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Abstract

We compare various forms of prompts to rep-
resent event types and develop a unified frame-
work to incorporate the event type specific
prompts for supervised, few-shot, and zero-
shot event detection. The experimental results
demonstrate that a well-defined and compre-
hensive event type prompt can significantly
improve event detection performance, espe-
cially when the annotated data is scarce (few-
shot event detection) or not available (zero-shot
event detection). By leveraging the semantics
of event types, our unified framework shows up
to 22.2% F-score gain over the previous state-
of-the-art baselines1.

1 Introduction

Event detection (ED) (Grishman, 1997; Chinchor
and Marsh, 1998; Ahn, 2006) is the task of identi-
fying and typing event mentions from natural lan-
guage text. Supervised approaches, especially deep
neural networks (Chen et al., 2020; Du and Cardie,
2020; Lin et al., 2020; Liu et al., 2020; Li et al.,
2020; Lyu et al., 2021), have shown remarkable
performance under a critical prerequisite of a large
amount of manual annotations. However, they can-
not be effectively generalized to new languages,
domains or types, especially when the annotations
are not enough (Huang et al., 2016; Huang and Ji,
2020; Lai et al., 2020b; Shen et al., 2021) or there
is no annotation available (Lyu et al., 2021; Zhang
et al., 2021b; Pasupat and Liang, 2014).

Recent studies have shown that both the accu-
racy and generalizability of ED can be improved
via leveraging the semantics of event types based
on various forms of prompts, such as event type
specific queries (Lyu et al., 2021; Du and Cardie,
2020; Liu et al., 2020), definitions (Chen et al.,
2020), structures (Lin et al., 2020; Wang et al.,

1The source code, model checkpoints and data are publicly
available at https://github.com/VT-NLP/Event_
APEX.

2019), or a few prototype event triggers (Wang and
Cohen, 2009; Dalvi et al., 2012; Pasupat and Liang,
2014; Bronstein et al., 2015; Lai and Nguyen, 2019;
Zhang et al., 2021b; Cong et al., 2021). These stud-
ies further encourage us to take another step for-
ward and think about the following three questions:
(1) does the choice of prompt matter when the train-
ing data is abundant or scarce? (2) what’s the best
form of ED prompt? (3) how to best leverage the
prompt to detect event mentions?

To answer the above research questions, we con-
duct extensive experiments with various forms of
prompts for each event type, including (a) event
type name, (b) prototype seed triggers, (c) defini-
tion, (d) event type structure based on both event
type name and its predefined argument roles, (e)
free parameter based continuous soft prompt, and
(f) a more comprehensive event type description
(named APEX prompt) that covers all the informa-
tion of prompts (a)-(d). We observe that (1) by
considering the semantics of event types with most
forms of prompts, especially seed triggers and the
comprehensive event type descriptions, the perfor-
mance of ED under all settings can be significantly
improved; (2) Among all forms of event representa-
tions, the comprehensive description based prompts
show to be the most effective, especially for few-
shot and zero-shot ED; (3) Different forms of event
type representations provide complementary im-
provements, indicating that they capture distinct
aspects and knowledge of the event types.

The contributions of this work are as follows:
• We investigate various prompts to represent

event types for both supervised and weakly su-
pervised ED, and prove that a well-defined and
comprehensive event type prompt can dramatically
improve the performance of ED and the transfer-
ability from old types to new types.

• A unified framework is developed to leverage
the semantics of event types with prompts for super-
vised, few-shot, and zero-shot ED, and demonstrate

1286

https://github.com/VT-NLP/Event_APEX
https://github.com/VT-NLP/Event_APEX


state-of-the-art performance with up to 22.2% F-
score improvement over the strong baseline meth-
ods.

2 Related Work

Supervised ED: Most of the existing Event
Detection studies follow a supervised learning
paradigm (Ji and Grishman, 2008; Liao and Gr-
ishman, 2010; McClosky et al., 2011; Li et al.,
2013; Chen et al., 2015; Cao et al., 2015; Feng
et al., 2016; Yang and Mitchell, 2016; Nguyen et al.,
2016; Zhang et al., 2017; Lin et al., 2020; Wang
et al., 2021b). However, they cannot be directly ap-
plied to detect new types of events. Recently stud-
ies have shown that, by leveraging the semantics of
event types based on type-specific questions (Du
and Cardie, 2020; Liu et al., 2020; Li et al., 2020;
Lyu et al., 2021) or seed event triggers (Bronstein
et al., 2015; Lai and Nguyen, 2019; Wang et al.,
2021a), the event detection performance can be im-
proved. However, it is still unknown whether they
are the best choices for representing the semantics
of event types.

