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Abstract

Dataset distillation aims to create a small
dataset of informative synthetic samples to
rapidly train neural networks that retain the
performance of the original dataset. In this
paper, we focus on constructing distilled few-
shot datasets for natural language processing
(NLP) tasks to fine-tune pre-trained transform-
ers. Specifically, we propose to introduce at-
tention labels, which can efficiently distill the
knowledge from the original dataset and trans-
fer it to the transformer models via attention
probabilities. We evaluated our dataset distil-
lation methods in four various NLP tasks and
demonstrated that it is possible to create dis-
tilled few-shot datasets with the attention la-
bels, yielding impressive performances for fine-
tuning BERT. Specifically, in AGNews, a four-
class news classification task, our distilled few-
shot dataset achieved up to 93.2% accuracy,
which is 98.5% performance of the original
dataset even with only one sample per class
and only one gradient step.

1 Introduction

Deep learning models have achieved state-of-
the-art performance in various fields, including
computer vision and natural language processing
(NLP), using large-scale neural networks trained
with huge datasets. Unfortunately, their success-
ful performances have come with massive training
costs, including training time, GPU resources, and
energy consumption. To reduce the training costs,
current research has been focusing on constructing
a small training dataset such that models trained
with it can achieve comparable performances to
models trained with the whole original dataset.

One classical way to compress the training
dataset is data selection. Data selection methods
choose a subset of effective training samples on
the basis of a number of heuristic measures, for ex-
ample, cluster centers (Sener and Savarese, 2018),
diversity (Aljundi et al., 2019), and likelihood of

models (Moore and Lewis, 2010). Although the
data selection methods effectively work for effi-
cient model training and several applications, such
as active learning (Sener and Savarese, 2018) and
continual learning (Aljundi et al., 2019), their per-
formance is clearly restricted because they rely on
the existence of representative samples that are ef-
fective for model training in the original dataset.

As an alternative approach for reducing the train-
ing dataset, Wang et al. (2018b) proposed dataset
distillation, which aims to create a small number
of synthetic samples optimized to effectively train
models. Dataset distillation has attracted much at-
tention in machine learning (Wang et al., 2018b;
Zhao et al., 2021; Zhao and Bilen, 2021; Sucholut-
sky and Schonlau, 2021; Bohdal et al., 2020; Wang
et al., 2022; Cazenavette et al., 2022) for both
the theoretical interest and various applications,
such as neural architecture/hyper-parameter search
(Such et al., 2020), continual learning (Masarczyk
and Tautkute, 2020; Rosasco et al., 2022), feder-
ated learning (Goetz and Tewari, 2020; Zhou et al.,
2020), and preserving data privacy (Li et al., 2020;
Dong et al., 2022).

However, most of the existing research on
dataset distillation mainly focuses on image
datasets, and only a few studies involve NLP tasks.
Sucholutsky and Schonlau (2021) and Li and Li
(2021) extended dataset distillation to text datasets
by using embedding vectors as an input of the
distilled dataset instead of discrete text. While
these studies applied dataset distillation to those
model architectures based on convolutional neural
networks (CNNs) and recurrent neural networks
(RNNs), we cannot find any research that tack-
les dataset distillation for pre-trained transformers,
such as BERT (Devlin et al., 2019), which have
become the de-facto standard for various kinds of
NLP tasks. Therefore, in this paper, we aim to
obtain distilled few-shot datasets to fine-tune the
pre-trained transformers for NLP tasks.

119

mailto:maekawa@lr.pi.titech.ac.jp
mailto:kobayasi@lr.pi.titech.ac.jp
mailto:funakoshi@lr.pi.titech.ac.jp
mailto:oku@lr.pi.titech.ac.jp


To this end, we focus on the attention mecha-
nism, which is the core component of transform-
ers (Vaswani et al., 2017). Several current studies
utilized supervision of the attention probabilities
to effectively train the model (Liu et al., 2016; Mi
et al., 2016). Moreover, it is also used for the model
distillation to efficiently transfer the knowledge of
a transformer model to another one via attention
probabilities (Aguilar et al., 2020; Jiao et al., 2020;
Sun et al., 2020; Wang et al., 2020, 2021). Inspired
by this, we propose distilled attention labels, which
are the supervision of attention probabilities opti-
mized as a part of the distilled dataset, to enhance
the effectiveness of the distilled dataset for training
the transformer models.

