedia is an exception because
its initial classifier is already outstanding as ex-
plained previously. This confirms the effectiveness
of our proposed approach.
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Class Model Accuracy

World PGPL 91.2
-w/o PGP 88.6

Sports PGPL 84.0
-w/o PGP 81.1

Business PGPL 96.1
-w/o PGP 96.0

Sci/Tech PGPL 81.9
-w/o PGP 80.3

All categories PGPL 88.3
-w/o PGP 86.5

Table 5: Experimental results on different data balance
settings, grouped by labeled/unlabeled data.

Data AG News IMDB

PGPL 88.3 89.7
w/o PGP 86.5 88.2
w/o PAC 86.2 88.9
w/o TSA 87.2 87.9

Data Yahoo!Answer DBpedia

PGPL 68.3 98.4
w/o PGP 65.7 98.2
w/o PAC 67.4 98.2
w/o TSA 68.0 98.6

Table 6: Ablation analysis of PGPL with different
modules on valid data with 10 labeled data.

5.9 Stability Evalution

To investigate the efficiency of different models, we
illustrate their training progresses on AG News and
Yahoo! Answer datasets. From the results on the
AG News dataset shown in Figure 4 (a), we observe
that the model w/o PGP performs very poorly at
the early stage of training but converges at about
the 40th step. That is, the model w/o PAC shows a
good start but continues fluctuating, and it cannot
reach the convergence even after 100 training steps.
The performance at early stage of PGPL is good
and the training progress is also stable.

The training process on Yahoo! Answer dataset
shown in Figure 4 (b) shows the similar tendency
with the results in Figure 4 (a), except that the
model w/o PGP and the full PGPL model show
similar training stability and convergence speed.
These results suggest that the Prototypical Cluster

Separation module is an indispensable component
in keeping the training stable and guaranteeing the
convergence speed of the PGPL model. They also
indicate that including both PAC and PGP modules
not only improves the test accuracy of the model
but also improves its training stability and training
speed. Lastly, we conclude that including PAC
in the early training stage provides more reliable
pseudo-labeled texts and helps the latter training
stage be more stable.
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Figure 4: The comparison of training stability and con-
vergence speed among different models..

6 Conclusion

In this paper, we propose a semi-supervised model
PGPL for SSTC task that applies PAC and PGP
strategies. Specifically, PAC constructs proto-
types to cluster text representations belongs to the
same class by forcing them to be high-density dis-
tributed, thus alleviating the underfitting near de-
cision boundary problem. PGP selects reliable
pseudo-labeled data nearby prototypes to address
the training bias from the imbalanced data. Experi-
mental results demonstrate PGPL is effective and
outperforms previous state-of-the-art methods.

Limitations

Although PGPL is proven to be effective according
to our intensive experiments, the current design of
the PGP module may not be optimal and could be
improved in the future. Specifically, on the one
hand, to choose the proper number of nearest text
instances kc for each class c, we need to obtain the
statistic values µy

t , µy
<t and computed values µc

t ,
µc
<t, γt for each dataset, which makes it somewhat

not easy to scale to many different datasets. On the
other hand, we heuristically filter pseudo-labeled
texts by the top-k selection, which may also be
improved with more systematical approach.
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Dataset Supervised (all labels) Supervised (10 labels) Semi-supervised (10 labels)

BERT RoBERTa BERT RoBERTa PGPL(BERT) PGPL(RoBERTa)

AG News 91.2 92.4 80.2 80.7 87.8 88.4
IMDB 90.4 93.5 70.9 71.2 88.9 91.2
Yahoo!Answer 73.7 74.2 60.1 61.0 67.4 67.8
DbPedia 99.1 99.1 96.6 96.1 98.7 98.8

Average 88.6 89.8 76.9 77.3 85.7 86.6

Table 7: Comparison with state-of-the-arts on the AG News, DBpedia, Yahoo! Answer and IMDB test set under
different partition protocols. The results are averaged after three runs.

A Hyper-parameter Settings

For reproduction, we report our hyper-parameter
settings in Table 8. The initial learning rate is tuned
in [1e−6, 1e−5] for BERT parameters and [1e−4,
1e−3] for other parameters. The threshold β2 and
threshold λ are tuned in [0.1, 1]. Note that the
hyper-parameter settings are tuned on the valida-
tion data by grid search with 3 trials.

Hyper-parameter PGPL

type embedding dimension d 768
Bert attention dropout 0.1
Bert hidden dropout 0.1
MLP hidden dimension 128
Sequence Length 256
batch size on labeled data class numbers
batch size on unlabeled data 16
training epoch 20
initial learning rate of BERT 1e−5

learning rate of MLP 1e−3

threshold λ (AG News,IMDB) 0.2
threshold λ(DBpedia,Yahoo!Answer) 0.5
threshold β1 1
threshold β2 0.5
t memory set 5

Table 8: Hyper-parameter settings of PGPL.

B Evaluation Results with other
pre-trained models

In order to evaluate our model on different pre-
training language models, we conduct three differ-
ent experiments on supervised and semi-supervised
settings: (1) supervised learning with all labels; (2)
supervised learning with 10 labels; (3) and seimi-
supervised with 10 labels. The experimental results
are shown in Table 7. It is observed that all results
with RoBERTa is better that those with BERT. In
semi-supervised setting, PGPL is better than super-
vised setting with 10 available labels, and also not
far behind the results of full supervised setting with

all labels. In other words, PGPL is very efficient
when exploiting few labeled data and achieves al-
most similar results to the supervised setting that
fully exploit all labeled data. This indicates that
PGPL is more practical in real-world scenarios
where annotated data is limited.

C Evaluation Results When Varying
Number of Unlabeled Data
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Figure 5: The accuracy of PGPL when varying the num-
ber of unlabeled data on AG News and Yahoo!Answer
Datasets.

We also conduct experiments to evaluate our
model performances with fixed number of labeled
data and different number of unlabeled data. Specif-
ically, the former uses 10 labels and the latter uses
between 2,000 and 10,000 labels on AG News and
Yahoo! Answer. The results in Figure 5 show that
with more unlabeled data, the accuracy increases
significantly on both datasets, which further verify
the effectiveness of utilizing unlabeled data.
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