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Abstract
While dense retrieval has been shown to be
effective and efficient across tasks and lan-
guages, it remains difficult to create effective
fully zero-shot dense retrieval systems when
no relevance labels are available. In this paper,
we recognize the difficulty of zero-shot learn-
ing and encoding relevance. Instead, we pro-
pose to pivot through Hypothetical Document
Embeddings (HyDE). Given a query, HyDE
first zero-shot prompts an instruction-following
language model (e.g., InstructGPT) to generate
a hypothetical document. The document cap-
tures relevance patterns but is “fake” and may
contain hallucinations. Then, an unsupervised
contrastively learned encoder (e.g., Contriever)
encodes the document into an embedding vec-
tor. This vector identifies a neighborhood in
the corpus embedding space, from which simi-
lar real documents are retrieved based on vec-
tor similarity. This second step grounds the
generated document to the actual corpus, with
the encoder’s dense bottleneck filtering out
the hallucinations. Our experiments show that
HyDE significantly outperforms the state-of-
the-art unsupervised dense retriever Contriever
and shows strong performance comparable to
fine-tuned retrievers across various tasks (e.g.
web search, QA, fact verification) and in non-
English languages (e.g., sw, ko, ja, bn).1

1 Introduction

Dense retrieval (Lee et al., 2019; Karpukhin et al.,
2020), the method of retrieving documents using
semantic embedding similarities, has been shown
to be successful across tasks like web search, ques-
tion answering, and fact verification. A variety
of methods such as negative mining (Xiong et al.,
2021; Qu et al., 2021), distillation (Qu et al., 2021;
Lin et al., 2021b; Hofstätter et al., 2021), retrieval-
specific pre-training (Izacard et al., 2021; Gao and
∗ Equal contribution.
1No models were trained or fine-tuned in writing this paper.
Our open-source code is available at https://github.com/
texttron/hyde.

Callan, 2021; Lu et al., 2021; Gao and Callan, 2022;
Liu and Shao, 2022) and scaling (Ni et al., 2022)
have been proposed to improve the effectiveness of
supervised dense retrieval models.

Nevertheless, zero-shot dense retrieval still re-
mains difficult. Many recent works consider the
alternative transfer learning setup, where the dense
retrievers are trained on a high-resource dataset and
then evaluated on queries from different domains.
MS MARCO (Bajaj et al., 2016), a dataset with a
large number of manually judged query-document
pairs, is the most commonly used. As argued by
Izacard et al. (2021), in practice, however, the ex-
istence of such a large dataset cannot always be
assumed. Furthermore, MS MARCO restricts com-
mercial use and cannot be adopted in a variety of
real-world search scenarios.

In this paper, we aim to build effective fully
zero-shot dense retrieval systems that require no
relevance supervision, work out-of-box and gen-
eralize across emerging search tasks. As super-
vision is not available, we start by examining
self-supervised representation learning methods.
Modern deep learning enables two distinct ap-
proaches. At the token level, generative large lan-
guage models (LLMs) pre-trained on large cor-
pora have demonstrated strong natural language
understanding (NLU) and generation (NLG) ca-
pabilities (Brown et al., 2020; Chen et al., 2021;
Rae et al., 2021; Hoffmann et al., 2022; Thoppilan
et al., 2022; Chowdhery et al., 2022). At the docu-
ment level, text (chunk) encoders pre-trained with
contrastive objectives learn to encode document-
document similarity into inner products (Izacard
et al., 2021; Gao and Callan, 2022).

On top of these, one extra insight from LLMs is
borrowed: LLMs further trained to follow instruc-
tions can zero-shot generalize to diverse unseen
instructions (Ouyang et al., 2022; Sanh et al., 2022;
Min et al., 2022; Wei et al., 2022). In particular, In-
structGPT shows that with a small amount of data,

1762

https://github.com/texttron/hyde
https://github.com/texttron/hyde


HyDE

GPT
Contriever

how long does it take to remove
wisdom tooth It usually takes between 30

minutes and two hours to
remove a wisdom tooth...

How wisdom teeth are removed... 
Some ... a few minutes, whereas
others can take 20 minutes or
longer....

How has the COVID-19 pandemic impacted
mental health?

...depression and anxiety had
increased by 20% since the
start of the pandemic...

... two studies investigating
COVID-19 patients ... significantly
higher level of depressive ...

write a passage to answer the question

write a scientific paper passage to answer
the question

인간은 언제 불을 사용했는가?

write a passage in Korean to answer the
question in detail

인간이 불을 사용한 기록은 약
800만년 전부터 나타난다... ... 불을 처음 사용한 시기는 호모

에렉투스가 살았던 142만 년 전으
로 거슬러간다...

instruction query generated document real document

Figure 1: An illustration of the HyDE model. Document snippets are shown. HyDE serves all types of queries
without changing the underlying InstructGPT and Contriever/mContriever models.

