
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics
Volume 1: Long Papers, pages 1701–1713

July 9-14, 2023 ©2023 Association for Computational Linguistics

Fine-tuning Happens in Tiny Subspaces: Exploring Intrinsic Task-specific
Subspaces of Pre-trained Language Models

Zhong Zhang1,2, Bang Liu3,∗ ,†, Junming Shao1,2,†
1University of Electronic Science and Technology of China, Chengdu, China

2Shenzhen Institute for Advanced Study, UESTC, Shenzhen, China
3Mila & Université de Montréal, Montréal, Canada

zhongzhang@std.uestc.edu.cn,
bang.liu@umontreal.ca,
junmshao@uestc.edu.cn

Abstract

Pre-trained language models (PLMs) are
known to be overly parameterized and have
significant redundancy, indicating a small de-
gree of freedom of the PLMs. Motivated by
the observation, in this paper, we study the
problem of re-parameterizing and fine-tuning
PLMs from a new perspective: Discovery of
intrinsic task-specific subspace. Specifically,
by exploiting the dynamics of the fine-tuning
process for a given task, the parameter opti-
mization trajectory is learned to uncover its in-
trinsic task-specific subspace. A key finding is
that PLMs can be effectively fine-tuned in the
subspace with a small number of free parame-
ters. Beyond, we observe some outlier dimen-
sions emerging during fine-tuning in the sub-
space. Disabling these dimensions degrades
the model performance significantly. This sug-
gests that these dimensions are crucial to in-
duce task-specific knowledge to downstream
tasks.

1 Introduction

Pre-trained Language Models (PLMs) have be-
come the de facto methods for various natural
language processing (NLP) tasks (Devlin et al.,
2019; Radford et al., 2019; Liu et al., 2019). The
typical paradigm is to pre-train a big language
model on large-scale corpora and then fine-tune
the model on small task-specific datasets to adapt
to the downstream tasks. Despite the great success
of this paradigm, two questions still come to our
mind: (1) Why can a PLM with hundreds of mil-
lions of parameters be successfully fine-tuned on
different downstream tasks using only hundreds
or thousands of labeled samples? (2) Do we re-
ally need a full fine-tuning of all parameters of
a PLM to reach state-of-the-art performance on
downstream tasks? In this paper, we try to pro-
vide a new viewpoint on the two questions, and

∗ Canada CIFAR AI Chair.
† Corresponding authors.

claim that: Fine-tuning happens only in some
tiny task-specific subspaces, which can be effec-
tively learned with a small number of free pa-
rameters.

Recent studies have shown that PLMs are
highly over-parameterized and robust to pruning
(Frankle and Carbin, 2019; Chen et al., 2020;
Prasanna et al., 2020; Gordon et al., 2020; Liang
et al., 2021, 2022), and can be fine-tuned in
parameter-efficient ways (Gong et al., 2022; Za-
ken et al., 2022; Mahabadi et al., 2021; Li and
Liang, 2021). This emerging empirical evidence
tends to point to one fact that there exist some in-
trinsic structures in PLMs that are responsible for
inducing task-specific knowledge to downstream
tasks. Notably, the recent work (Aghajanyan et al.,
2021) provides a promising conclusion that PLMs
can be re-parameterized and fine-tuned in random
low-dimensional subspaces using random projec-
tion, and the dimensionality of the random sub-
space is orders of magnitude smaller than the di-
mensionality of the full parameter space. Their
findings implicitly suggest the existence of such
intrinsic structure in the PLMs, which is, how-
ever, understudied. To bridge this gap, we explic-
itly demonstrate that there exist task-specific low-
dimensional subspaces in which PLMs can be ef-
fectively fine-tuned.

Inspired by the low dimensional landscape hy-
pothesis (Li et al., 2022a) that a training trajec-
tory of a neural network lies in a low-dimensional
subspace, in this work, we thus resort to the fine-
tuning trajectory to study the intrinsic task-specific
subspaces of PLMs. We show that it is possible to
uncover the intrinsic task-specific subspaces with
a fine-tuning trajectory by finding its principal di-
rections. The uncovered intrinsic task-specific sub-
spaces usually have very low dimensionalities, but
are quite effective in inducing task-specific knowl-
edge. For example, by re-parameterizing the en-
coder and optimizing only 32 free parameters per-

1701



layer in the intrinsic task-specific subspace, the
model allows achieving nearly the same perfor-
mance as fine-tuning in the full parameter space.
Moreover, we further show that the uncovered in-
trinsic task-specific subspaces have a certain trans-
ferability.

Beyond this, we find that the model contains
some outlier dimensions with abnormal spikes
when fine-tuning in the intrinsic task-specific sub-
spaces instead of a random subspace. Disabling
these outlier dimensions degrades the model per-
formance significantly. We believe that this phe-
nomenon is related to the previously discovered
outlier dimensions of PLMs (Luo et al., 2021; Ko-
valeva et al., 2021; Puccetti et al., 2022). How-
ever, there are essential differences between them,
which we will discuss in the latter section.

By exploring the intrinsic task-specific sub-
spaces of PLMs, the main contributions of this pa-
per are summarized as follows.

1. We interpret the ease of adapting PLMs to
downstream tasks as fine-tuning happens in
tiny intrinsic task-specific subspaces. Within
this interpretation, we propose a method to
uncover the subspaces by finding the princi-
pal directions of the fine-tuning trajectory.

2. We conduct extensive experiments on
the GLUE benchmark using BERT and
RoBERTa models to support our claims.
We show that the models can be effec-
tively fine-tuned with a very small number
of parameters in the uncovered intrinsic
task-specific subspaces.

3. We identify some outlier dimensions when
fine-tuning in the intrinsic task-specific sub-
spaces, and some empirical analysis is further
given.

2 Related Work

Intrinsic Dimensionality. Li et al. (2018) first
defined the intrinsic dimension of an objective
function in the context of deep learning. They
showed that various neural networks can be ef-
fectively re-parameterized and trained in random
low-dimensional subspaces. Their findings shed
light on understanding the high-dimensional land-
scape of complex neural networks. Following this,
Aghajanyan et al. (2021) further measured the in-
trinsic dimensions of PLMs fine-tuning on down-
stream tasks. They showed that PLMs have very

low intrinsic dimensions ranging from hundreds
to thousands. Qin et al. (2021) exploited the idea
of intrinsic subspace and proposed a prompt tun-
ing method for efficient training. In addition, the
concept of intrinsic dimension is also related to
the low-rank approximation of PLMs (Hu et al.,
2022; Mahabadi et al., 2021; Chen et al., 2021),
but their motivations are entirely different. The
former aims to open the black box of models and
explore the internal mechanisms of why they are
effective, while the latter focuses on developing
new methods to train the models efficiently.