Few-shot ED: Two primary learning strate-
gies in few-shot classification tasks are Meta-
Learning (Kang et al., 2019; Li et al., 2021; Xiao
and Marlet, 2020; Yan et al., 2019; Chowdhury
et al., 2021) and Metric Learning (Sun et al., 2021;
Wang et al., 2020b; Zhang et al., 2021a; Agarwal
et al., 2021). Several studies have exploited metric
learning to align the semantics of candidate events
with a few examples of the novel event types for
few-shot event detection (Lai et al., 2020a; Deng
et al., 2020; Lai et al., 2020b; Cong et al., 2021;
Chen et al., 2021; Shen et al., 2021).

Zero-shot ED: Huang et al. (2018) first ex-
ploited zero-shot event extraction by leveraging
Abstract Meaning Representation (Banarescu et al.,
2013) to represent event mentions and types into a
shared semantic space. Recent studies (Zhang et al.,
2021b; Lyu et al., 2021) further demonstrate that
by leveraging a large external corpus with abundant
anchor triggers, zero-shot event detection can also
be achieved with decent performance without using
any training data.

Prompt Learning Prompt learning aims to learn
a task-specific prompt while keeping most of the
model’s parameters frozen (Li and Liang, 2021;
Hambardzumyan et al., 2021; Brown et al., 2020).

It has shown competitive performance in many ap-
plications of natural language processing (Raffel
et al., 2020; Brown et al., 2020; Shin et al., 2020;
Jiang et al., 2020; Lester et al., 2021; Schick and
Schütze, 2021b). Previous work either used a man-
ual (Petroni et al., 2019; Brown et al., 2020; Schick
and Schütze, 2021a) or automated approach (Jiang
et al., 2020; Yuan et al., 2021; Li and Liang, 2021)
to create prompts.

3 Problem Formulation

Here, we first define each setting of the event de-
tection task and then describe the various forms of
event type prompts.

3.1 Settings of ED

For supervised ED (SED), we follow the conven-
tional supervised event detection setting where the
training, validation, and evaluation data sets cover
the same set of event types. The goal is to learn a
model f to identify and classify event mentions for
the target event types.

For few-shot ED (FSED), there are two sepa-
rate training data sets for few-shot event detection:
(1) A large-scale data set Dbase = {(xi,yi)}Mi=1

that covers the old event types (named base types)
where M denotes the number of base event types;
(2) a smaller data set Dnovel = {(xj ,yj)}N×K

j=1

that covers N novel event types, with K examples
each. Note that the base and novel event types are
disjoint except for the Other class. The model f
will be first optimized on Dbase, and then further
fine-tuned on Dnovel. The goal is to evaluate the
generalizability and transferability of the model
from base event types to new event types with few
annotations.

For zero-shot ED (ZSED), the training data sets
are the only difference between zero-shot and few-
shot event detection. In zero-shot event detection,
there is only a large-scale base training data set
Dbase = {(xi,yi)}Mi=1 for the base event types.
The model f will be only optimized on base event
types and evaluated on the novel types.

3.2 Event Type Prompts

We compare the following five forms of prompts
to represent the event types: (a) Event Type Name
is the event class name, usually consisting of one
to three tokens. (b) Definition can be a short sen-
tence that formally describes the meaning of the
event types. (c) Prototype Seed Triggers a list of
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Event Type Prompt
Type Name: Conflict Attack
Seed triggers: attack [SEP] 
invaded, airstrikes, overthrew
Event structure: attack [SEP]
attacker, victim, target, place

Definition:  violent or physical  
act causing harm  or damage

APEX prompt: Attack, invaded
airstrikes overthrew ambushed, an
Attacker physically attacks a Target

with Instrument at a Place

Soft prompt

Figure 1: Overview of the unified framework for event detection based on event type specific prompts.

tokens or phrases that are frequently identified as
event triggers. (d) Event Type Structure consists
of event key argument roles, indicating the core
participants of the target event type. (e) Prompts
can also be Continuous Soft Prompt, that is, a free
vector of parameters to represent each event type.
(f) We further define a more comprehensive descrip-
tion APEX Prompt that is manually written and
covers all previous prompts except soft prompts.
Examples of all event type prompts are shown in
Figure 1 and Appendix A. Detailed prompt token
selection is in Appendix B.