GPT-3 (Brown et al., 2020) models can be aligned
to human intents to follow instructions faithfully.

With these ingredients, we propose to pivot
through Hypothetical Document Embeddings
(HyDE) and decompose dense retrieval into two
tasks: a generative task performed by an instruction-
following language model and a document-
document similarity task performed by a con-
trastive encoder (Figure 1). First, we feed the
query to the generative model and instruct it to
“write a document that answers the question”, i.e.,
a hypothetical document. We expect the genera-
tive process to capture “relevance” by providing
an example; the generated document is not real,
can contain factual errors, but is “like” a relevant
document. In the second step, we use an unsuper-
vised contrastive encoder to encode this document
into an embedding vector. Here, we expect the
encoder’s dense bottleneck to serve as a lossy com-
pressor, where the extra (hallucinated) details are
filtered out from the embedding. We use this vector
to search against the corpus embeddings. The most
similar real documents are retrieved and returned.
The retrieval leverages document-document simi-
larity encoded in the inner product learned in the
contrastive pre-training stage.

Note that, interestingly, with our proposed
HyDE factorization, query-document similarity
scores are no longer explicitly modeled or com-
puted. Instead, the retrieval task is cast into two
tasks (NLU and NLG). Building HyDE requires
no supervision and no new model is trained in this
work: both the generative model and the contrastive
encoder are used “out of the box” without any adap-
tation or modification.

In our experiments, we show that HyDE us-
ing InstructGPT (Ouyang et al., 2022) and Con-
triever (Izacard et al., 2021) “as is” signifi-
cantly outperforms the previous state-of-the-art

Contriever-only zero-shot model on 11 query sets,
covering tasks like web search, question answer-
ing, fact verification and in languages like Swahili,
Korean, Japanese and Bengali.

2 Related Work

Self-Supervised Learning This approach is one
of the most popular topics in NLP (Devlin et al.,
2019; Brown et al., 2020). Masked language
models like BERT (Devlin et al., 2019) have
demonstrated strong capabilities in representing
text. Large language models (LLMs) with hun-
dreds of billions of parameters have shown remark-
able generalization capabilities under few-shot and
zero-shot setups across various tasks (Brown et al.,
2020; Chowdhery et al., 2022). Despite their broad
success, zero- or few-shot learning in LLMs have
rarely been used directly in ranking (Liang et al.,
2022), with the only exception being Sachan et al.
(2022), which performs zero-shot re-ranking.

Aside from language modeling, contrastive
learning methods help neural language models
learn to represent chunks (e.g., sentences or pas-
sages) of texts as embedding vectors. Without the
need of any supervision, such contrastive encoders
can embed homogeneous text chunks into a vector
space where some distance function like inner prod-
uct captures similarities (Gao et al., 2021; Izacard
et al., 2021).

Instructions-Following Models Soon after the
emergence of LLMs, several groups of researchers
discovered that LLMs trained on data consisting
of instructions and their execution can zero-shot
generalize to perform new tasks with new instruc-
tions (Ouyang et al., 2022; Sanh et al., 2022;
Min et al., 2022; Wei et al., 2022). This can be
performed using standard supervised sequence-
to-sequence learning techniques or more effec-
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tively with reinforcement learning from human
feedback (Ouyang et al., 2022).

Concurrent to us, Asai et al. (2022) and Su et al.
(2022) studied task-aware retrieval with instruc-
tions. They fine-tuned dense encoders that can
also encode task-specific instructions prepended to
queries. In contrast, we use an unsupervised en-
coder and handle different tasks using generative
LLMs without the need to perform any fine-tuning.

Dense Retrieval Document retrieval in dense
vector space (Lee et al., 2019; Karpukhin et al.,
2020) has been extensively studied after the emer-
gence of pre-trained Transformer language mod-
els (Devlin et al., 2019). Researchers have stud-
ied metric learning problems, such as training
loss (Karpukhin et al., 2020) and negative sam-
pling (Xiong et al., 2021; Qu et al., 2021), and also
introduced distillation (Qu et al., 2021; Lin et al.,
2021b; Hofstätter et al., 2021). Later works studied
the second stage pre-training of language models
specifically for retrieval (Izacard et al., 2021; Gao
and Callan, 2021; Lu et al., 2021; Gao and Callan,
2022; Liu and Shao, 2022) as well as model scal-
ing (Ni et al., 2022). All of these methods rely on
supervised contrastive learning.