Random Projection and Subspace Learning.
The random projection has a long history in ma-
chine learning research community, and is a key
tool to analyze the intrinsic dimension (Li et al.,
2018; Aghajanyan et al., 2021). In the context of
optimization, Gressmann et al. (2020) proposed
a random bases descent algorithm to train neu-
ral networks in low-dimensional subspaces. How-
ever, the random projection inevitably introduces
task-irrelevant information, and is not optimal for
subspace learning. We believe that a more com-
pact and task-specific subspace can be found in the
model, which is the main motivation of this work.
Gur-Ari et al. (2018) empirically found that gra-
dient descent of neural networks happens in a tiny
subspace, Li et al. (2022a) further developed a sub-
space learning algorithm DLDR that dynamically
extracts the subspace from the optimization trajec-
tory. Li et al. (2022b) leveraged the DLDR algo-
rithm for adversarial training. However, to the best
of our knowledge, there is no research on the dis-
covery of non-random intrinsic task-specific sub-
space of PLMs.

Outlier Dimensions in Pre-trained Language
Models. Multiple studies have identified outlier
dimensions in PLMs. Some works were moti-
vated by calibrating the anisotropy behavior of
hidden representation of PLMs (Timkey and van
Schijndel, 2021; Ding et al., 2022; Luo et al.,
2021; Su et al., 2021; Zhang et al., 2020). An-
other line of work identified certain outlier dimen-
sions in PLMs that are very sensitive to the fine-
tuning of downstream tasks (Kovaleva et al., 2021;
Puccetti et al., 2022). Disabling these outlier di-
mensions degrades the model performance signifi-
cantly. Luo et al. (2021) showed that the outlier di-
mensions are artefacts derived from positional em-
beddings and layer normalization. Puccetti et al.
(2022) identified a correlation between outlier di-

1702



mensions and token frequency. It is worth not-
ing that our findings differ largely from previous
works in three ways: 1) The outlier dimensions in
their context actually refer to output neurons. In
our context, an outlier dimension refers to a spe-
cific model parameter. In other words, they con-
sider abnormal outputs, while we consider abnor-
mal weights. 2) The ways of identifying outlier
dimensions are different. They identify outlier di-
mensions by examining abnormal outputs, while
we find outlier dimensions by examining abnormal
updates to weights. 3) The effects of disabling out-
lier dimensions are different. They show that dis-
abling just one outlier neuron can result in a signif-
icant drop in performance. In contrast, disabling
the top outlier weight has almost no effect on the
model performance. However, the model perfor-
mance will drop significantly if we disable more
outlier weights. The reason for the emergence of
these outlier dimensions remains unclear, and we
aim to conduct further in-depth analysis in future
work.

3 Intrinsic Task-specific Subspaces
Discovery in PLMs

3.1 Preliminary: Intrinsic Dimensionality

The intrinsic dimension of an objective landscape
is first defined by Li et al. (2018), which is
the number of independent optimization variables
with regard to minimizing the objective function.
However, finding the exact intrinsic dimension
is computationally intractable for complex objec-
tive functions like deep neural networks. There-
fore, a random subspace training method is usu-
ally employed to estimate the intrinsic dimension
(Li et al., 2018; Aghajanyan et al., 2021).

Formally, let θD ∈ RD be a parameter vec-
tor that parameterizes a model f(x;θ). Take
the BERT-base model as an example, θD rep-
resents all BERT’s parameters that are flattened
into a 110M-dimensional vector. θD

0 ∈ RD de-
notes the initial parameterization, P ∈ RD×d de-
notes a random projection matrix whose columns
form an orthonormal basis for a randomly ori-
ented d-dimensional subspace of RD, θd ∈
Rd denotes a parameter vector in a lower d-
dimensional space. The model is fine-tuned in the
lower d-dimensional subspace via the following re-
parameterization method:

θD = θD
0 + Pθd. (1)

!!"
!)"

!&"
!"

%)

%& & = 2

) = 3

Figure 1: An illustrative example of optimizing a
model in the 3-dimensional space, while the optimiza-
tion trajectory only lies in a 2-dimensional subspace.
We call the subspace the intrinsic subspace for the
model.

Note that θD
0 and P are frozen during the train-

ing process, and only θd is trained by the gradient
descent. In practice, the re-parameterization can
be done in a layer-wise manner to save computa-
tional resources (Aghajanyan et al., 2021), and we
also follow the layer-wise setting for our analysis.

The intrinsic dimension of a PLM is estimated
by grid searching the minimal d that makes the
model reach 90% of the full fine-tuning perfor-
mance. Take the BERT-base model as an exam-
ple, the intrinsic dimension for fine-tuning on the
MRPC dataset is only 1861 (Aghajanyan et al.,
2021), which is surprisingly small considering the
original model has up to 110 million parameters.

3.2 Finding Intrinsic Task-specific Subspaces

Gur-Ari et al. (2018) showed strong empirical ev-
idence that the gradient dynamically converges to
a very small subspace in various large-scale deep-
learning scenarios. The subspace is spanned by a
few top eigenvectors of the Hessian, and the di-
mension is equal to the number of data classes.
This also indicates that the training trajectory of
neural networks lies in a low-dimensional sub-
space, which is in line with the conclusion of Li
et al. (2022a). Considering an illustrative example
in Fig. 1, the full parameter space contains three
dimensions, but the training trajectory {θD

i }i=0,..,t

only lies in a 2-dimensional subspace S spanned
by e1 and e2. We call this subspace the intrinsic
subspace because it has a minimal degree of free-
dom (Li et al., 2018) for the objective function to
reach the optimum. The aforementioned random
subspace can be seen as a naïve estimation of S .

1703



We hypothesize that an intrinsic task-specific
subspace exists for each downstream task when
fine-tuning a PLM. Generally, it is intractable to
search such an intrinsic task-specific subspace di-
rectly. However, if our hypothesis is true, the fine-
tuning trajectory will lie in a low-dimensional sub-
space. Thus we can resort to the fine-tuning tra-
jectory to obtain an approximation of the intrinsic
task-specific subspace. Specifically, given a fine-
tuning trajectory {θD

i }i=0,..,t of a PLM on a down-
stream task, we stack it into a matrix W ∈ Rt×D,
and apply Singular Value Decomposition (SVD)
on it.