4 A Unified Framework for ED

We adapt (Wang et al., 2021a) and design a unified
event detection framework (as shown in Figure 1)
which leverages event type specific prompts to de-
tect events under supervised, few-shot, and zero-
shot settings. Formally, given an input sentence
W = {w1, w2, . . . , wn}, we take each event type
prompt T t = {τ t1, τ t2, . . . , τ tm} as a query of M
tokens to extract triggers for event type t. Specif-
ically, we first concatenate them into a sequence
[CLS] τ t1 ... τ tm [SEP] w1 ... wn [SEP]. We use
a pre-trained BERT encoder (Devlin et al., 2019)
to get contextual representations for the input sen-
tence W = {w0,w2, ...,wn} as well as the event
type prompt T = {τ t

0, τ
t
1, ..., τ

t
m}2.

Given a prompt of each event type, we aim to
extract corresponding event triggers from the in-
put sentence. To achieve this goal, we need to
capture the semantic correlation of each input to-
ken to the event type Thus we learn a weight
distribution over the sequence of contextual rep-
resentations of the event type prompt, to obtain
event type t aware contextual representation At

i =∑|T t|
j=1 αij · τ t

j , where αij = cos(wi, τ
t
j), where

2In our experiments, the representation of each wi or τ i

is based on the contextual embedding of the first sub-token.

τ j is the contextual representation of the j-th
prompt token. cos(·) is the cosine similarity func-
tion between two vectors.

With that, the event type aware contextual repre-
sentation At

i will be concatenated with the original
contextual representation wi from the encoder, and
classified into a binary label, indicating whether
it is a candidate trigger of event type t or not:
ỹt
i = U o([wi; At

i;P i]), where [; ] denotes con-
catenation operation, U o is a learnable parameter
matrix for event trigger detection, and P i is the
one-hot part-of-speech (POS) encoding of word
wi. For continuous soft prompt based event de-
tection, we follow Li and Liang (2021) where a
prefix index q is prepended to the input sequence
W ′ = [q; W ]. The prefix embedding is learned by
q = MLPθ(Qθ[q]), where Qθ ∈ R|Q|×k denotes
the embedding lookup table for the vocabulary of
prefix indices. Both MLPθ and Qθ are trainable pa-
rameters. Detailed learning strategy is in Appendix
C.

5 Experiment Setup

We perform experiments on three public bench-
mark datasets, including ACE05-E+ (Auto-
matic Content Extraction), ERE (Entity Relation
Event) (Song et al., 2015),and MAVEN (Wang
et al., 2020a). On each dataset, we conduct experi-
ments for SED, FSED, and ZSED. For SED, we use
the same data split as the previous studies (Li et al.,
2013; Wadden et al., 2019; Lin et al., 2020; Du
and Cardie, 2020; Lin et al., 2020; Nguyen et al.,
2021; Wang et al., 2020a) on all the three bench-
mark datasets. For FSED and ZSED on MAVEN,
we follow the previous study (Chen et al., 2021)
and choose 120 event types with the most frequent
mentions as the base event types and the rest 45
event types as novel ones. For FSED and ZSED on
ACE and ERE, previous studies (Lai et al., 2020b,a;
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Method SED FSED ZSED

Previous SOTA
73.3 35.2∗ 49.1∗

(Nguyen
et al., 2021)

(Lai et al.,
2020b)

(Zhang et al.,
2021b)

(a) Event type name 72.2 52.7 49.8
(b) Definition 73.1 46.7 45.5
(c) Seed triggers 73.7 53.8 49.6
(d) Event structure 72.8 50.4 48.0
(e) Soft prompt 68.1 48.2 -

Majority voting of (a-e) 73.9 52.1 48.7

(f) APEX Prompt 74.9 57.4 51.2

Table 1: Results of event detection (ED) on ACE05
(F1-score, %) ∗ indicates evaluation on our data set split
based on the authors’ public implementations.