In our experiments, we constructed distilled few-
shot datasets to fine-tune BERT (Devlin et al.,
2019) in various types of NLP tasks: AGNews (text
classification), SST-2 (sentiment analysis), QNLI
(QA/NLI), and MRPC (paraphrase identification).

Our main contributions are as follows: (i) To the
best of our knowledge, this is the first work to ex-
plore dataset distillation for pre-trained transform-
ers. Specifically, we demonstrate that our distilled
datasets effectively fine-tune BERT even with only
one sample for each class and only one gradient
step. (ii) We present the distilled attention labels,
which can easily be applied to dataset distillation
for transformer architectures. Experimental results
show that they consistently improved the perfor-
mance with the distilled datasets in various types
of NLP tasks. (iii) We open our source code and the
distilled datasets obtained through our experiments
to facilitate further research.1

2 Methodology

2.1 Dataset Distillation
In this section, we explain the basic approach of
dataset distillation (Wang et al., 2018b), which
aims to optimize a synthetic dataset through the gra-
dient method similar to the current meta-learning
approach (Finn et al., 2017).

Let the original training dataset D =
{(xi, yi)}Ni=1, where (xi, yi) is a pair of an in-
put and its class label. Our goal is to optimize
a distilled dataset D̃ = {(x̃i, ỹi)}Mi=1, which is ran-
domly initialized at first, with M ≪ N .

The model parameters θ are updated with a mini-
batch of the distilled dataset (x̃t, ỹt) by gradient

1https://github.com/arumaekawa/
dataset-distillation-with-attention-labels

descent (GD) steps as follows:

θt+1 = θt − η̃∇θtLtask

s.t. Ltask = L(x̃t, ỹt, θt),
(1)

where L() is a twice-differentiable loss function
and η̃ is the learnable learning rate of the model,
which is optimized together with D̃. Given initial
model parameters θ0, we can represent the model
trained with the distilled dataset D̃, with the num-
ber of GD steps T , as

θT = F (θ0; D̃, η̃, T ), (2)

where F () is the training procedure of the T steps
for the GD updating (Eq. 1).

As the goal of dataset distillation is that θT per-
forms well on the original dataset, the optimization
objective of the distilled dataset D̃ is calculated as
follows:

Ldistill(D̃, η̃; θ0) := L(xt,yt, θT ) (3)

= L(xt,yt, F (θ0; D̃, η̃, T )),
(4)

where (xt,yt) is a mini-batch of the original train-
ing dataset.

Therefore, the optimization problem for dataset
distillation is formulated as

D̃∗, η̃∗ = arg min
D̃,η̃

Eθ0∼p(θ0)

[
Ldistill(D̃, η̃; θ0)

]
,

(5)
where p(θ0) is the distribution of θ0.

We optimize the distilled dataset D̃ with this
objective by using current gradient-based optimiza-
tion techniques, e.g., Adam (Kingma and Ba, 2015).
However, the discrete nature of text data makes it
difficult to apply the gradient methods directly. In-
spired by previous work (Sucholutsky and Schon-
lau, 2021; Li and Li, 2021), we use a sequence
of embedding vectors for inputs of the distilled
dataset instead of text as it is. Using the embed-
dings makes the loss Ldistill differentiable with
respect to D̃, and we can thus optimize the distilled
dataset D̃ by the gradient methods.

2.2 Distilled Soft Labels
The class labels of the original dataset are usually
discrete hard labels (i.e., one-hot labels represent-
ing only a single class). Instead of hard labels, we
can use soft labels for distilled datasets and opti-
mize them with the input embeddings. Using soft
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labels enables the distilled datasets to contain more
information. Following previous work (Sucholut-
sky and Schonlau, 2021; Bohdal et al., 2020), we
first initialize the soft labels with one-hot values
and enable them to take any real values. We can
now optimize the soft labels through the gradient
method as well as the input embeddings.