W = UΣV T , (2)

where Σ ∈ Rt×t is the singular value matrix,
U ∈ Rt×t and V ∈ RD×t are two real orthog-
onal matrices whose columns are left and right
singular vectors, respectively1. It is worth noting
that the columns of V are actually the principal
directions of the given trajectory if zero empirical
means of columns, and these directions constitute
an orthonormal basis of the subspace in which the
trajectory lies. Theoretically, a (t−1)-dimensional
subspace needs only t independent points to de-
termine. We can regard this subspace as an ap-
proximation of the intrinsic task-specific subspace
whose dimension is equal to the number of points
in the trajectory. Thus, we can replace the ran-
dom projection matrix P in Eq. (1) with V to
re-parameterize the model.

3.3 Fine-tuning in Intrinsic Task-specific
Subspaces

Given an approximated intrinsic task-specific sub-
space V , we reformulate Eq. (1) by letting the
model train in the subspace as follows.

θD = θD
0 + V θt. (3)

In our early exploration, we can achieve good per-
formance close to full fine-tuning by Eq. (3). How-
ever, the performance is not stable, and sensitive
to the initialization of θt. To solve this problem,
we propose an ensemble-like method that com-
bines multiple θt of different initialization to re-
duce variance, which is as follows.

θD = θD
0 + V

h∑

i=1

1

h
θt(i), (4)

1We assume t ≪ D and thus compact SVD is applied.

where h is the number of vectors to combine, and
we set it as 16 in this paper. Note that although
the ensemble increases the number of parameters
to optimize, it does not change the instrinsic di-
mensionality of the subspace (i.e., the degree of
freedom).

In the following experimental evaluation, we
will investigate subspace fine-tuning in both trans-
ductive and inductive settings to verify our hy-
potheses. The former is to verify the existence of
intrinsic task-specific subspaces when fine-tuning
PLMs on the downstream tasks, and the effective-
ness of our method to uncover the subspaces. The
latter further examines how well the intrinsic task-
specific subspaces can be transferred to other sim-
ilar tasks.

4 Experiment and Analysis

4.1 Experimental Settings

Datasets and models. We evaluate the perfor-
mance of the methods on the commonly used
GLUE benchmark (Wang et al., 2018; Warstadt
et al., 2019; Socher et al., 2013; Dolan and Brock-
ett, 2005; Cer et al., 2017; Williams et al., 2018;
Rajpurkar et al., 2016). For evaluation metrics, we
report the matched accuracy for MNLI, Matthews
correlation for CoLA, Pearson correlation for STS-
B, and accuracy for other tasks. We choose
the publicly available pre-trained language models
RoBERTa-base (Liu et al., 2019) and BERT-base-
cased (Devlin et al., 2019) for analysis. All experi-
mental results are averaged over 5 runs of different
seeds.

Implementation details. Our implementation
is based on HuggingFace’s Transformers toolkit
(Wolf et al., 2020). We first need to produce a
set of fine-tuning trajectories of GLUE tasks for
calculating projection matrices. We use the de-
fault script in the toolkit for fine-tuning, and save
a checkpoint every epoch to obtain optimization
trajectories. We set the trajectory length to 32 ex-
cept for the MNLI dataset, which is set to 64 since
it is the largest dataset and needs more parame-
ters to fit. We flatten all parameters in an encoder
layer into a wide vector, and then stack all vectors
of different checkpoints into a matrix to perform
SVD. We compute independent projection matri-
ces for all layers, resulting in 12 projection ma-
trices. For transductive subspace fine-tuning, the
projection matrix is calculated from the same task,

1704



CoLA MRPC SST-2 STS-B QQP MNLI QNLI RTE Avg.
BERT-Full 59.37 84.46 91.95 89.08 91.07 83.39 90.77 66.93 82.13
BERT-Freeze 27.52 69.66 88.81 78.35 84.48 71.55 81.61 56.46 69.81
BERT-Random 37.89 70.78 89.47 81.41 85.86 72.91 83.38 58.63 72.54
BERT-Intrinsic 60.27 84.31 89.93 89.51 89.73 81.21 87.73 67.00 81.21
RoBERTa-Full 61.04 89.31 94.29 90.70 91.72 87.23 92.48 76.68 85.43
RoBERTa-Freeze 0.00 68.38 85.32 15.69 82.81 71.16 79.11 53.86 57.04
RoBERTa-Random 27.58 68.38 91.45 75.47 86.33 77.10 84.49 58.27 71.13
RoBERTa-Intrinsic 61.07 87.21 92.43 89.43 90.18 85.53 90.57 78.77 84.40

Table 1: Transductive intrinsic subspace fine-tuning on the GLUE benchmark. Full denotes fine-tuning in the full-
parameter space. Freeze denotes fine-tuning with the encoder frozen. Random denotes fine-tuning in a random
subspace. Intrinsic denotes fine-tuning in the intrinsic task-specific subspaces. The subspace dimension is set to
32 except MNLI is 64. The best results are marked in bold, and the second-best results are underlined.

CoLA MRPC SST-2 STS-B QQP MNLI QNLI RTE Avg.
Tasks

Co
LA

M
RP

C
SS

T-
2

ST
S-

B
QQ

P
M

NL
I

QN
LI

RT
E

Su
bs

pa
ce

s

0.00 -9.31 0.58 -4.54 -3.07 -5.69 -4.36 -8.67 -5.01

-15.94 0.00 0.35 -3.61 -2.57 -4.41 -3.15 -5.06 -4.91

-17.92 -8.58 0.00 -4.35 -2.85 -5.48 -3.34 -6.86 -7.05

-15.87-11.03 -0.11 0.00 -2.12 -3.72 -2.99 -2.17 -5.43

-18.14 -8.82 -0.80 -4.50 0.00 -5.04 -3.06 -7.59 -6.85

-23.63-12.01 -0.69 -4.65 -2.24 0.00 -3.24 -3.98 -7.21

-19.15 -7.60 0.81 -4.05 -2.51 -4.60 0.00 -7.23 -6.33

-19.12 -8.33 0.23 -3.89 -3.09 -4.03 -2.73 0.00 -5.85

BERT

20

15

10

5

0

CoLA MRPC SST-2 STS-B QQP MNLI QNLI RTE Avg.
Tasks

Co
LA

M
RP

C
SS

T-
2

ST
S-

B
QQ

P
M

NL
I

QN
LI

RT
E

Su
bs

pa
ce

s

0.00 -7.11 -0.12 -3.88 -3.49 -3.99 -3.92 -16.25 -5.54

-16.79 0.00 -0.46 -2.30 -3.04 -3.43 -4.41 -9.75 -5.74

-16.19 -7.11 0.00 -5.32 -3.19 -4.18 -4.21 -16.25 -8.06

-20.41 -2.21 -0.12 0.00 -3.16 -2.80 -5.14 -11.55 -6.48

-23.67 -5.88 -0.81 -4.26 0.00 -4.04 -4.81 -17.69 -8.74

-19.83-15.69 0.00 -6.90 -3.31 0.00 -5.03 -18.41 -9.88

-13.46 -3.19 0.00 -3.11 -3.18 -4.47 0.00 -11.19 -5.51

-16.19 -1.96 0.34 -1.48 -3.02 -2.09 -4.78 0.00 -4.17

RoBERTa

20

15

10

5

0

Figure 2: Inductive intrinsic subspace fine-tuning on the GLUE benchmark. Columns are the target tasks to be
fine-tuned, and rows are source tasks that provide the transferred subspaces. Numbers in cells are performance
drop of fine-tuning target tasks with the subspaces provided by source tasks. The last column is the average of
other columns. Note that the numbers cannot be compared across columns because they are in different metrics.

