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Abstract

In the last few years, several studies have been
devoted to dissecting dense text representations
in order to understand their effectiveness and
further improve their quality. Particularly, the
anisotropy of such representations has been ob-
served, which means that the directions of the
word vectors are not evenly distributed across
the space but rather concentrated in a narrow
cone. This has led to several attempts to coun-
teract this phenomenon both on static and con-
textualized text representations. However, de-
spite this effort, there is no established rela-
tionship between anisotropy and performance.
In this paper, we aim to bridge this gap by
investigating the impact of different transfor-
mations on both the isotropy and the perfor-
mance in order to assess the true impact of
anisotropy. To this end, we rely on the clus-
tering task as a means of evaluating the ability
of text representations to produce meaningful
groups. Thereby, we empirically show a lim-
ited impact of anisotropy on the expressiveness
of sentence representations both in terms of
directions and L2 closeness.

1 Introduction

Contextualized pre-trained representations are now
widely used as input to various tasks such as in-
formation retrieval (Lin et al., 2021), anomaly de-
tection (Ait-Saada and Nadif, 2023) and document
clustering (Boutalbi et al., 2022). In parallel, sev-
eral studies have investigated the intrinsic proper-
ties of Transformers (Peters et al., 2018; Ait Saada
et al., 2021; Ethayarajh, 2019; Kovaleva et al.,
2019) in order to demystify these black-box mod-
els and the reasons behind their impressive perfor-
mance levels. Particularly, it has been observed
that language models in general (Gao et al., 2019)
and Transformer word embedding models in partic-
ular (Ethayarajh, 2019; Wang et al., 2020) produce
an anisotropic embedding space. This concretely
means that the directions of trained dense word
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Figure 1: Isotropy versus performance with different
transformations (T0 = no transformation).

representations do not occupy uniformly the em-
bedding space, which is suspected to limit their ex-
pressiveness and thus their expected performance
on downstream tasks. The main question addressed
in this paper is how harmful this anisotropy really
is regarding the quality of text representations.

Several approaches have been proposed to in-
crease the isotropy of dense representations, based
on different strategies. In the context of static word
embeddings like GloVe and word2vec, both Rau-
nak et al. (2019) and Mu and Viswanath (2018)
propose a post-processing method that consists in
removing the first principal components before re-
constructing the word vectors as opposed to the
traditional approach of removing the weakest com-
ponents. This approach improves the quality of
word vectors on several downstream tasks while re-
ducing their anisotropy (Mu and Viswanath, 2018).

As to contextualized representations provided
by Transformer models, several approaches have
been proposed in order to alleviate the anisotropy
problem. For instance, based on the idea that
anisotropic representations tend to have high ex-
pected pairwise cosine similarity, Wang et al.
(2020) propose to apply a cosine similarity regular-
ization term to the embedding matrix. In the same
vein, Gao et al. (2019) propose a method named
“spectrum control” that allows for increasing the
isotropy of Transformer representations and im-
proving the performance of the machine translation
task. To this purpose, they propose regularization
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terms that hamper the singular value decay of the
embedding matrix. However, despite the success of
these optimization tricks in lowering the anisotropy
of Transformer representations, Ding et al. (2022)
have recently shown that they do not bring any
improvement, relying on several tasks like summa-
rization and sentence similarity (STS). They even
observed a certain deterioration of the performance
brought by anisotropy mitigation techniques.

In contrast, Rajaee and Pilehvar (2022, 2021)
show that post-processing methods made for in-
creasing isotropy are also responsible for a perfor-
mance increase in the STS task in both monolingual
and cross-lingual settings. Similarly, the whiten-
ing operation, which consists in using the principal
components normalized by their inertia, has shown
an increase in isotropy as well as enhanced perfor-
mance in STS (Su et al., 2021; Huang et al., 2021)
and document clustering (Ait-Saada et al., 2021).
However, there is no evidence that the decrease
of anisotropy brought by such transformations is
directly responsible for the gain of performance, as
shown in Figure 1, which gives an initial idea of
the question addressed in this paper.