Method SED FSED ZSED

Previous SOTA
59.4 33.0∗ 41.2∗

(Lu et al.,
2021)

(Lai et al.,
2020b)

(Zhang et al.,
2021b)

(a) Event type Name 58.2 44.8 40.5
(b) Definition 57.9 44.2 40.4
(c) Seed triggers 60.4 50.4 46.2
(d) Event structure 59.1 48.5 48.7
(e) Soft prompt 55.6 41.7 -

Majority voting of (a-e) 60.2 47.9 45.6

(f) APEX Prompt 63.4 52.6 48.9

Table 2: Results of event detection (ED) on ERE (F1-
score, %).

Chen et al., 2021) follow different data splits and
settings, making it hard for a fair comparison. Con-
sidering the research goals of FSED and ZSED, we
define the following conditions to split the ACE
and ERE datasets: (i) The base event types and
novel event types should be disjoint except Other.
(ii) Each base or novel event type should contain
at least 15 instances. (iii) The training set should
contain sufficient annotated event mentions.

To meet the above conditions, for ACE, we de-
fine the event types of 5 main event categories:
Business, Contact, Conflict, Justice and Movement
as the base event types, and types of the remaining
3 main categories: Life, Personnel and Transaction
as the novel event types. In total, there are 18 qual-
ified base types and 10 qualified novel types (the
others do not satisfy the second condition). For
ERE, we use the exact same 10 novel event types
as ACE, and the rest 25 types as base event types.
Detailed data and hyperparameter descriptions are
in Appendix D and Appendix E.

6 Results and Discussion

Overall Results The experimental results for
SED, FSED, and ZSED on ACE05, ERE, and

Method SED FSED ZSED

Previous SOTA
68.5 57.0 40.2*

(Wang et al.,
2021b)

(Chen et al.,
2021)

(Zhang et al.,
2021b)

(a) Event type name 68.8 63.4 58.8
(b) Definition 67.1 56.9 52.9
(c) Seed triggers 68.7 65.1 59.1
(e) Soft prompt 64.5 38.6 -

Majority voting of (a-e) 68.4 63.4 58.1

(f) APEX Prompt 68.8 68.4 59.9

Table 3: Results of event detection (ED) on MAVEN
(F1-score, %). Event type structure prompts are not
applicable to MAVEN as it does not contain any prede-
fined argument roles.

MAVEN are shown in Table 1-3, from which we
see that (1) the APEX prompt achieves the best per-
formance among all the forms of prompts under all
the settings of the three benchmark datasets. Com-
pared with the previous state of the art, the APEX
prompt shows up to 4% F-score gain for SED (on
ERE), 22.2% F-score gain for FSED (on ACE),
and 19.7% F-score gain for ZSED (on MAVEN);
(2) All the forms of prompts provide significant
improvement for FSED and ZSED, demonstrating
the benefit of leveraging the semantics of event
types via various forms of prompts. (3) Except
APEX, seed triggers provide more improvements
than other forms of event type prompts under most
settings, suggesting its potential to represent the se-
mantics of event types accurately. (4) Continuous
soft prompt does not provide comparable perfor-
mance as other forms of event type representations,
which proves the necessity of leveraging event type
specific prior knowledge to the representations; (5)
The majority voting does not show improvement
over individual prompts since each prompt captures
a particular aspect of the event type semantics.