while for inductive subspace fine-tuning, it is cal-
culated from other tasks. We only re-parameterize
the encoder layers into the subspaces and leave the
embedding layer and the last classification layer in
their original parameter space. We freeze the ini-
tial model θD

0 and the projection matrix V , and
only tune the low-dimensional vector θt. We keep
the learning rate of the embedding and classifica-
tion layers unchanged and set the learning rate of
θt to 0.01.

4.2 Transductive Intrinsic Subspace
Fine-tuning

Table 1 summarizes the experimental results. We
can see that freezing the encoder significantly de-
grades the model performance as it serves as a
naïve baseline (Note that it implies fine-tuning in

the null space, i.e., V θt = 0, which brings no
information to update the model). For intrinsic
subspace fine-tuning, we can clearly see that it
shows comparable performance to the full fine-
tuning across all GLUE tasks and models. In con-
trast, random projection only yields a marginal im-
provement over the baseline, and significantly un-
derperforms intrinsic subspace fine-tuning.

From these empirical results, we first conclude
that PLMs can be re-parameterized and fine-tuned
in some low-dimensional subspaces. Secondly,
there exist some subspaces in which the PLMs
can most effectively adapt to downstream tasks,
and we can uncover these subspaces by finding
the principal directions of fine-tuning trajectories
in the full parameter space. This conclusion in turn
suggests that fine-tuning of PLMs happens in tiny

1705



CoLA MRPC SST-2 STS-B QQP MNLI QNLI RTE Avg.
BERT-Full 59.37 84.46 91.95 89.08 91.07 83.39 90.77 66.93 82.13
BERT-Random 32.49 70.15 88.65 79.29 84.84 71.75 82.29 57.11 70.82
BERT-Zeroshot 35.35 78.09 91.06 85.17 87.57 75.29 84.01 75.23 76.47
BERT-Unified 61.58 84.41 91.06 89.71 91.27 83.85 90.97 67.00 82.48
RoBERTa-Full 61.04 89.31 94.29 90.70 91.72 87.23 92.48 76.68 85.43
RoBERTa-Random 0.00 68.38 89.47 27.60 84.51 73.16 82.10 54.44 59.96
RoBERTa-Zeroshot 32.93 80.44 90.60 83.10 87.12 78.76 84.46 67.12 75.57
RoBERTa-Unified 63.80 89.12 93.55 90.88 91.85 87.20 92.36 77.91 85.83

Table 2: Intrinsic subspace fine-tuning in the unified task subspace. Random denotes fine-tuning in a random
subspace (dim=8). Zeroshot denotes fine-tuning in the unified task subspace with itself removed (dim=7). Unified
denotes fine-tuning in the unified task subspace (dim=8).

subspaces, which provides an explanation of the
ease of adapting PLMs to downstream tasks.

4.3 Inductive Intrinsic Subspace Fine-tuning

Next, we conduct inductive intrinsic subspace fine-
tuning to examine the transferability of the dis-
covered subspaces. We generally follow the same
training protocol as in the last section, except that
we replace the projection matrices with the ones
calculated from other tasks.

We can observe the performance drop using
transferred task subspaces in Fig. 2. Generally,
we can see that even though the models are fine-
tuned in transferred subspaces, they still outper-
form the random subspace baseline, which sug-
gests the transferability of intrinsic task-specific
subspaces.

The transferability of subspaces seems to cor-
relate with the scale of the transferred task. For
example, big datasets like SST-2, QQP, MNLI
and QNLI underperform small datasets like CoLA,
MRPC, STS-B, and RTE in providing subspaces.
This is because the intrinsic task-specific sub-
spaces of complex tasks have higher dimensions
and need more parameters to estimate.

When comparing within one column, we can
see significant difference between distinct sub-
spaces used for fine-tuning one task. We assume
similar tasks may have substantial subspace inter-
sections and thus be easier to transfer. Still, this
claim needs further analysis to confirm, we will
leave it further study since transferability is not the
main focus of this paper. In summary, we empiri-
cally show that the intrinsic task-specific subspace
has a certain transferability.

4.4 Unified Intrinsic Task Subspace
Qin et al. (2021) showed that a unified low-
dimensional intrinsic task subspace can be con-
structed by a multi-task prompt tuning method.
In our case, we can also construct a unified sub-
space by stacking the fine-tuning trajectories of
different tasks into a matrix, and applying SVD
on it. Specifically, we sample one checkpoint for
each task and gather them to calculate the uni-
fied subspace, which forms an 8-dimensional sub-
space. And we additionally calculate a zero-shot
subspace of a task for comparison, which is cal-
culated by excluding the checkpoint of this task.
The results are given in Table 2. We can see that
the models can be effectively fine-tuned in the uni-
fied subspace. For the zero-shot setting, the model
performance decreases significantly, but still out-
performs the random baseline.

CoLA MRPC SST-2 STS-B QQP MNLI QNLI RTE

Co
LA

M
RP

C
SS

T-
2

ST
S-

B
QQ

P
M

NL
I

QN
LI

RT
E

1.00 -0.20 0.01 -0.14 -0.14 -0.18 -0.24 -0.46

-0.20 1.00 -0.18 0.11 -0.09 -0.08 -0.23 0.06

0.01 -0.18 1.00 -0.11 -0.09 -0.00 -0.09 -0.17

-0.14 0.11 -0.11 1.00 0.14 0.04 -0.03 0.13

-0.14 -0.09 -0.09 0.14 1.00 0.07 0.13 0.25

-0.18 -0.08 -0.00 0.04 0.07 1.00 0.08 0.18

-0.24 -0.23 -0.09 -0.03 0.13 0.08 1.00 0.11

-0.46 0.06 -0.17 0.13 0.25 0.18 0.11 1.00
1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Figure 3: The cosine similarities between the low-
dimensional parameter vectors θt of different tasks in
the unified intrinsic task subspace. Similarities are av-
eraged over layers and ensembles.