Indeed, despite the great energy devoted to study-
ing and mitigating the anisotropy of dense text rep-
resentations, there is no clear connection between
isotropy and performance, which seems to depend,
inter alia, on the sought task. In order to contribute
to settling this question, we consider using a task
that has never been used for this purpose: document
clustering. The rationale behind this choice is to
evaluate, under different degrees of isotropy, the ca-
pability of text representations to facilitate the clear
separation and identification of meaningful groups
of documents through clustering algorithms.

The main contributions of this paper are:

• We extend the isotropy study of word embed-
dings to document representations.

• We investigate the correlation between differ-
ent isotropy measures.

• We assess the connection between isotropy
and quality of representation.

2 Background

2.1 Isotropy measures

Let X = {xi} be a set of n vector representations,
characterizing n words or documents by d features.
In Mu and Viswanath (2018), the isotropy is as-

sessed using the partition function ψ as follows:

min∥c∥=1 ψ(c)

max∥c∥=1 ψ(c)
; where ψ(c) =

n∑

i=1

e⟨xi,c⟩

This approach is inspired by the theoretical findings
issued by Arora et al. (2016) who prove that, for
isotropic representations X , the partition function
ψ can be approximated by a constant for any unit
vector c, thus leading to a min/max ratio score of 1.
As there is no analytic solution c that maximizes or
minimizes ψ(c), Mu and Viswanath propose to use
the eigenvectors of the covariance matrix as the set
of unit vectors, which leads to:

Ipf (X ) =
minwj ψ(wj)

maxwj ψ(wj)

where pf stands for partition function, wj is the jth
eigenvector of X⊤X (X being the representation
matrix). In our experiments, X contains represen-
tations of either words or sentences/documents. In
addition to this measure, Wang et al. (2020) quan-
tify the anisotropy by the standard deviation of the
partition function normalized by the mean:

A(X ) =

√∑d
j=1(ψ(wj)− ψ̄))2

d ψ̄2

where ψ̄ is the average value of the partition func-
tion. Perfectly isotropic representations lead to
A(X ) = 0 and greater values denote a higher
anisotropy. For our purpose, we derive the isotropy
score as the square root of the precision score
τ = 1/σ, which leads to:

Ipf2(X ) =
1√
σ
=

1

A(X )

σ being the variance normalized by dψ̄2.
On the other hand, the study of anisotropy pro-

vided in (Ethayarajh, 2019) has been applied to
word representations and the empirical results have
been obtained using a high number of words picked
randomly. The authors rely on the assumption that
the expected similarity of two words uniformly ran-
domly sampled from an isotropic embedding space
is zero and that high similarities characterize an
anisotropic embedding space. They hence use the
expected pairwise cosine similarity in order to as-
sess the anisotropy level of word representations.
The isotropy is thus obtained by:

Icos := Ei ̸=i′(1− cos (xi,xi′))

where the score is computed over m random pairs
(xi,xi′) of vector representations.
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Figure 2: Isotropy against clustering performance. The first row is obtained using the last layer of BERT while the
second row uses all the layers averaged together. NMIkm and NMIskm correspond to the NMI score obtained by
k-means and spherical k-means respectively. Icos is the cosine isotropy score computed using Equation 2.1.

2.2 Quality measures
In order to assess the quality of text representations
X of size n, we rely on the document clustering
task, with the aim of estimating the ability of a clus-
tering algorithm to accurately distinguish groups
of documents in a corpus represented by X . As the
accuracy measure is not reliable when the classes
are dramatically unbalanced, this is achieved us-
ing two well-known measures: Normalized Mutual
Information (NMI, Strehl and Ghosh 2002), and
the Adjusted Rand Index (ARI, Hubert and Arabie
1985; Steinley 2004).