The popularity of dense retrieval can be par-
tially attributed to complementary research in ef-
ficient minimum inner product search (MIPS) at
very large (billion) scales (Johnson et al., 2021).

Zero-Shot Dense Retrieval The task of zero-
shot (dense) retrieval was made empirically promi-
nent to the neural retrieval community by Thakur
et al. (2021); their BEIR benchmark encompasses
diverse retrieval tasks. The paper and much follow-
up research consider the transfer learning setup
where the dense retriever is first trained using a
diverse and large manually labeled dataset, namely
MS MARCO (Thakur et al., 2021; Wang et al.,
2022; Yu et al., 2022).

However, as stated by Izacard et al. (2021), such
a large collection can rarely be assumed. In this
paper, therefore, we study the problem of building
effective dense retrieval systems without any rele-
vance labels. Similar to their work, we also do not
assume access to the test corpora during training.
This is a more realistic setup and better aligns with
emerging zero-shot search needs.

By the definition in Sachan et al. (2022), our
setup is unsupervised. Similar to that work, we
also rely on the ability of instruction-following lan-

guage models to perform search tasks. In the rest
of this paper, we do not make a precise distinction
between zero-shot and unsupervised, and will use
the terms interchangeably to describe our setup:
we assume that no test-time query, document or
large-scale supervision exists.

Automatic Labeling In contrast to our setup of
dealing with emerging unseen search tasks, sev-
eral previous works have studied building dense
search systems where a document collection exists
but no relevance labels are available. While the
intuitive default approach is collecting relevance
judgments from human annotators (Bajaj et al.,
2016; Kwiatkowski et al., 2019; Clark et al., 2020;
Craswell et al., 2020), Wang et al. (2022) proposed
a pipeline consisting of question generation (Ma
et al., 2021; Lewis et al., 2021), negative mining
and automatic labeling using large language mod-
els, and have shown it to be an effective alternative.
Dai et al. (2023) showed that the pipeline can bene-
fit from using larger hundred-billion-scale language
models. Bonifacio et al. (2022) showed that a simi-
lar pipeline can be used for training re-rankers.

Generative Retrieval Generative search is a new
class of retrieval methods that uses neural genera-
tive models as search indexes (Metzler et al., 2021;
Tay et al., 2022; Bevilacqua et al., 2022; Lee et al.,
2022). These models use (constrained) decoding to
generate document identifiers that map directly to
real documents. They have to go through special
training procedures over relevance data; effective
search may also need to use novel forms of search
index structures (Bevilacqua et al., 2022; Lee et al.,
2022). In comparison, our method uses standard
MIPS indexes and requires no training data. Our
generative model produces an intermediate hypo-
thetical document to be fed into a dense encoder,
instead of a real document.

3 Methodology

In this section, we first formally define the prob-
lem of (zero-shot) dense retrieval. Then we will
introduce how HyDE is designed to solve it.

3.1 Preliminaries

Dense retrieval models aim to capture similarity
between queries and documents with inner prod-
uct similarity. Given a query q and document d,
the approach uses two encoder functions, encq and
encd (which might be identical), to map both seg-
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Please write a passage to answer the question.
Question: what is wifi vs bluetooth
Passage: Wi-Fi and Bluetooth are two different types of wireless technology. Wi-Fi is a local area network technology that
uses radio waves to provide high-speed internet and network connections. Bluetooth is a short-range wireless technology
that allows for the exchange of data between two devices over short distances.

Please write a passage in Japanese to answer the question in detail.
Question: 海底ケーブルが初めて結ばれたのはどこ？
Passage: 海底ケーブルが初めて結ばれたのは1866年、イギリスとフランスをつなぐケーブルが結ばれたアイルランドの
海岸沿いにあるヴァレンタイン島です。ヴァレンタイン島はアイルランドの西海岸に位置しており、ケーブルはヴァレン
タイン島からフランスのブレスト湾まで延びました。このケーブルは、イギリスとフランス間の通信を可能にしました。

Please write a scientific paper passage to answer the question.
Question: how long does coronavirus remain stable on surfaces?
Passage: Recent studies have revealed that the novel coronavirus, SARS-CoV-2, can remain stable on surfaces for up to
nine days. In a study conducted at the National Institute of Allergy and Infectious Diseases (NIAID), researchers found that
the virus was stable on plastic and stainless steel surfaces for up to three days, and on cardboard for up to 24 hours. 