1706



0.00

0.02

0.04

0.06

0.08

0.10

Layer 1

-0.06

-0.04

-0.02

0.00

0.02

Layer 2

-0.10

-0.07

-0.05

-0.02

0.00

0.03

0.05
Layer 3

0.00

0.02

0.04

0.06

Layer 4

-0.02

0.00

0.02

0.04

0.06

Layer 5

-0.20

-0.15

-0.10

-0.05

0.00

Layer 6

0 2 4 6
1e6

0.00

0.05

0.10

0.15

0.20

0.25
Layer 7

0 2 4 6
1e6

-0.30

-0.20

-0.10

0.00

Layer 8

0 2 4 6
1e6

0.00

0.05

0.10

0.15

Layer 9

0 2 4 6
1e6

-0.05

-0.04

-0.03

-0.02

-0.01

0.00

0.01
Layer 10

0 2 4 6
1e6

-0.02

-0.02

-0.01

-0.01

0.00

0.00

0.01
Layer 11

0 2 4 6
1e6

-0.01

-0.00

0.00

0.01

0.01

0.01

Layer 12

Intrinsic Subspace

dim

-0.01

-0.01

-0.00

0.00

0.00

0.00

0.01
Layer 1

-0.01

0.00

0.00

Layer 2

-0.01

0.00

0.00

Layer 3

-0.01

-0.00

0.00

0.01

Layer 4

-0.01

-0.01

-0.01

0.00

0.01

0.01

0.02
Layer 5

-0.01

-0.00

0.00

0.01

0.01

0.01
Layer 6

0 2 4 6
1e6

-0.01

-0.01

-0.01

0.00

0.01

0.01

0.02
Layer 7

0 2 4 6
1e6

-0.01

-0.01

-0.01

0.00

0.01

0.01

0.02
Layer 8

0 2 4 6
1e6

-0.01

0.00

0.01

Layer 9

0 2 4 6
1e6

-0.01

-0.00

0.00

0.01

0.01

Layer 10

0 2 4 6
1e6

-0.01

0.00

0.01

Layer 11

0 2 4 6
1e6

-0.01

0.00

0.01

Layer 12

Random Subspace

dim

Figure 4: Visualization of product of V θt using the BERT model to fine-tune in the intrinsic task-specific subspace
(top) and a random subspace (bottom) on the MRPC dataset. Outlier dimensions appear in the intrinsic subspace
but not in a random subspace.

Next, we take the BERT model as an example
and examine the low-dimensional parameter vec-
tor θt learned within the unified intrinsic subspace.
We calculate the cosine similarities between the
θt vectors corresponding to different tasks and
present the results in Fig. 3. As shown in the fig-
ure, the cosine similarities between different tasks
are significantly low, indicating that the unified in-
trinsic subspace contains disentangled knowledge
distributed in different dimensions, and the low-
dimensional parameter vector θt serves as an (un-
normalized) probability distribution to induce task-
specific knowledge.

Based on these empirical findings, we conclude
that a unified intrinsic task subspace is feasible
and it contains disentangled knowledge. However,
in-domain knowledge still plays a crucial role in
forming the subspace as we can see that the zero-
shot setting still has a large perform gap.

4.5 Outlier Dimensions

We find that PLMs have a small number of out-
lier dimensions exhibiting abnormal spikes when
fine-tuning in the intrinsic task-specific subspaces.

We examine each dimension of the product of V θt

and consider the dimension whose absolute value
is greater than a threshold as outlier. Note that the
product of V θt is the learned parameter update in
the full parameter space and we re-parameterize
the encoder of the PLM layer-wisely, thus it is a
vector with the dimension equal to the number of
all parameters of an encoder layer.

It is important to note that the outlier dimension
in our context is different from the previous studies
(Kovaleva et al., 2021; Luo et al., 2021; Puccetti
et al., 2022). Previous studies use the outlier di-
mension to refer to the output channel (768 dimen-
sions for BERT-base). In our context, we flatten all
parameters of a layer into a vector (7,087,872 di-
mensions for BERT-base). Then an outlier dimen-
sion refers to a specific parameter weight in the
layer. We use the BERT model and MRPC dataset
for illustration, and visualize the product of V θt

in Fig. 4 to show the outlier patterns. As we can
see from the figure, when fine-tuning in the intrin-
sic task-specific subspace, the outlier patterns ex-
ist in all layers. In contrast, these outlier patterns
disappear when fine-tuning in a random subspace.

1707



CoLA MRPC SST-2 STS-B QQP MNLI QNLI RTE
BERT-Full 59.37 84.46 91.95 89.08 91.07 83.39 90.77 66.93
BERT-Random 57.27 84.46 91.79 88.66 90.66 83.68 90.41 64.48
BERT-Outlier 0.00 68.38 50.92 0.00 63.18 33.64 49.89 52.71
RoBERTa-Full 61.04 89.31 94.29 90.70 91.72 87.23 92.48 76.68
RoBERTa-Random 58.80 87.65 93.95 89.52 91.29 87.76 92.61 68.88
RoBERTa-Outlier 0.00 70.49 50.92 28.05 63.67 36.15 49.89 52.71

Table 3: Evaluation on the GLUE benchmark when the outlier dimensions are zeroed. The results with the most
performance loss are marked in bold.

Model component Layer # of outliers each layer
attention.self.query.weight 1, 2, 3, 4, 6, 7, 8, 9, 10, 11, 12 3, 1, 1, 1, 4, 4, 8, 3, 3, 2, 4
attention.self.query.bias 1 1
attention.self.key.bias 10, 11 2, 1
attention.output.LayerNorm.weight 1, 2, 3, 4, 5, 6, 7, 9, 10, 11, 12 1, 2, 3, 5, 4, 1, 2, 4, 1, 3, 2
attention.output.LayerNorm.bias 1, 2, 3 1, 1, 1
intermediate.dense.weight 1, 12 2, 1
output.dense.weight 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 2, 6, 5, 4, 2, 4, 3, 2, 3, 4, 4
output.LayerNorm.weight 5, 6, 7, 12 4, 1, 1, 3

Table 4: Sampled outlier dimensions in the BERT model. The left column shows the model component containing
outlier dimensions. The middle column shows the layer where the model component contains outlier dimensions.
The right column shows the number of outlier dimensions in the corresponding layer.

This phenomenon is universal for different models
and different datasets.