Thereby, to compare two partitions A and B
into g clusters, the NMI metric takes the following
form: NMI(A,B) = MI(A,B)√

H(A)H(B)
where MI(A,B)

denotes the mutual information while H(.) denotes
the entropy; NMI(A,B) is hence given by:

∑
k,ℓ

nkℓ
n log nnkℓ

nkn̂ℓ√
(
∑

k nk log
nk
n )(

∑
ℓ n̂ℓ log

n̂ℓ
n )

where nk represents the number of samples con-
tained in the class Ak(1 ≤ k ≤ g), n̂ℓ the number
of samples belonging to the class Bℓ(1 ≤ ℓ ≤ g),
and nkℓ the number of samples that are at the inter-
section between the class Ak and the class Bℓ.

The ARI metric, is a measure of the similarity
between two groups of data. From a mathemati-
cal point of view, the ARI(A,B) is related to the
precision and is given by:

∑
k,ℓ (

nkℓ
2 )−[

∑
k (

nk
2 )

∑
ℓ (

n̂ℓ
2 )]

/
(n2)

1
2 [
∑

k (
nk
2 )+

∑
ℓ (

n̂ℓ
2 )]−[

∑
k (

nk
2 )

∑
ℓ (

n̂ℓ
2 )]

/
(n2)

where the binomial coefficient
(
u
v

)
can be inter-

preted as the number of ways to choose u elements

from a v-elements set.
Intuitively, NMI quantifies how much the es-

timated clustering is informative about the true
clustering, while the ARI measures the degree of
agreement between the estimated clustering and the
reference partition. Both NMI and ARI are equal
to 1 if the resulting clustering partition is identical
to the ground truth.

3 Experiments

In this study, we aim to determine to what extent
the anisotropy actually affects the quality of the
representations and their ability to discriminate
data samples through separable clusters. To this
end, we use three measures to evaluate the isotropy
of the original embedding space before and after
post-processing. Then, we compare the changes in
isotropy with the corresponding clustering perfor-
mance in order to establish a potential relationship
between the two concepts.

Relying on several isotropy measures allows us
to consolidate confidence in our conclusions and,
at the same time, verify if the measures agree with
each other. In the same spirit, using different clus-
tering methods and performance measures ensures
more rigorous assertions.

We make the code and data used publicly avail-
able1.

3.1 Datasets

The datasets used for clustering experiments are
described in Table 1, where the balance is the ratio
between the smallest and largest cluster sizes. We

1https://github.com/miraaitsaada/anisotropy_clustering

1196

https://github.com/miraaitsaada/anisotropy_clustering


used classic3 and classic4 datasets of Cornell Uni-
versity, the BBC news dataset proposed in (Greene
and Cunningham, 2006) and random extracts of
DBPedia (Lehmann et al., 2015) and AG-news
(Zhang et al., 2015) of size 12,000 and 8,000 re-
spectively.

classic3 classic4 DBPedia AG-news BBC

Clusters 3 4 14 4 5
Balance 0.71 0.32 0.92 0.97 0.76
Samples 3 891 7 095 12 000 8 000 2 225

Table 1: Datasets’ description.

In addition to the datasets used for clustering,
we also make use of an external dataset in order
to compute an independent score of isotropy. We
make use of the dataset used by Rajaee and Pile-
hvar (2022) which contains sentences extracted
from Wikipedia. We use this dataset to evaluate
the isotropy measures like Icos, computed between
m = 5000 pairs of words and sentences. The
10 000 resulting representations are also used to
compute Ipf and Ipf2 .

3.2 Post-processing
In this study, we focus on post-processing opera-
tions based on dimension reduction, showing their
effectiveness on text clustering and assessing their
impact on isotropy. The objective here is to com-
pute a reduced version of X(n×d) called Y(n×d′)
that comprises the most useful information present
in X while using only d′ dimensions.