Figure 2: Illustration of HyDE running on InstructGPT. Three queries from TREC DL, TREC-COVID and Mr.TyDi
are shown. For each, we include the instruction, example query and a generated hypothetical document (green).

ments of text into d dimensional vectors vq and
vd, whose inner product is used as a similarity
measurement for capturing relevance:

sim(q, d) = ⟨encq(q), encd(d)⟩ = ⟨vq,vd⟩ (1)

For zero-shot retrieval, we consider L query sets
Q1, Q2, ..., QL and the corresponding corpora we
are searching in, document sets D1, D2, ..., DL.
Denote the j-th query from i-th set query set Qi as
qij . We need to fully define the encoders encq and
encd without access to any query set Qi, document
set Di, or any relevance judgment rij .

The difficulty of zero-shot dense retrieval lies
precisely in Equation 1: it requires learning two
embedding functions (for the query and the docu-
ment, respectively) into the same embedding space,
where inner product captures relevance. Without
relevance judgments and/or scores as training data,
learning becomes difficult.

3.2 HyDE
HyDE circumvents the aforementioned learning
challenge by performing search in a document-
only embedding space that captures document-
document similarity. This can be easily learned
using unsupervised contrastive learning tech-
niques (Izacard et al., 2021; Gao et al., 2021; Gao
and Callan, 2022). We set the document encoder
encd directly as a contrastive encoder enccon:

f = encd = enccon (2)

This function is denoted f for simplicity. This
unsupervised contrastive encoder will be shared by
all incoming documents.

vd = f(d) ∀d ∈ D1 ∪D2 ∪ ... ∪DL (3)

To build the query vector, we consider in addition
an instruction-following LM, InstructLM. It takes a
query q and a textual instruction INST and follows
them to perform the task specified by INST. For
simplicity, denote:

g(q, INST) = InstructLM(q, INST) (4)

Now we can use g to map queries to “hypothetical”
documents by sampling from g, setting INST to be
“write a paragraph that answers the question” (or
an analogous prompt).

We emphasize that the generated document is not
real. In fact, it can and is likely to be ungrounded
factually, suffering from hallucinations (Brown
et al., 2020; Thoppilan et al., 2022). We only re-
quire the “fake” document to capture relevance
patterns. This is done by generating documents,
i.e., providing examples. Critically, here we of-
fload relevance modeling from the representation
learning model to an NLG model that general-
izes significantly more easily, naturally, and effec-
tively (Brown et al., 2020; Ouyang et al., 2022).
Generating examples also replaces explicit model-
ing of relevance scores.

We can now encode the generated document us-
ing the document encoder f . Concretely, for some
query qij from query collection Qi, we can use an
instruction INSTi and compute:

E[vqij ] = E[f(g(qij , INSTi))] (5)

Formally, g defines a probability distribution over
natural language sequences based on the chain rule.
In this paper, we simply consider the expectation,
assuming the distribution of vqij is uni-modal. We
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estimate Equation 5 by sampling N documents
from g, [d̂1, d̂2, ..., d̂N ]:

v̂qij =
1

N

∑

d̂k∼g(qij ,INSTi)

f(d̂k) (6)

=
1

N

N∑

k=1

f(d̂k) (7)

We also consider the query as a possible hypothesis:

v̂qij =
1

N + 1
[

N∑

k=1

f(d̂k) + f(qij)] (8)

Inner product is computed between v̂qij and the set
of all document vectors:

sim(qij , d) = ⟨v̂qij ,vd⟩ ∀d ∈ Di (9)

The most similar documents are retrieved. Here,
the encoder function f serves as a lossy compres-
sor that outputs dense vectors, where extra details
are filtered and left out of the vector. It further
“grounds” the hypothetical vector to the actual cor-
pus and real documents. The full HyDE method is
illustrated in Figure 1.

4 Experiments

In this section, we discuss how we implement
HyDE and test it as a zero-shot out-of-box search
system. We show how much HyDE improves over
the base unsupervised dense encoder as well as
how it compares to models with rich supervision.

4.1 Setup
Implementation Our HyDE approach can be im-
plemented using any pair of instruction-following
language model and contrastive text encoder. With-
out loss of generality, we pick contemporary and
widely adopted models: we implement HyDE us-
ing InstructGPT, a GPT-3 model from the instruct
series (Ouyang et al., 2022)2 and Contriever model
variants (Izacard et al., 2021). We use the English-
only Contriever model for English retrieval tasks
and the multilingual mContriever for non-English
tasks, as designed by Izacard et al. (2021). The In-
structGPT model is applied in all tasks. We sample
from InstructGPT using the OpenAI API with a
default temperature of 0.7 for open-ended genera-
tion. We conducted retrieval experiments with the
Pyserini toolkit (Lin et al., 2021a).
2We used the text-davinci-003 API endpoint.