To investigate the effect of the outlier dimen-
sions on the models, we disable them by setting
them to zero and examine how this affects model
performance. We first disable the top outlier di-
mension of each encoder layer and fine-tune the
model in the full parameter space, which has al-
most no impact on model performance. This re-
sult is not surprising because disabling only one
weight in a layer definitely has a negligible ef-
fect on the output than disabling an output chan-
nel as the previous studies do. We continue to
disable more outlier dimensions, and these devi-
ating at least 3σ from the mean are disabled. Ap-
proximately 0.3% of encoder parameters are dis-
abled. We also randomly sample and disable the
same number of dimensions for comparison, and
the results are shown in Table 3. We can see that
disabling outlier dimensions degrades the model
performance significantly while disabling random
dimensions does not.

Next, we qualitatively examine the positions in
which the outlier dimensions emerge. We sam-
ple each layer’s top 10 outlier dimensions and
record their positions in Table 4. We can see

that the outlier dimensions are ubiquitous in var-
ious model components. Then, we identify one
outlier dimension O1 that consistently produces
high-magnitude weights in almost all BERT lay-
ers. Furthermore, we find that there is a consid-
erable overlap in the outlier dimensions of each
layer, which suggests that these dimensions can
propagate through layers.

Why do outlier dimensions emerge? Previous
studies came up with several explanations like
high-magnitude scaling factors (Kovaleva et al.,
2021), LayerNorm and residual connection (Luo
et al., 2021), and unbalanced token frequency
(Puccetti et al., 2022). However, these explana-
tions cannot apply to our case because the defini-
tions of the outlier dimension are different. Recall
that our approach to identifying outlier dimensions
is actually examining re-parameterized parameter
updates given the intrinsic task-specific subspace.
The magnitude of the updates represents the impor-
tance of corresponding parameters with respect to
solving the task. We have reason to believe that
these dimensions play an important role in con-
stituting the intrinsic subspace and are crucial to
induce task-specific knowledge to adapt to down-
stream tasks.

1708



5 Conclusion

In this paper, we claim that the fine-tuning of
PLMs happens in tiny subspaces. To uncover
such intrinsic task-specific subspaces, we exploit
the fine-tuning trajectory to find its main direc-
tion. Our empirical experiments show that PLMs
can effectively adapt to downstream tasks when
re-parameterizing and training in the found sub-
spaces, which well explains the ease of adapting
PLMs to downstream tasks. Furthermore, we find
outlier dimensions in PLMs during the subspace
training. We consider that these dimensions are
crucial to induce task-specific knowledge to down-
stream tasks. Still, we need further in-depth anal-
ysis to understand the reasons and impact of the
emergence of outlier patterns.

Limitations

Despite the insights obtained through our analysis,
certain limitations persist, which we outline in this
section.

With respect to the re-parameterization of pa-
rameters as presented in Eq. (3), we adopted the
layer-wise setting as proposed by Aghajanyan et
al. (2021) in order to alleviate memory and com-
putational burdens. Nonetheless, such a setting
restricts us to only identifying local subspaces,
rather than discovering global subspaces within
the entire parameter space of a pre-trained lan-
guage model. The existence of a task-specific
global subspace is yet to be ascertained. If such
a subspace does exist, the correlation between this
global subspace and the identified local subspaces
needs to be explored in future research.

In terms of experimental settings, the evaluation
tasks are limited to natural language understand-
ing tasks, with a lack of natural language gener-
ation tasks. On model architecture, decoder-only
(e.g., GPT) and encoder-decoder (e.g., T5) models
are not included. On model scale, we use basic-
size models rather than large ones due to limited
computational resources. Consequently, the con-
clusions drawn in this study may not be applicable
to the above situations.

The analysis presented in Section 4.5 demon-
strates that pre-trained language models exhibit
a small number of outlier dimensions when fine-
tuning in the intrinsic task-specific subspaces. Al-
though we have observed a significant decline in
model performance when disabling these dimen-
sions, the underlying mechanism responsible for

the emergence of these outlier dimensions remains
unclear.

Acknowlegments

This work is supported by the Sichuan key
research program (22ZDYF3388), Fundamen-
tal Research Funds for the Central Universi-
ties (ZYGX2019Z014), National Natural Science
Foundation of China (61976044, 52079026), Fok
YingTong Education Foundation for Young Teach-
ers in the Higher Education Institutions of China
(161062), the Canada CIFAR AI Chair Program,
and the Canada NSERC Discovery Grant (RGPIN-
2021-03115).

References
Armen Aghajanyan, Sonal Gupta, and Luke Zettle-

moyer. 2021. Intrinsic dimensionality explains the
effectiveness of language model fine-tuning. In Pro-
ceedings of the 59th Annual Meeting of the Associa-
tion for Computational Linguistics and the 11th In-
ternational Joint Conference on Natural Language
Processing, pages 7319–7328.

Daniel Cer, Mona Diab, Eneko Agirre, Iñigo Lopez-
Gazpio, and Lucia Specia. 2017. SemEval-2017
task 1: Semantic textual similarity multilingual and
crosslingual focused evaluation. In Proceedings of
the 11th International Workshop on Semantic Evalu-
ation, pages 1–14.

Patrick H. Chen, Hsiang-Fu Yu, Inderjit S. Dhillon, and
Cho-Jui Hsieh. 2021. DRONE: data-aware low-rank
compression for large NLP models. In Advances
in Neural Information Processing Systems 34: An-
nual Conference on Neural Information Processing
Systems 2021, NeurIPS 2021, December 6-14, 2021,
virtual, pages 29321–29334.

Tianlong Chen, Jonathan Frankle, Shiyu Chang, Sijia
Liu, Yang Zhang, Zhangyang Wang, and Michael
Carbin. 2020. The lottery ticket hypothesis for pre-
trained BERT networks. In Advances in Neural In-
formation Processing Systems 33.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, pages 4171–4186.

Yue Ding, Karolis Martinkus, Damian Pascual, Si-
mon Clematide, and Roger Wattenhofer. 2022. On
isotropy calibration of transformer models. In Pro-
ceedings of the Third Workshop on Insights from
Negative Results in NLP, pages 1–9.

1709



William B. Dolan and Chris Brockett. 2005. Automati-
cally constructing a corpus of sentential paraphrases.
In Proceedings of the Third International Workshop
on Paraphrasing.

Jonathan Frankle and Michael Carbin. 2019. The lot-
tery ticket hypothesis: Finding sparse, trainable neu-
ral networks. In The 7th International Conference
on Learning Representations.

Zhuocheng Gong, Di He, Yelong Shen, Tie-Yan Liu,
Weizhu Chen, Dongyan Zhao, Ji-Rong Wen, and Rui
Yan. 2022. Finding the dominant winning ticket in
pre-trained language models. In Findings of the As-
sociation for Computational Linguistics: ACL 2022,
pages 1459–1472.