As an alternative to removing the dominant prin-
cipal components (PCs) (Raunak et al., 2019; Mu
and Viswanath, 2018), the whitening operation al-
lows to normalize the PCs to unit variance, thus
reducing the impact of the first components and
producing vectors of better quality. It consists in
building a reduced representation Y whereby each
value is computed as:

yij = xiwj/
√
δj , ∀i = 1, . . . , n; j = 1, . . . , d′

where wj is the jth eigen vector of X⊤X and δj
its jth eigen value. We also compare the classical
and whitened version of PCA with a nonlinear di-
mension technique called UMAP (McInnes et al.,
2018), a faster and more robust manifold technique
than t-SNE (van der Maaten and Hinton, 2008)
that can be used as a post-processing tool with any
d′ (while d′ ≤ 3 for t-SNE). UMAP, like t-SNE,
is a graph-based method that aims at producing a

reduced space that best preserves the (local) con-
nections of a KNN graph. In order to respect the
unsupervised context of text clustering, we avoid
all kinds of hyperparameter tuning. We thus set d′

to 10 for all of the post-processing methods.
Besides, two strategies are used to leverage

Transformer models. The first consists simply in
taking the last layer as usually performed in the lit-
erature (Reimers and Gurevych, 2019). The second
strategy used all of the layers by averaging them
together (Ait-Saada et al., 2021).

3.3 Euclidean vs. cosine
As a recall, anisotropic vector directions occupy a
narrow cone in the geometrical space. Given this
definition, we can expect directional techniques
based on the angles between vectors to be partic-
ularly sensitive to the alleged lack of expressive-
ness induced by anisotropy. With this in mind,
we use, in addition to k-means (MacQueen et al.,
1967), Spherical k-means (Dhillon and Modha,
2001) which is made for directional data and based
on the cosine distance instead of the L2 metric. For
both algorithms, we use 10 different initializations
and keep the partition that yields the best within-
cluster inertia. For more details about the datasets
used, please refer to Appendix 3.1.

3.4 Correlation estimation
In order to assess the linear correlation between
two continuous variables, we use the Pearson cor-
relation coefficient ρ (Pearson, 1896) and test its
significance. The ρ coefficient between two ran-
dom variables X and Y indicates how much does
one of the variables increase with the growth of the
other. It is computed as:

ρX,Y =
cov(X,Y )√

σXσY

where X et Y are two random variables of vari-
ance σX et σY respectively and cov(X,Y ) is the
covariance between X and Y .

In order to test the significance of ρ we rely
on the p-value which is a probability that denotes
how likely it is that the observed variables have
occurred under the null hypothesis which is that the
two variables are perfectly correlated (ρX,Y = 0).
Thus, high ρX,Y values indicate a stronger linear
relationship and the closer the p-value gets to zero,
the more we consider significant the correlation
between X and Y .
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NMI ARI Dataset External (word) External (sentence)
km skm km skm cos pf pf2 cos pf pf2 cos pf pf2

N
M

I km 1.0 0.83 0.94 0.74 -0.05 0.02 -0.05 -0.14 0.02 0.02 -0.07 0.01 0.01
skm 0.83 1.0 0.74 0.92 -0.09 -0.05 -0.15 -0.05 -0.05 -0.05 -0.08 -0.06 -0.05

A
R

I km 0.94 0.74 1.0 0.78 -0.07 0.01 -0.07 -0.12 0.01 0.01 -0.07 -0.0 0.01
skm 0.74 0.92 0.78 1.0 -0.01 0.04 -0.07 0.07 0.04 0.04 0.02 0.04 0.04

D
at

as
et cos -0.05 -0.09 -0.07 -0.01 1.0 0.96 0.9 0.84 0.95 0.95 0.98 0.96 0.95

pf 0.02 -0.05 0.01 0.04 0.96 1.0 0.95 0.76 1.0 1.0 0.94 1.0 1.0
pf2 -0.05 -0.15 -0.07 -0.07 0.9 0.95 1.0 0.73 0.95 0.95 0.89 0.95 0.95