Supervised Event Detection By carefully inves-
tigating the event mentions that are correctly de-
tected by the APEX prompt while missed by other
prompts, we find that the APEX prompt is more
effective in detecting two types of event mentions:
homonyms (multiple-meaning words) and intricate
words. General homonyms are usually hard to be
detected as event mentions as they usually have
dozens of meanings in different contexts. For ex-
ample, consider the following two examples: (i)
Airlines are getting [Transport:Movement] flyers
to destinations on time more often . (ii) If the board
cannot vote to give [Transaction:Transfer-Money’]
themselves present money. Here, “get” and “give”
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Figure 2: F-score distribution of all novel types based on various event type prompts under the few-shot event
detection setting on ACE (Best view in color)

are not detected based on the event type name or
seed triggers but are correctly identified by the def-
inition and APEX prompts. The definition and
APEX prompts make 10% and 7% fewer false pre-
dictions than seed triggers on general homonyms.
For intricate words, their semantics usually can-
not be captured with an individual prompt. In the
following two examples: (i) It is reasonable, how-
ever, to reimburse board members for legitimate
expenses (ii) · · · ever having discussed being com-
pensated by the board in the future · · ·, “reimburse”
and “compensated” indicate sophisticated meaning
of Transaction:Transfer-Money, which may not be
captured by prompts, such as seed triggers. With
the event definition and the argument roles in the
APEX prompt, the highly correlated contexts, such
as “board members” and “legitimate expenses”,
can help the model correctly detect reimburse as
an event mention of Transaction:Transfer-Money.

Few-shot Event Detection Figure 2 shows the
F-score distribution of all novel types based on vari-
ous forms of event type prompts, from which we ob-
serve that: (1) The event type name, seed triggers,
and APEX prompt generally perform better than
definition and structure, as they carry more straight-
forward semantics of event types. (2) Event type
name based prompts show lower performance on
Personnel:End-Position, Personnel:Start-Position
and Transaction:Transfer-Money than other event
types, as the semantics of these event type names
are less indicative than other event types. (3) Seed
trigger based prompts perform worse than event
type name and APEX prompts on two event types,
Life:injure and Life:die, probably because the pro-
totype seed triggers are not properly selected. (4)
The structure based prompt outperforms the other

prompts on Life:Injure as Life:Injure events re-
quire the existence of a person or victim. (5)
APEX prompt shows consistently (almost) best
performance on all the event types because it com-
bines all the information of other prompts. (6) We
also observe that the performance of Life:Be-Born,
Life:Die, Life:Marry, and Personnel:Elect based
on various forms of prompts are consistently better
than the other types as the intrinsic semantics of
those types the corresponding event triggers are
concentrated.

Zero-shot Event Detection The proposed
prompt-based method is more affordable to be
generalized compared with the prior state-of-
the-art zero-shot approach (Zhang et al., 2021b).
The average length of created APEX prompts
is less than 20 tokens. Thus manually creating
them will not take much human effort. On the
contrary, Zhang et al. (2021b) requires an extensive
collection of anchor sentences to perform zero-shot
event detection, e.g., 4,556,237 anchor sentences
for ACE and ERE. This process is time-consuming
and expensive.

7 Conclusion

We investigate a variety of prompts to represent
the semantics of event types, and leverage them
with a unified framework for supervised, few-shot
and zero-shot event detection. Experimental results
demonstrate that, a well-defined and comprehen-
sive description of event types can significantly
improve the performance of event detection, espe-
cially when the annotations are limited (few-shot
event detection) or even not available (zero-shot
event detection), with up to 22.2% F-score gain
over the prior state of the art.

1290



Limitations

We have demonstrated that an accurate descrip-
tion can perform better for both supervised and
weakly supervised event detection. However, the
event types from most existing ontologies are not
properly defined. For example, in ACE annota-
tion guideline (Linguistic Data Consortium, 2005),
transfer-money is defined as “giving, receiving, bor-
rowing, or lending money when it is not in the con-
text of purchasing something”. However, it is hard
for the model to interpret it accurately, especially
the constraints “not in the context of purchasing
something”. In addition, many event types from
MAVEN, e.g., Achieve, Award, and Incident, are
not associated with any definitions. A potential fu-
ture research direction is to leverage mining-based
approaches or state-of-the-art generators to auto-
matically generate a comprehensive event type de-
scription based on various sources, such as annota-
tion guidelines, example annotations, and external
knowledge bases.
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A APEX prompt examples for ACE

Table 4 and Table 5 show APEX prompt examples
for ACE events.