Mitchell Gordon, Kevin Duh, and Nicholas Andrews.
2020. Compressing BERT: Studying the effects of
weight pruning on transfer learning. In Proceedings
of the 5th Workshop on Representation Learning for
NLP, pages 143–155.

Frithjof Gressmann, Zach Eaton-Rosen, and Carlo
Luschi. 2020. Improving neural network training in
low dimensional random bases. In Advances in Neu-
ral Information Processing Systems 33.

Guy Gur-Ari, Daniel A Roberts, and Ethan Dyer. 2018.
Gradient descent happens in a tiny subspace. arXiv
preprint arXiv:1812.04754.

Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and
Weizhu Chen. 2022. Lora: Low-rank adaptation of
large language models. In The Tenth International
Conference on Learning Representations.

Olga Kovaleva, Saurabh Kulshreshtha, Anna Rogers,
and Anna Rumshisky. 2021. BERT busters: Out-
lier dimensions that disrupt transformers. In Find-
ings of the Association for Computational Linguis-
tics: ACL/IJCNLP 2021, pages 3392–3405.

Chunyuan Li, Heerad Farkhoor, Rosanne Liu, and Ja-
son Yosinski. 2018. Measuring the intrinsic dimen-
sion of objective landscapes. In International Con-
ference on Learning Representations.

Tao Li, Lei Tan, Zhehao Huang, Qinghua Tao, Yipeng
Liu, and Xiaolin Huang. 2022a. Low dimensional
trajectory hypothesis is true: Dnns can be trained in
tiny subspaces. IEEE Transactions on Pattern Anal-
ysis and Machine Intelligence.

Tao Li, Yingwen Wu, Sizhe Chen, Kun Fang, and Xi-
aolin Huang. 2022b. Subspace adversarial training.
In IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 13399–13408.

Xiang Lisa Li and Percy Liang. 2021. Prefix-tuning:
Optimizing continuous prompts for generation. In
Proceedings of the 59th Annual Meeting of the
Association for Computational Linguistics and the
11th International Joint Conference on Natural Lan-
guage Processing, pages 4582–4597.

Chen Liang, Haoming Jiang, Simiao Zuo, Pengcheng
He, Xiaodong Liu, Jianfeng Gao, Weizhu Chen, and
Tuo Zhao. 2022. No parameters left behind: Sensi-
tivity guided adaptive learning rate for training large
transformer models. In The Tenth International Con-
ference on Learning Representations.

Chen Liang, Simiao Zuo, Minshuo Chen, Haoming
Jiang, Xiaodong Liu, Pengcheng He, Tuo Zhao, and
Weizhu Chen. 2021. Super tickets in pre-trained lan-
guage models: From model compression to improv-
ing generalization. In Proceedings of the 59th An-
nual Meeting of the Association for Computational
Linguistics and the 11th International Joint Confer-
ence on Natural Language Processing, pages 6524–
6538.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
RoBERTa: A robustly optimized BERT pretraining
approach. In arXiv preprint arXiv:1907.11692.

Ziyang Luo, Artur Kulmizev, and Xiaoxi Mao. 2021.
Positional artefacts propagate through masked lan-
guage model embeddings. In Proceedings of the
59th Annual Meeting of the Association for Compu-
tational Linguistics and the 11th International Joint
Conference on Natural Language Processing, pages
5312–5327.

Rabeeh Karimi Mahabadi, James Henderson, and Se-
bastian Ruder. 2021. Compacter: Efficient low-rank
hypercomplex adapter layers. In Advances in Neu-
ral Information Processing Systems 34, pages 1022–
1035.

Sai Prasanna, Anna Rogers, and Anna Rumshisky.
2020. When BERT plays the lottery, all tickets are
winning. In Proceedings of the 2020 Conference on
Empirical Methods in Natural Language Processing,
pages 3208–3229.

Giovanni Puccetti, Anna Rogers, Aleksandr Drozd, and
Felice Dell’Orletta. 2022. Outlier dimensions that
disrupt transformers are driven by frequency. In
Findings of the Association for Computational Lin-
guistics: EMNLP 2022, pages 1286–1304.

Yujia Qin, Xiaozhi Wang, Yusheng Su, Yankai Lin,
Ning Ding, Zhiyuan Liu, Juanzi Li, Lei Hou, Peng
Li, Maosong Sun, et al. 2021. Exploring low-
dimensional intrinsic task subspace via prompt tun-
ing. arXiv preprint arXiv:2110.07867.

Alec Radford, Jeff Wu, Rewon Child, David Luan,
Dario Amodei, and Ilya Sutskever. 2019. Language
models are unsupervised multitask learners. Ope-
nAI.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and
Percy Liang. 2016. SQuAD: 100,000+ questions for
machine comprehension of text. In Proceedings of
the 2016 Conference on Empirical Methods in Natu-
ral Language Processing, pages 2383–2392.

1710



Richard Socher, Alex Perelygin, Jean Wu, Jason
Chuang, Christopher D. Manning, Andrew Ng, and
Christopher Potts. 2013. Recursive deep models
for semantic compositionality over a sentiment tree-
bank. In Proceedings of the 2013 Conference on
Empirical Methods in Natural Language Processing,
pages 1631–1642.

Jianlin Su, Jiarun Cao, Weijie Liu, and Yangyiwen Ou.
2021. Whitening sentence representations for bet-
ter semantics and faster retrieval. arXiv preprint
arXiv:2103.15316.

William Timkey and Marten van Schijndel. 2021. All
bark and no bite: Rogue dimensions in transformer
language models obscure representational quality.
In Proceedings of the 2021 Conference on Empiri-
cal Methods in Natural Language Processing, pages
4527–4546.

Alex Wang, Amanpreet Singh, Julian Michael, Fe-
lix Hill, Omer Levy, and Samuel Bowman. 2018.
GLUE: A multi-task benchmark and analysis plat-
form for natural language understanding. In Pro-
ceedings of the 2018 EMNLP Workshop Black-
boxNLP: Analyzing and Interpreting Neural Net-
works for NLP, pages 353–355.

Alex Warstadt, Amanpreet Singh, and Samuel R. Bow-
man. 2019. Neural network acceptability judgments.
Transactions of the Association for Computational
Linguistics, 7:625–641.

Adina Williams, Nikita Nangia, and Samuel Bowman.
2018. A broad-coverage challenge corpus for sen-
tence understanding through inference. In Proceed-
ings of the 2018 Conference of the North Ameri-
can Chapter of the Association for Computational
Linguistics: Human Language Technologies, pages
1112–1122.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Rémi Louf, Morgan Funtow-
icz, Joe Davison, Sam Shleifer, Patrick von Platen,
Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu,
Teven Le Scao, Sylvain Gugger, Mariama Drame,
Quentin Lhoest, and Alexander M. Rush. 2020.
Transformers: State-of-the-art natural language pro-
cessing. In Proceedings of the 2020 Conference on
Empirical Methods in Natural Language Processing:
System Demonstrations, pages 38–45.