E
xt

-w

cos -0.14 -0.05 -0.12 0.07 0.84 0.76 0.73 1.0 0.76 0.76 0.89 0.78 0.75
pf 0.02 -0.05 0.01 0.04 0.95 1.0 0.95 0.76 1.0 1.0 0.94 1.0 1.0
pf2 0.02 -0.05 0.01 0.04 0.95 1.0 0.95 0.76 1.0 1.0 0.94 1.0 1.0

E
xt

-s

cos -0.07 -0.08 -0.07 0.02 0.98 0.94 0.89 0.89 0.94 0.94 1.0 0.96 0.93
pf 0.01 -0.06 -0.0 0.04 0.96 1.0 0.95 0.78 1.0 1.0 0.96 1.0 1.0
pf2 0.01 -0.05 0.01 0.04 0.95 1.0 0.95 0.75 1.0 1.0 0.93 1.0 1.0

Table 2: Pearson correlation coefficient values2. “Dataset” means that the isotropy is evaluated within the same
dataset on which NMI and ARI are computed. “External” means that the isotropy is evaluated using an external
dataset either at the “word” or “sentence” level. Values go from the smallest (red) to the largest (green).

4 Discussion

Figure 2 confronts one quality measure (NMI) and
one isotropy measure (Icos) using different post-
processing techniques. We first observe that PCAw

produces, by far, the most isotropic representations
while increasing the performance of the raw vectors.
Indeed, an appealing explanation of the success of
the whitening operation is that it considerably alle-
viates the anisotropy of the embedding space (Su
et al., 2021). Applying that reasoning, PCA and
UMAP should deteriorate the performance since
they both exacerbate the anisotropy (in all cases
for PCA and in most cases for UMAP). Nonethe-
less, the performance of PCA is comparable to
that of the raw embeddings and UMAP achieves
even better performance than PCAw even though it
significantly reduces the isotropy. Overall, averag-
ing the whole set of layer representations achieves
better results, even though it clearly decreases the
isotropy, compared to using the last layer, as tra-
ditionally performed. Also, it is worth noting that
even when the directions of the vectors are used
(skm), the decrease of isotropy has a negligible
impact on the performance. All these observations
suggest that, although the anisotropy reduces the
spectrum of directions taken by sentence vectors,
it does not necessarily alter their expressiveness.

In order to confirm this supposition, we directly
compare isotropy and quality measures in a wide
range of situations. To this end, we compute the
correlation (Table 2) between several isotropy mea-
sures and performance scores on 2 models (BERT
(Devlin et al., 2019) and RoBERTa (Liu et al.,
2019)) with 2 different strategies (“all layers” and
“last”), using 5 datasets and 4 transformations, lead-

2Corresponding p-values are given in Table 3 in the Appendix

ing to a total of 80 occurrences of each measure.
We first observe a high correlation (associated with
a near-zero p-value in Table 3) between measures
within the same family (e.g. Icos and Ipf ). This in-
dicates that the selected measures agree with each
other which denotes a certain coherence. However,
when looking at the correlation between the two
families of measures, it is clear that there is no sig-
nificant relationship between isotropy and quality
measures, since all the values of the correlation co-
efficient are close to zero, which is corroborated by
relatively high p-values, denoting a non-significant
correlation. Note that the same observations (not
shown in this paper) can be made using the Spear-
man correlations of ranks (Spearman, 1987).

5 Conclusion

It has been known to happen that transformations
that tend to decrease the anisotropy of text repre-
sentations also improve the performance of down-
stream tasks. In stark contrast, we observe in the
present study that transformations that exacerbate
the anisotropy phenomenon may also improve the
results, which calls into question the importance
of isotropy in text representation. To draw this
important conclusion, we relied on the clustering
task and several empirical measures to assess the
relationship between isotropy and quality of rep-
resentations, using several datasets. Most impor-
tantly, we show that even a directional approach for
clustering, which should be primarily affected by
anisotropy, does not undergo any performance loss
resulting from low-isotropy representations. In ad-
dition, we show the advantage of using UMAP as a
post-processing step, which provides good-quality
representations using only a handful of dimensions,
despite a high resulting anisotropy.
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6 Limitations