2.3 Distilled Attention Labels
For efficient knowledge transfer to transformer
models via training with the distilled dataset, we
propose attention labels, which are optimized to
guide the multi-head attention module of the trans-
former models.

Inspired by previous work (Aguilar et al., 2020;
Wang et al., 2020, 2021), we compute the Kullback-
Leibler (KL) divergence DKL between the self-
attention probabilities of the model a(θ) and the
distilled attention labels ã across all layers and
heads. The attention loss Lattn is computed as
follows:

Lattn =
1

K

K∑

k=1

1

H

H∑

h=1

DKL(ãk,h||ak,h(θ)), (6)

where ãk,h and ak,h(θ) are the attention maps for
the h-th head of the k-th layer of the distilled at-
tention labels and the model, respectively, K is the
number of layers, and H is the number of heads.
Due to the data size, we consider the attention prob-
abilities only for the first input token ([CLS]).

We train the model to minimize Ltask and Lattn

at the same time. Thus, the GD updating of the
model (Eq. 1) is modified as

θt+1 = θt − η̃∇θt(Ltask + λLattn), (7)

where λ is the balance weight for Lattn.
The attention labels ã are first initialized ran-

domly and restricted to being a valid probability
distribution (i.e., non-negative and the sum equals
1) by applying the softmax function to real-valued
vectors. We optimize the attention labels together
with the input embeddings and the soft labels by
the gradient method. The details of the step-by-step
procedure of our distillation algorithm are shown
in Appendix A.

3 Experiments

3.1 Settings
Datasets. We evaluated our dataset distillation
methods in various types of NLP tasks. We used

Dataset Task Metric C # Train # Test (Dev.)

AGNews news classification acc. 4 120k 7.6k
SST-2 sentiment acc. 2 67k 872
QNLI QA/NLI acc. 2 105k 5.5k
MRPC paraphrase acc./F1 2 3.7k 408

Table 1: Summary of evaluation datasets. C represents
the number of classes in each task. For the three GLUE
tasks, since the test set is not available, we report the
evaluation results on the development set.

a text classification task (AGNews (Zhang et al.,
2015)) and three different natural language under-
standing tasks (SST-2, QNLI, and MRPC) from the
GLUE benchmark (Wang et al., 2018a). For the
evaluation metrics, we used accuracy for AGNews.
For the other three tasks, we followed the evalua-
tion settings of GLUE (Wang et al., 2018a). The
statistics of each benchmark dataset are summa-
rized in Table 1.
Network Architecture. To evaluate the dataset
distillation methods, we constructed distilled few-
shot datasets to fine-tune BERT (Devlin et al.,
2019), which is the first pre-trained transformer
model, that all subsequent models are based on.
We utilized the pre-trained BERTBASE model. Fol-
lowing the fine-tuning procedure in Devlin et al.
(2019), we introduced additional classification
layer weights W ∈ RC×D on the last hidden state
of the [CLS] token, where D is the hidden dimen-
sion of BERT and C is the number of classes.
Implementation. For all our distilled datasets, we
used Adam optimizer (Kingma and Ba, 2015) with
a learning rate α ∈ {1e−3, 1e−2, 1e−1} and trained
the distilled datasets for 30 epochs. We initialized
the learnable learning rate η̃ ∈ {1e−2, 1e−1}. For
the attention labels, we set λ = 1.0, which per-
formed well in our preliminary experiments. We
report the results for the best performing combi-
nation of α and η̃. Note that due to the coarse
granularity of the search, there is no need to care
about overfitting to the test set. More details of our
implementation are shown in Appendix B.
Evaluation. To evaluate the distilled datasets, we
fine-tuned the BERT model with them for 100
times, where the additional parameters W were
randomly initialized each time. In all our experi-
ments, we report the mean and standard deviation
over the 100 evaluation results.