B Prompt Token Selection

In our experiments, the event type names and event
type structures are automatically extracted from
the target event ontology, such as ACE (Linguistic
Data Consortium, 2005), ERE (Song et al., 2015)
and MAVEN (Wang et al., 2020a). The prototype
seed triggers are automatically selected from the
annotated data for supervised and few-shot event
extraction. For zero-shot event extraction, we man-
ually select R words from the NLTK synonyms
of each event type as its prototype seed triggers.
The definitions and APEX prompts are based on
the official annotation guides for each target event
ontology (Linguistic Data Consortium, 2005; Song
et al., 2015; Wang et al., 2020a) and the available
definitions in FrameNet (Baker et al., 1998) with
manual editing.

C Learning Strategy

The learning strategy varies for supervised, few-
shot, and zero-shot learning. For supervised learn-
ing, we optimize the following objective for event
trigger detection L = − 1

|T ||N |
∑

t∈T
∑|N |

i=1 y
t
i ·

log ỹt
i, where T is the set of target event types

and N is the set of tokens from the training
dataset. yt

i denotes the ground truth label vec-
tor. For few-shot event detection, we optimize
the model on both base training data set and
the smaller training data set for novel event
types: L = − 1

|T B ||NB |
∑

t∈T B

∑|NB |
i=1 yt

i · log ỹt
i −

β 1
|T N ||NN |

∑
t∈T N

∑|NN |
i=1 yt

i · log ỹt
i, where T B and

NB denote the set of base event types and tokens
from the base training data set, respectively. T N is
the set of novel event types. NN is the set of tokens
from the training data set for novel event types. β
is a hyper-parameter to balance the two objectives.
For zero-shot event detection, as we only have the
base training data set, we minimize the follow-
ing objective: L = − 1

|T B ||NB |
∑

t∈T B

∑|NB |
i=1 yt

i ·
log ỹt

i.

D Dataset

After defining the base and novel event types, we
create the training, validation, and evaluation split
for all three datasets. We use the sentences with

only base event type mentions as the base train-
ing data set for few-shot event detection, and ran-
domly select 10 sentences with novel event type
mentions as the additional smaller training data
set. We use the sentences with both base and novel
event type mentions as the development set and
use the remaining sentences with only novel event
type mentions as the evaluation dataset. We use the
same development and evaluation set as few-shot
event detection for zero-shot event detection and re-
move the instances with novel event mentions from
the training set. We randomly split the sentences
without any event annotations proportionally to the
number of sentences with event mentions in each
set for both zero-shot and few-shot event detection.
Table 6 shows the detailed data statistics for all
the three datasets under the few-shot and zero-shot
event extraction settings.

E Hyperparameters and Evaluation

For a fair comparison with the previous base-
line approaches, we use the same pre-trained
bert-large-uncased model for fine-tuning
and optimizing our model with BertAdam. For
supervised event detection, we optimize the pa-
rameters with grid search: training epoch is 3,
learning rate ∈ [3e-6, 1e-4], training batch size ∈
{8, 12, 16, 24, 32}, dropout rate ∈ {0.4, 0.5, 0.6}.
The running time is up to 3 hours on one Quadro
RTX 8000. For evaluation, we use the same crite-
ria as previous studies (Li et al., 2013; Chen et al.,
2015; Nguyen et al., 2016; Lin et al., 2020): an
event mention is correct if its span and event type
match a reference event mention.
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Event Rep Type Comprehensive Prompt

Business:Declare-
Bankruptcy

Declare Bankruptcy [SEP] bankruptcy bankruptcies bankrupting [SEP] Organi-
zation request legal protection from debt collection at a Place

Business:End-Org End Organization [SEP] dissolving disbanded [SEP] an Organization goes out
of business at a Place

Business:Merge-Org Merge Organization [SEP] merging merger [SEP] two or more Organizations
come together to form a new organization at a Place

Business:Start-Org Start Organization [SEP] founded [SEP] an Agent create a new Organization at
a Place

Conflict:Attack Attack [SEP] invaded airstrikes overthrew ambushed [SEP] An Attacker physi-
cally attacks a Target with Instrument at a Place

Conflict:Demonstrate Demonstrate [SEP] demonstrations protest strikes riots [SEP] Entities come
together in a Place to protest or demand official action

Contact:Meet Meet [SEP] reunited retreats [SEP] two or more Entities come together at same
Place and interact in person