Datasets We desire to show that HyDE is an ef-
fective out-of-box solution for diverse search tasks.
It is important to note that since neither our genera-
tive model nor our encoder model has learned any
knowledge for search tasks, we can use any test
collection to assess HyDE’s capability in handling
diverse search needs.

We first consider general web test collections.
We use data from TREC DL19 (Craswell et al.,
2020) and DL20 (Craswell et al., 2021), which
are based on the MS MARCO dataset (Bajaj
et al., 2016). We report the official metrics, mAP,
nDCG@10 and Recall@1k.

Beyond web collections, we use a set of seven
low-resource retrieval datasets comprising differ-
ent topics and formats from BEIR (Thakur et al.,
2021), including Scifact (scientific paper abstracts;
Wadden et al. 2020), Arguana (argument retrieval;
Wachsmuth et al. 2018), TREC-COVID (COVID-
19 scientific papers; Voorhees et al. 2020), FiQA (fi-
nancial articles; Maia et al. 2018), DBPedia (entity
retrieval; Hasibi et al. 2017), TREC-NEWS (news
articles; Soboroff et al. 2019), Climate-Fever (cli-
mate fact verification; Diggelmann et al. 2020).
We report the official metrics, nDCG@10 and Re-
call@100.

Finally, we test HyDE on non-English retrieval.
For this, we consider Swahili, Korean, Japanese
and Bengali from Mr.TyDi (Zhang et al., 2021),
an open retrieval dataset constructed from TyDi
QA (Clark et al., 2020). We report the official
metric, MRR@100.

We use different instructions for each dataset.
They share a similar structure but have different
prompts to control the exact form of the generated
hypothetical documents. These instructions can be
found in subsection A.1.

Compared Systems The two Contriever model
variants, Contriever and mContriever, serve as our
main points of comparison. They are trained using
unsupervised contrastive learning. HyDE uses Con-
triever and mContriever as encoders and therefore
shares the exact same embedding spaces with them.
The only difference is how the query vector is built.
These comparisons allow us to easily examine the
effects of HyDE. The traditional heuristic-based
lexical retriever BM25 is also included, which has
been shown to be (surprisingly) more effective than
previous zero-shot methods in many cases (Thakur
et al., 2021; Izacard et al., 2021).

Several systems that involve fine-tuning on large
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DL19 DL20
mAP nDCG@10 Recall@1k mAP nDCG@10 Recall@1k

Unsupervised
BM25 30.1 50.6 75.0 28.6 48.0 78.6
Contriever 24.0 44.5 74.6 24.0 42.1 75.4
HyDE 41.8 61.3 88.0 38.2 57.9 84.4

Supervised
DPR 36.5 62.2 76.9 41.8 65.3 81.4
ANCE 37.1 64.5 75.5 40.8 64.6 77.6
Contriever-ft 41.7 62.1 83.6 43.6 63.2 85.8

Table 1: Results for web search on DL19/20. Best performing w/o relevance and overall system(s) are marked bold.
DPR, ANCE and Contriever-ft are in-domain supervised models that are fine-tuned on MS MARCO training data.

Scifact Arguana Trec-Covid FiQA DBPedia TREC-NEWS Climate-Fever

nDCG@10
Unsupervised
BM25 67.9 39.7 59.5 23.6 31.8 39.5 16.5
Contriever 64.9 37.9 27.3 24.5 29.2 34.8 15.5
HyDE 69.1 46.6 59.3 27.3 36.8 44.0 22.3

Supervised
DPR 31.8 17.5 33.2 29.5 26.3 16.1 14.8
ANCE 50.7 41.5 65.4 30.0 28.1 38.2 19.8
Contriever-ft 67.7 44.6 59.6 32.9 41.3 42.8 23.7

Recall@100
Unsupervised
BM25 92.5 93.2 49.8 54.0 46.8 44.7 42.5
Contriever 92.6 90.1 17.2 56.2 45.3 42.3 44.1
HyDE 96.4 97.9 41.4 62.1 47.2 50.9 53.0

Supervised
DPR 72.7 75.1 21.2 34.2 34.9 21.5 39.0
ANCE 81.6 93.7 45.7 58.1 31.9 39.8 44.5
Contriever-ft 94.7 97.7 40.7 65.6 54.1 49.2 57.4

Table 2: Results for a selection of low-resource tasks from BEIR. Best performing w/o relevance and overall
system(s) are marked bold.

amounts of relevance data are also included as ref-
erences. We consider models fine-tuned on MS
MARCO and transferred across domains, DPR
and ANCE, from the BEIR paper. For multilin-
gual retrieval, we include the mDPR model from
the Mr.TyDi paper and MS MARCO fine-tuned
mBERT and XLM-R from the Contriever paper.