3.2 Results for 1-shot and 1-step Setting

We first evaluated the dataset distillation methods
with a 1-shot and 1-step setting, where the distilled
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AGNews SST-2 QNLI MRPC

Majority 25.0 50.9 50.5 74.8

HL 87.4±1.8 81.6±2.4 68.6±2.5 74.8±0.0
SL 88.4±0.9 82.5±1.6 76.4±0.8 74.8±0.0
HL + AL 93.2±0.1 90.1±0.3 85.9±0.1 76.4±0.8
SL + AL 93.0±0.1 89.0±0.2 86.4±0.1 78.8±0.7

Full dataset 94.6 92.7* 91.8* 88.6*

Table 2: Experimental results for the 1-shot and 1-step
setting. ‘HL’ and ‘SL’ mean hard and soft class labels,
respectively, and ‘AL’ means attention labels. ‘Majority’
is the majority class baseline. Scores for the full dataset
with * are cited from Devlin et al. (2019). Bold scores
show the best results for each task.

dataset includes only one sample per class, and
BERT was fine-tuned with it by only one GD step.
We compared the performance for hard/soft labels
and with/without attention labels for each task.

Table 2 shows the evaluation results. The dis-
tilled datasets with the hard labels, i.e., only op-
timizing the input embeddings and not applying
the attention labels, still achieved 87.4, 81.6, and
68.6 for AGNews, SST-2, and QNLI, respectively,
which is 92.4, 88.0, and 74.7% performance of the
full dataset. Furthermore, using the soft labels fur-
ther improved these performances, especially by
almost 8 points for QNLI. However, for MRPC,
the distilled dataset achieved only the same perfor-
mance as the majority class baseline regardless of
the use of the soft labels.

When applying the attention labels, the perfor-
mance of the distilled dataset was significantly
improved for all tasks, and their effect is much
greater than the soft labels. Specifically, our dis-
tilled dataset with the attention labels yielded up to
98.5, 97.2, 94.1, and 88.9% performance of the full
dataset for AGNews, SST-2, QNLI, and MRPC,
respectively. These results indicate that using the
attention labels enables to extract the information
from the original dataset as the attention probabili-
ties and to efficiently transfer it to the model.

When comparing the performance between the
four tasks, dataset distillation performed very well
on relatively simple classification tasks such as
AGNews and SST-2, while the performance was
somewhat limited on QNLI and MRPC, which re-
quire understanding the relationship between two
sentences. In particular, for MRPC, although the
performance was improved by applying the atten-
tion labels, the gap from the full dataset was still
larger than that in the other three tasks. The class

# step # shot AGNews SST-2 QNLI MRPC

Single-step setting
1 1 93.0±0.1 89.0±0.2 86.4±0.1 78.8±0.7
1 3 93.5±0.1 90.3±0.2 86.7±0.1 79.3±0.5
1 5 93.1±0.1 90.1±0.2 86.9±0.1 79.4±0.5

Same distilled data for each step
3 1 93.0±0.1 89.8±0.4 84.2±0.4 74.8±0.0
5 1 92.1±0.1 85.8±0.4 85.9±0.1 74.8±0.0

Different distilled data for each step
3 3 92.5±0.1 90.4±0.2 87.0±0.1 80.3±0.8
5 5 93.1±0.1 90.7±0.2 86.1±0.1 76.5±0.8

Table 3: Experimental results for the multiple-shot and
multiple-step setting. Bold scores show the best results
for each task.

imbalance in the original training dataset (68% pos-
itive) may make the training of the distilled dataset
more difficult. We can say there is still room for
performance improvement by dealing with this is-
sue (e.g., by upsampling or downsampling).

3.3 Results for Multiple-shot and
Multiple-step Setting

We also evaluated the distilled datasets with more
than one shot and more than one GD step to fine-
tune BERT. For the multiple-step setting, we con-
sidered two different scenarios: using the same
distilled data in all steps and using different dis-
tilled data for each step. In these experiments, we
evaluated the distilled datasets that use soft labels
and attention labels for different numbers of GD
steps T ∈ {1, 3, 5}.