Elad Ben Zaken, Yoav Goldberg, and Shauli Ravfogel.
2022. Bitfit: Simple parameter-efficient fine-tuning
for transformer-based masked language-models. In
Proceedings of the 60th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 1–9.

Zhong Zhang, Chongming Gao, Cong Xu, Rui Miao,
Qinli Yang, and Junming Shao. 2020. Revisit-
ing representation degeneration problem in language
modeling. In Findings of the Association for Compu-
tational Linguistics: EMNLP 2020, pages 518–527.

A Appendix

A.1 Hyperparameters
We first fine-tune the BERT and RoBERTa mod-
els for calculating projection matrices. We use
the fine-tuning script in the Transformers toolkit2.
All hyperparameters remain default except for the
number of epochs, which is set to 32 and 64 for the
MNLI and all other tasks, respectively. For intrin-
sic subspace fine-tuning, the dimensionality of θt

is set to 32 and 64 for the MNLI and all other tasks,
respectively. The learning rate of θt is set to 0.01.
The number of ensembles h is set to 16. Other
hyperparameter are the same as those in the script.
All experimental results are averaged over 5 runs
of different seeds. Each experiment is conducted
on a single GeForce RTX 2080Ti GPU with envi-
ronment of Pytorch 1.11.0 + CUDA 11.3.1.

A.2 Ablation study
We conduct an ablation experiment over the num-
ber of dimensions of the subspaces. The results
are given in Table 5 and Table 6. The performance
increases as the number of dimensions increases.

Tasks dim=8 dim=16 dim=32
CoLA 54.06 57.17 60.27
MRPC 75.05 77.94 84.31
SST-2 89.52 90.05 89.93
STS-B 87.95 89.02 89.51
QQP 87.61 89.12 89.73
MNLI 76.93 78.48 78.70
QNLI 86.54 86.83 87.73
RTE 65.41 66.07 67.00

Table 5: Ablation study for the BERT model.

Tasks dim=8 dim=16 dim=32
CoLA 58.04 60.27 61.07
MRPC 75.59 78.20 87.21
SST-2 91.93 92.34 92.43
STS-B 84.10 88.10 89.43
QQP 87.58 89.25 90.18
MNLI 79.96 81.77 82.32
QNLI 89.35 89.14 90.57
RTE 74.30 78.56 78.77

Table 6: Ablation study for the RoBERTa model.

2https://github.com/huggingface/
transformers/tree/main/examples/pytorch/
text-classification

1711

https://github.com/huggingface/transformers/tree/main/examples/pytorch/text-classification
https://github.com/huggingface/transformers/tree/main/examples/pytorch/text-classification
https://github.com/huggingface/transformers/tree/main/examples/pytorch/text-classification


ACL 2023 Responsible NLP Checklist

A For every submission:
�3 A1. Did you describe the limitations of your work?

Section Limitations.

�3 A2. Did you discuss any potential risks of your work?
Section Limitations.

�3 A3. Do the abstract and introduction summarize the paper’s main claims?
Abstract, Section 1.

�7 A4. Have you used AI writing assistants when working on this paper?
Left blank.

B �3 Did you use or create scientific artifacts?
Section 4.

�3 B1. Did you cite the creators of artifacts you used?
Section 4.

�7 B2. Did you discuss the license or terms for use and / or distribution of any artifacts?
We use open-source artifacts which can be used for academic research purposes.

�7 B3. Did you discuss if your use of existing artifact(s) was consistent with their intended use, provided
that it was specified? For the artifacts you create, do you specify intended use and whether that is
compatible with the original access conditions (in particular, derivatives of data accessed for research
purposes should not be used outside of research contexts)?
We use the artifacts in compliance with their licenses.

�7 B4. Did you discuss the steps taken to check whether the data that was collected / used contains any
information that names or uniquely identifies individual people or offensive content, and the steps
taken to protect / anonymize it?
We use the open-source GLUE dataset which does not contain sensitive information.

� B5. Did you provide documentation of the artifacts, e.g., coverage of domains, languages, and
linguistic phenomena, demographic groups represented, etc.?
Not applicable. Left blank.

�3 B6. Did you report relevant statistics like the number of examples, details of train / test / dev splits,
etc. for the data that you used / created? Even for commonly-used benchmark datasets, include the
number of examples in train / validation / test splits, as these provide necessary context for a reader
to understand experimental results. For example, small differences in accuracy on large test sets may
be significant, while on small test sets they may not be.
Section 4.

C �3 Did you run computational experiments?
Section 4.

�3 C1. Did you report the number of parameters in the models used, the total computational budget
(e.g., GPU hours), and computing infrastructure used?
Appendix.

The Responsible NLP Checklist used at ACL 2023 is adopted from NAACL 2022, with the addition of a question on AI writing
assistance.

1712

https://2023.aclweb.org/
https://2022.naacl.org/blog/responsible-nlp-research-checklist/
https://2023.aclweb.org/blog/ACL-2023-policy/
https://2023.aclweb.org/blog/ACL-2023-policy/


� C2. Did you discuss the experimental setup, including hyperparameter search and best-found
hyperparameter values?
No response.

�3 C3. Did you report descriptive statistics about your results (e.g., error bars around results, summary
statistics from sets of experiments), and is it transparent whether you are reporting the max, mean,
etc. or just a single run?
Section 4

�3 C4. If you used existing packages (e.g., for preprocessing, for normalization, or for evaluation), did
you report the implementation, model, and parameter settings used (e.g., NLTK, Spacy, ROUGE,
etc.)?
Section 4

D �7 Did you use human annotators (e.g., crowdworkers) or research with human participants?
Left blank.

� D1. Did you report the full text of instructions given to participants, including e.g., screenshots,
disclaimers of any risks to participants or annotators, etc.?
Not applicable. Left blank.

� D2. Did you report information about how you recruited (e.g., crowdsourcing platform, students)
and paid participants, and discuss if such payment is adequate given the participants’ demographic
(e.g., country of residence)?
Not applicable. Left blank.

� D3. Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? For example, if you collected data via crowdsourcing, did your instructions to
crowdworkers explain how the data would be used?
Not applicable. Left blank.

� D4. Was the data collection protocol approved (or determined exempt) by an ethics review board?
Not applicable. Left blank.

� D5. Did you report the basic demographic and geographic characteristics of the annotator population
that is the source of the data?
Not applicable. Left blank.

1713