We also include state-of-the-art transfer learn-
ing models: Contriever and mContriever fine-
tuned on MS MARCO, denoted Contriever-ft and
mContriever-ft, respectively. These models are fine-
tuned versions of HyDE’s base encoder. They have
run through a state-of-the-art retrieval model train-
ing pipeline that involves second-stage retrieval-
specific pre-training (Lee et al., 2019) and a few
rounds of fine-tuning (Qu et al., 2021); these should
be considered “empirical upper bounds” in terms
of what’s achievable with modern best practices.
Additional models that assume access to test docu-

ments (except MS MARCO) are not considered as
the setup differs from ours. We acknowledge that
human and/or automatic labels on test documents
can boost performance compared to zero-shot sys-
tems (Wang et al., 2022). However, such setups
gain performance at the cost of the system’s agility
and generality.

4.2 Web Search

In Table 1, we show retrieval results on TREC
DL19 and TREC DL20. We see that HyDE brings
sizable improvements to Contriever across the
board for both precision-oriented and recall metrics.
While unsupervised Contriever can underperform
the lexical BM25 approach, HyDE outperforms
BM25 by large margins.

HyDE remains competitive even when compared
to fine-tuned models. Note that TREC DL19/20
are search tasks defined on MS MARCO and there,
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sw ko ja bn

Unsupervised
BM25 38.9 28.5 21.2 41.8
mContriever 38.3 22.3 19.5 35.3
HyDE 41.7 30.6 30.7 41.3

Supervised
mDPR 7.3 21.9 18.1 25.8
mBERT 37.4 28.1 27.1 35.1
XLM-R 35.1 32.2 24.8 41.7
mContriever-ft 51.2 34.2 32.4 42.3

Table 3: Results on Mr.TyDi in terms of MRR@100.
Best performing unsupervised and overall system(s) are
marked bold.

all the fine-tuned models have received a wealth of
supervision. On TREC DL19, HyDE shows com-
parable mAP and nDCG@10 to Contriever-ft and
the best Recall@1k. On DL20, HyDE gets around
10% lower mAP and nDCG@10 than Contriever-ft
but similar Recall@1k. The ANCE model shows
better nDCG@10 numbers than HyDE but lower
recall, suggesting it may be biased to a subset of
queries and/or relevant documents.

4.3 Low-Resource Retrieval
In Table 2, we show retrieval results for a selection
of low-resource tasks from BEIR. Similar to web
search, HyDE again brings sizable improvements
to Contriever across the board in terms of both
nDCG@10 and Recall@100. HyDE is only outper-
formed by BM25 on one dataset, TREC-COVID,
but by a tiny margin on nDCG@10; in comparison,
the underlying Contriever model alone underper-
forms by more than 50%.

We also observe that HyDE demonstrates strong
performance compared to fine-tuned models. Our
approach generally shows better performance than
ANCE and DPR, even though the two models are
fine-tuned on MS MARCO, and ANCE addition-
ally leverages hard-negative mining techniques.
Contriever-ft shows non-trivial performance ad-
vantages on FiQA and DBPedia. These involve
retrieval of financial posts and entities, respectively.
We believe the performance differences can be at-
tributed to the under-specification of the instruc-
tions; more elaborate prompts may help.

4.4 Multilingual Retrieval
The multilingual setup poses several additional
challenges to HyDE. The small contrastive en-
coder gets saturated as the number of languages
scales (Conneau et al., 2020; Izacard et al., 2021).
Meanwhile, our generative LLM faces the opposite

Model DL19 DL20
mAP nDCG@10 mAP nDCG@10

Contriever 24.0 44.5 24.0 42.1

HyDE
w/ Flan-T5 32.1 48.9 34.7 52.9
w/ Cohere 34.1 53.8 36.3 53.8
w/ InstructGPT 41.8 61.3 38.2 57.9

Table 4: nDCG@10 on TREC DL19/20 comparing
the effects of changing different instruction LMs on
unsupervised Contriever. Best performing results are
marked bold.

issue: with languages not as high resource as En-
glish or French, the LLMs are over-parameterized
and hence under-trained (Hoffmann et al., 2022).