Contact:Phone-Write Phone Write [SEP] emailed letter [SEP] phone or written communication be-
tween two or more Entities

Justice:Acquit Acquit [SEP] acquitted [SEP] a trial of Defendant ends but Adjudicator fails to
produce a conviction at a Place

Justice:Appeal Appeal [SEP] appeal [SEP] the decision for Defendant of a court is taken to a
higher court for Adjudicator review with Prosecutor

Justice:Arrest-Jail Arrest Jail [SEP] arrested locked [SEP] the Agent takes custody of a Person at a
Place

Justice:Charge-Indict Charge Indict [SEP] indictment [SEP] a Defendant is accused of a crime by a
Prosecutor for Adjudicator

Justice:Convict Convict [SEP] pled guilty convicting [SEP] an Defendant found guilty of a crime
by Adjudicator at a Place

Justice:Execute Execute [SEP] death [SEP] the life of a Person is taken by an Agent at a Place

Justice:Extradite Extradite [SEP] extradition [SEP] a Person is sent by an Agent from Origin to
Destination

Justice:Fine Fine [SEP] payouts financial punishment [SEP] a Adjudicator issues a financial
punishment Money to an Entity at a Place

Justice:Pardon Pardon [SEP] pardoned lift sentence [SEP] an Adjudicator lifts a sentence of
Defendant at a Place

Justice:Release-Parole Release Parole [SEP] parole [SEP] an Entity ends its custody of a Person at a
Place

Justice:Sentence Sentence [SEP] sentenced punishment [SEP] the punishment for the defendant
is issued by a state actor

Justice:Sue Sue [SEP] lawsuits [SEP] Plaintiff initiate a court proceeding to determine the
liability of a Defendant judge by Adjudicator at a Place

Justice:Trial-Hearing Trial Hearing [SEP] trial hearings [SEP] a court proceeding initiated to determine
the guilty or innocence of a Person with Prosecutor and Adjudicator at a Place

Life:Be-Born Be Born [SEP] childbirth [SEP] a Person is born at a Place

Life:Die Die [SEP] deceased extermination [SEP] life of a Victim ends by an Agent with
Instrument at a Place

Table 4: APEX templates for ACE event types
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Event Rep Type Comprehensive Prompt

Life:Divorce Divorce [SEP] people divorce [SEP] two Person are officially divorced at a place

Life:Injure Injure [SEP] hospitalised paralyzed dismember [SEP] a Victim experiences
physical harm from Agent with Instrument at a Place

Life:Marry Marry [SEP] married marriage marry [SEP] two Person are married at a Place

Movement:Transport Transport [SEP] arrival travels penetrated expelled [SEP] an Agent moves an
Artifact from Origin to Destination with Vehicle at Price

Personnel:Elect Elect [SEP] reelected elected election [SEP] a candidate Person wins an election
by voting Entity at a Place

Personnel:End-Position End Position [SEP] resigning retired resigned [SEP] a Person stops working for
an Entity or change office at a Place

Personnel:Nominate Nominate [SEP] nominate [SEP] a Person is nominated for a new position by
another Agent at a Place

Personnel:Start-
Position

Start Position [SEP] hiring rehired recruited [SEP] a Person begins working for
an Entity or change office at a Place

Transaction:Transfer-
Money

Transfer Money [SEP] donations reimbursing deductions [SEP] transfer Money
from the Giver to the Beneficiary or Recipient at a Place

Transaction:Transfer-
Ownership

Transfer Ownership [SEP] purchased buy sell loan [SEP] buying selling loaning
borrowing giving receiving of Artifacts from Seller to Buyer or Beneficiary at a
Place at Price

Table 5: APEX templates for ACE event types (continued)

Dataset ACE05-E+ ERE-EN MAVEN

# Types Base 18 25 120
Novel 10 10 45

# Mentions Base 3572 5449 93675
Novel 1724 3183 3201

Train Few-shot 3216 3886 88085
Zero-shot 3116 3786 87635

Validation 900 2797 3883
( 51%/49% ) ( 53%/47% ) ( 71%/23% )

Evaluation 1195 2012 1652

Table 6: Data statistics for ACE2005, ERE and MAVEN datasets under few-shot/zero-shot event detection settings.
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