In this study, we focused on the clustering task in
order to assess the real impact of anisotropy on the
quality of representations. The conclusion is clear
regarding Euclidean and directional clustering but
investigating other tasks like information retrieval
and anomaly detection would further strengthen the
present findings. Also, the set of post-processing
methods is not limited to the ones used in this study,
and it would be interesting to conduct a more com-
prehensive study, including more transformation
functions. Finally, an important future direction
is to assess the impact of anisotropy on other lan-
guages, especially on embedding models trained
on a restrained corpus, which can be the case of
low-resource languages.
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A Appendix

NMI ARI Dataset External (word) External (sentence)

km skm km skm cos pf pf2 cos pf pf2 cos pf pf2

N
M

I km 0.0 ≈ 0.0 ≈ 0.0 ≈ 0.0 0.647 0.858 0.644 0.225 0.88 0.86 0.54 0.964 0.896
skm ≈ 0.0 0.0 ≈ 0.0 ≈ 0.0 0.453 0.662 0.195 0.642 0.64 0.658 0.476 0.616 0.635

A
R

I km ≈ 0.0 ≈ 0.0 0.0 ≈ 0.0 0.562 0.921 0.542 0.297 0.946 0.925 0.542 0.98 0.96
skm ≈ 0.0 ≈ 0.0 ≈ 0.0 0.0 0.934 0.71 0.517 0.56 0.742 0.722 0.877 0.755 0.741

D
at

as
et cos 0.647 0.453 0.562 0.934 0.0 ≈ 0.0 ≈ 0.0 ≈ 0.0 ≈ 0.0 ≈ 0.0 ≈ 0.0 ≈ 0.0 ≈ 0.0

pf 0.858 0.662 0.921 0.71 ≈ 0.0 0.0 ≈ 0.0 ≈ 0.0 ≈ 0.0 ≈ 0.0 ≈ 0.0 ≈ 0.0 ≈ 0.0
pf2 0.644 0.195 0.542 0.517 ≈ 0.0 ≈ 0.0 0.0 ≈ 0.0 ≈ 0.0 ≈ 0.0 ≈ 0.0 ≈ 0.0 ≈ 0.0

E
xt

-w

cos 0.225 0.642 0.297 0.56 ≈ 0.0 ≈ 0.0 ≈ 0.0 0.0 ≈ 0.0 ≈ 0.0 ≈ 0.0 ≈ 0.0 ≈ 0.0
pf 0.88 0.64 0.946 0.742 ≈ 0.0 ≈ 0.0 ≈ 0.0 ≈ 0.0 0.0 ≈ 0.0 ≈ 0.0 ≈ 0.0 ≈ 0.0
pf2 0.86 0.658 0.925 0.722 ≈ 0.0 ≈ 0.0 ≈ 0.0 ≈ 0.0 ≈ 0.0 0.0 ≈ 0.0 ≈ 0.0 ≈ 0.0

E
xt

-s

cos 0.54 0.476 0.542 0.877 ≈ 0.0 ≈ 0.0 ≈ 0.0 ≈ 0.0 ≈ 0.0 ≈ 0.0 0.0 ≈ 0.0 ≈ 0.0
pf 0.964 0.616 0.98 0.755 ≈ 0.0 ≈ 0.0 ≈ 0.0 ≈ 0.0 ≈ 0.0 ≈ 0.0 ≈ 0.0 0.0 ≈ 0.0
pf2 0.896 0.635 0.96 0.741 ≈ 0.0 ≈ 0.0 ≈ 0.0 ≈ 0.0 ≈ 0.0 ≈ 0.0 ≈ 0.0 ≈ 0.0 0.0

Table 3: p-values of the pearson test of correlation between several isotropy and performance measures. The
corresponding correlation coefficients are given in Table 2. Values under 10−3 are considered near-zero.
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