Nevertheless, in Table 3, we still find that HyDE
is able to improve over the mContriever model. It
can outperform non-Contriever models fine-tuned
on and transferred from MS MARCO. On the other
hand, we do observe some gaps between HyDE
and fine-tuned mContriever-ft. Since HyDE and
mContriever-ft use similar contrastive encoders,
we hypothesize this is because the non-English
languages we considered are under-trained in both
pre-training and instruction-learning stages.

5 Analysis

The generative LLM and contrastive encoder make
up the two core components of HyDE. In this sec-
tion, we study the effects of changing their realiza-
tions. In particular, we consider smaller language
models (LMs), LMs without instruction following
and fine-tuned encoders. We also demonstrate a
way to visualize and better understand HyDE.

5.1 Effect of Different Generative Models

In Table 4, we show HyDE using other instruction-
following language models. In particular, we
consider the 52-billion parameter Cohere model
(command-xlarge-20221108) and the 11-billion
parameter FLAN model (FLAN-T5-xxl) (Wei et al.,
2022).3 Generally, we observe that all models bring
improvements to the unsupervised Contriever, with
larger models bringing bigger improvements. At
the time of our work, the Cohere model was still
experimental, without much detail available. We
can only tentatively hypothesize that training tech-
niques may have also played some role in the per-
formance differences.
3Model sizes are from https://crfm.stanford.edu/helm/
v1.0/?models.
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Scifact FiQA DBPedia

Contriever 64.9 24.5 29.2

HyDE
w/ InstructGPT 69.1 27.3 36.8
w/ GPT-3 65.9 27.9 40.5

Table 5: nDCG@10 comparing InstructGPT vs. 3-shot
GPT-3 on BEIR. Best results are marked bold.

Model DL19 DL20
mAP nDCG@10 mAP nDCG@10

Contriever-ft 41.7 62.1 43.6 63.2
+ HyDE 48.6 67.4 46.9 63.5

GTR-XL 46.7 69.6 46.9 70.7
+ HyDE 50.6 71.9 51.5 70.8

Table 6: nDCG@10 on TREC DL19/20 comparing the
effects of HyDE on supervised models. Best results are
marked bold.

5.2 HyDE with Base Language Models

In this section, we consider using HyDE with a
base GPT-3 model that has not been trained to align
with human intent and does not follow instructions
well. This may be a useful setup when one doesn’t
have access to an instruction-tuned language model
of the desired size and/or language. We use the
in-context learning method (Brown et al., 2020)
with three examples and conduct experiments on
three BEIR datasets that come with training ex-
amples. We report results in Table 5. Here, the
few-shot model performs less stably: it brings a
small improvement on Scifact but can outperform
InstructGPT on FiQA and DBPedia.

5.3 HyDE with Fine-Tuned Encoders

To begin, we emphasize that HyDE with fine-tuned
encoders is not the intended usage: our approach is
specifically designed for cases where no relevance
labels are present. Access to supervision (to fine-
tune the encoders) naturally diminishes the impact
of our approach.

Nevertheless, we are interested to find out if
and how HyDE embeddings can benefit already
fine-tuned encoders. We consider two fine-tuned
encoders, the aforementioned Contriever-ft, which
contains 110M parameters, and the much larger
GTR-XL model (Ni et al., 2022) with 1.2B pa-
rameters. In Table 6, we see that the larger GTR-
XL model generally outperforms Contriever-ft but
HyDE can still bring improvements to both fine-
tuned encoders. We see smaller improvements on

(a) Query example from TREC-COVID: What is the
mechanism of inflammatory response and pathogenesis
of COVID-19 cases?

(b) Query example from DBPedia: Which mountains are
higher than the Nanga Parbat?

Figure 3: T-SNE plots of the embedding space of Con-
triever for query examples and their nearby documents
in the embedding space. The red points represent the
hypothetical document vectors.

GTR-XL, presumably because it has not been con-
trastively pre-trained to explicitly learn document-
document similarity.

5.4 Visualizing the Effects of HyDE

In Figure 3, we randomly pick two query exam-
ples from TREC-COVID and DBPedia to visualize
the effects of HyDE. We plot the HyDE vector
and the original query vector in the embedding
space of Contriever using the T-SNE dimension-
ality reduction method. In each plot, we can see
that the vectors generated by HyDE (red points)
are closer to the clusters of relevant document vec-
tors (blue points) than the original query vectors
(green points). This demonstrates how the nearest
neighbor search with HyDE is more effective at
identifying relevant documents.