Table 3 shows the results for the multiple-shot
and multiple-step setting. In the single-step set-
ting, overall performance improved with the num-
ber of shots of the distilled data. We believe that
this is simply due to the expressiveness of the dis-
tilled data improved with the size of them. When
using the same distilled data for all steps in the
multiple-step setting, the performance of the dis-
tilled datasets degraded even compared with that in
the single-step setting. In contrast, the performance
was improved by separating the distilled data for
each step and slightly but better than that with the
same number of shots in the single-step setting.
These results suggest that the role of the distilled
data is different between the earlier and later steps,
and it is difficult to obtain the distilled data that are
generally useful for all GD steps.

In addition, the basic dataset distillation algo-
rithm we used requires computing the back propa-
gation through all GD steps for the optimization of
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the distilled dataset, which increases memory and
computational costs linearly with T . Therefore, it
was difficult to increase T to be larger than 5 in our
experiments. This is the limitation of our dataset
distillation method, and it needs further improve-
ment to scale to more complex tasks or to train
models from scratch.

4 Conclusion

In this paper, we explored dataset distillation in
NLP tasks to fine-tune pre-trained transformers.
We proposed attention labels, which are the super-
vision of attention probabilities distilled as a part of
the distilled datasets. Experimental results across
various tasks demonstrate that our distilled few-
shot datasets achieved successful performances
even with only one sample per class. Notably, the
attention labels significantly improved the perfor-
mance of the distilled datasets even for the tasks
where dataset distillation is difficult without them.

Limitations

We think the following three points are the limita-
tions of this work. (i) As mentioned in Section 3.3,
the computational cost of our distillation approach
increases linearly with the number of GD steps and
the distilled data size. It is necessary to explore
efficient distillation algorithms to scale our method
to more complex tasks or full-scratch training in
future work. (ii) To optimize the distilled dataset
through the gradient method, we utilized word em-
bedding vectors instead of directly optimizing the
text as in the existing work. Therefore, the distilled
dataset we obtained cannot be applied to models
with different word embeddings, such as other pre-
trained models or full-scratch training. (iii) In our
experiments, we evaluated our approach only on
text classification tasks. However, our approach
can also be applied to text generation tasks as well
by applying the attention labels to all input tokens
(not only [CLS]) and using vocabulary-wise soft
labels. In future work, we should investigate its per-
formance and explore more effective approaches.
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Algorithm 1 Dataset Distillation with Attention
Labels
Input: Training dataset D, distribution of initial parame-

ters p(θ0), number of outer-loop steps S, number of inner-
loop steps T , initial learnable learning rate η̃0, learning
rate for the distilled dataset α, balanced weight for the
attention loss λ.

1: Initialize distilled dataset: D̃ = {(x̃i, ỹi, ãi)}Mi=1 ran-
domly

2: Initialize learnable learning rate: η̃ ← η̃0
3: for outer step s = 1, . . . , S do
4: Initialize parameters: θ0 ∼ p(θ0)
5: for inner step t = 1, . . . , T do
6: Get the t-th mini-batch of distilled data:
7: (x̃t, ỹt) ∼ D̃
8: Compute task loss Ltask = L(x̃t, ỹt, θt−1)
9: Compute attention loss Lattn flowing Eq. 6

10: Update parameters:
11: θt+1 = θt − η̃∇θt(Ltask + λLattn)
12: end for
13: Sample a mini-batch of real data: (xs,ys) ∼ D
14: Update distilled data:
15: D̃ ← D̃ − α∇D̃L(xs,ys, θT )
16: end for
Output: Distilled dataset D̃ and learning rate η̃

A Overview of Proposed Method

Algorithm 1 illustrates an overview of our distilla-
tion algorithm.

B Implementation details

In our experiments, we trained the distilled datasets
using Adam optimizer (Kingma and Ba, 2015) with
linear warmup and linear decay learning rate sched-
ule and gradient clipping with 1.0. Following the
implementation in Wang et al. (2018b), we dis-
abled dropout layers to avoid the randomness of
the model training. We used a RTX 3090 or a
RTX A6000, depending on the required memory
size for each experiments. To obtain the perfor-
mance of the full dataset for AGNews, which is
used as the upper-bound of the distilled datasets,
we fine-tuned BERTBASE model with learning rate
η = 1e−5 for epochs ∈ {2, 3, 4}, and adopted the
best performance. More information about our im-
plementation can be found in our source code1.
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