1769



6 Conclusion

In this paper, we introduce HyDE, a new approach
for building effective dense retrievers in a com-
pletely unsupervised manner, without the need for
any relevance labels. We demonstrate that some
aspects of relevance modeling can be delegated to a
more powerful, flexible, and general-purpose LLM
that has not specifically been adapted for search
tasks. As a consequence, the need for relevance
labels is eliminated, replaced by pure generation.
We are excited to see if this can be generalized
further to more sophisticated tasks like multi-hop
retrieval/QA and conversational search.

Despite its dependence on LLMs, we argue that
HyDE is of practical use in real-world applications,
though not necessarily over the entire lifespan of a
search system. At the very beginning of building
a search system, serving queries using HyDE of-
fers performance comparable to a fine-tuned model,
which no other relevance-free model can offer. As
search logs grow and relevance data accumulate, a
supervised dense retriever can be gradually trained
and then rolled out. As the dense retriever becomes
more capable, it can handle queries that are “in-
domain”, while HyDE can remain useful for novel,
unexpected, or emerging queries.

Limitations

Our HyDE method relies on real-time generation
from LLMs and therefore may not be suitable for
tasks that demand high throughput or low latency.
However, over the years we have seen the cost of
hardware decrease and model compression tech-
niques advance, which may help improve the effi-
ciency of LLM inference. Meanwhile, as we de-
scribe in the conclusion, HyDE can be used to
collect relevance judgments in real-time and grad-
ually help ramp up an effective supervised dense
retrieval model.

Besides, as with most contemporary LLMs,
HyDE may prefer certain content in its generation
and therefore bias the final search results. We are
optimistic that this issue will be addressed as HyDE
is implemented using InstructGPT, and OpenAI
spends a large amount of effort to reduce model
bias and toxicity (Ouyang et al., 2022). In addition,
users can further guide the generation process us-
ing more elaborate prompts. In comparison, typical
dense retrieval systems rely on opaque embeddings,
where their biases may be more difficult to properly
uncover and mitigate.
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A Appendix

A.1 Instructions

Web Search

Please write a passage to answer the question
Question: [QUESTION]
Passage:

SciFact

Please write a scientific paper passage to support or
refute the claim
Claim: [CLAIM]
Passage:

Arguana

Please write a counter argument for the passage
Passage: [PASSAGE]
Counter Argument:

TREC-COVID

Please write a scientific paper passage to answer the
question
Question: [QUESTION]
Passage:

FiQA

Please write a financial article passage to answer the
question
Question: [QUESTION]
Passage:

DBPedia-Entity

Please write a passage to answer the question.
Question: [QUESTION]
Passage:

TREC-NEWS

Please write a news passage about the topic.
Topic: [TOPIC]
Passage:

Climate-Fever

Please write a Wikipedia passage to verify the claim.
Claim: [CLAIM]
Passage:

Mr.TyDi

Please write a passage in {Swahili, Korean, Japanese,
Bengali} to answer the question in detail.
Question: [QUESTION]
Passage:

A.2 Models
We used the following models:

• Contriever, which uses BERT-base as the
backbone and has 110M parameters. It is un-
der the CC BY-NC 4.0 License.

• GTR, which uses T5-XL as the backbone and
has 1.24B parameters. It is under the Apache
2.0 License.

• FlanT5, which uses T5-XXL as the back-
bone and has 11B parameters. It is under the
Apache 2.0 License.

• Cohere, which is not open-source and can
only be accessed via API requests.

• GPT3, which is not open-source and can only
be accessed via API requests.

A.3 Datasets
We used the following datasets:

• TREC DL19/DL20, which is under the MIT
License for non-commercial research pur-
poses. The corpus contains 8.84M documents.

• BEIR, which is under the Apache 2.0 License.
It contains 18 separate datasets encompassing
different retrieval tasks.

• SciFact, which is under the CC BY-NC 4.0
License. The corpus contains 5K documents.

• Arguana, DBPedia, which are under the CC
BY-SA 3.0 License. Arguana contains 8.67K
documents. DBPedia contains 4.6M docu-
ments.

• TREC-COVID, which is under the Dataset
License Agreement. The corpus contains
171K documents.

• FiQA, Climate-Fever, which are under un-
known licenses. FiQA contains 57K docu-
ments. Climate-Fever contains 5.4M docu-
ments.

• TREC-NEWS, which is under copyright.
The corpus contains 595K documents.

• Mr.TyDi, which is under the Apache 2.0 Li-
cense. The Swahili corpus contains 136K doc-
uments; the Korean corpus, 1.5M documents;
the Japanese corpus, 7M documents; the Ben-
gali corpus, 300K documents.
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