
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics
Volume 2: Short Papers, pages 1491–1499

July 9-14, 2023 ©2023 Association for Computational Linguistics

Zero-Shot and Few-Shot Stance Detection on Varied Topics via Conditional
Generation

Haoyang Wen and Alexander G. Hauptmann
Language Technologies Institute, Carnegie Mellon University

{hwen3, alex}@cs.cmu.edu

Abstract

Zero-shot and few-shot stance detection iden-
tify the polarity of text with regard to a certain
target when we have only limited or no training
resources for the target. Previous work gener-
ally formulates the problem into a classification
setting, ignoring the potential use of label text.
In this paper, we instead utilize a conditional
generation framework and formulate the prob-
lem as denoising from partially-filled templates,
which can better utilize the semantics among in-
put, label, and target texts. We further propose
to jointly train an auxiliary task, target predic-
tion, and to incorporate manually constructed
incorrect samples with unlikelihood training to
improve the representations for both target and
label texts. We also verify the effectiveness of
target-related Wikipedia knowledge with the
generation framework. Experiments show that
our proposed method significantly outperforms
several strong baselines on VAST, and achieves
new state-of-the-art performance.1

1 Introduction

Stance detection is an important task that identi-
fies the polarity of text with regard to certain tar-
get (Somasundaran and Wiebe, 2010; Augenstein
et al., 2016; Mohammad et al., 2016; Sobhani et al.,
2017; Allaway and McKeown, 2020), as shown in
Table 1. It is crucial for understanding opinionated
information expressed in natural language, and it
can facilitate downstream social science analyses
and applications (Zhang et al., 2017; Hanselowski
et al., 2018; Jang and Allan, 2018).

Previous work on stance detection mostly fo-
cuses on in-domain or leave-out targets with only
a few target choices (Mohtarami et al., 2018; Xu
et al., 2018; Graells-Garrido et al., 2020; Zhang
et al., 2020; Liang et al., 2021; Allaway et al., 2021;

1The resource for reproducing this paper is available at
https://github.com/wenhycs/ACL2023-Zero-Shot-and
-Few-Shot-Stance-Detection-on-Varied-Topics-via
-Conditional-Generation.

Input Text: Airports and the roads on east nor west coast
can not handle the present volume adequately as is. I did
ride the vast trains in Europe, Japan and China and found
them very comfortable and providing much better connec-
tions and more efficient.
Target: high-speed rail Stance Label: Supportive (Pro)

Table 1: A stance detection example from VAST.

Jiang et al., 2022). Although achieving promising
performance, those models are limited to general-
ize to a wide variety of targets. Zero-shot and few-
shot stance detection on varied topics (VAST; All-
away and McKeown, 2020), instead, provides a di-
verse set of targets for training and testing. Efforts
on this direction includes involving graph model-
ing (Lin et al., 2021), common sense (Liu et al.,
2021) or Wikipedia knowledge (He et al., 2022),
and contrastive learning (Liang et al., 2022a,b).
These methods generally formulate the problem
into a classification setting, which directly trains
the label representation from scratch, and does not
fully utilize the semantics from those label and
target texts.

However, connections among text semantics
from input text, target, and label can be benefi-
cial for stance detection. In this paper, we propose
a new model by formulating the problem as a de-
noising task from text templates via conditional
generation. Compared to direct classification, we
can further exploit the label and topic semantics
via learning to decode a series of natural language
text containing the predicted label. The denoising
scheme can also take advantage of the pretrained
language model with similar pretraining task for-
mulation (Lewis et al., 2020). To improve the target
representation, we propose to jointly train target
prediction with stance detection, which gives the
input text and desired stance label to output possi-
ble targets. We use unlikelihood training (Welleck
et al., 2020) that suppress the likelihood of manu-
ally constructed incorrect samples to enhance label

1491

https://github.com/wenhycs/ACL2023-Zero-Shot-and-Few-Shot-Stance-Detection-on-Varied-Topics-via-Conditional-Generation
https://github.com/wenhycs/ACL2023-Zero-Shot-and-Few-Shot-Stance-Detection-on-Varied-Topics-via-Conditional-Generation
https://github.com/wenhycs/ACL2023-Zero-Shot-and-Few-Shot-Stance-Detection-on-Varied-Topics-via-Conditional-Generation


BART Encoding

<s> Target is high-speed rail. Stance is <stance>. </s> </s>  Airports ...

BART Decoding

<s> Target is high-speed rail. Stance is supportive. </s>

Partially-Filled Template Input Text

Figure 1: Overall framework of BART-based generation
framework for stance detection.

representations. Recently, He et al. (2022) show
the effectiveness of target-related Wikipedia knowl-
edge for classification-based stance detection. We
also follow the idea and incorporate target-related
Wikipedia knowledge for our generation model.

We evaluate our method on VAST. Experimental
results show that the conditional generation formu-
lation can achieve better performance compared
to classification, demonstrating the effectiveness
of connecting input, target, and label semantics
for stance detection. Further analysis illustrates
the benefits of joint target prediction, unlikelihood
training, and Wikipedia knowledge. Our model
can achieve new state-of-the-art performance, out-
performing several strong baselines from previous
work.

2 Approach

In this section, we will discuss our approach to
zero-shot and few-shot stance detection. We will
first introduce the problem formulation, and then
discuss our generation-based framework.

2.1 Problem Formulation

Stance detection aims to identify the polarity of an
input text with regard to a specific target. Formally,
a sample instance can be considered as a triple
(x, t, y), where x and t are two sequences of to-
kens, representing input text and target respectively.
y ∈ {supportive (pro), opposite (con), neutral}
represents then stance label.

A stance-detection model is to infer the stance
label y given x and t with parameter θ:

f (x, t; θ) = y.

In the zero-shot and few-shot stance detection
dataset with varied targets (Allaway and McKe-

own, 2020), many target tokens only occur zero or
a few times in the training set.

2.2 A Generation-Based Framework
Generation-based frameworks have demonstrated
their effectiveness for problems beyond traditional
generation tasks (Lewis and Fan, 2019; Yan et al.,
2021; Li et al., 2021; Raffel et al., 2022). We use
a conditional generation model for this problem,
where the condition is a partially-filled template
with the input text. The template is two sentences
describing the target and stance with a <stance>
placeholder for stance detection. An example of the
partially-filled template with input text and output
is shown in Figure 1.

Our base model is BART (Lewis et al., 2020),
an encoder-decoder language model pretrained
with denoising objectives, which is similar to our
generation-based formulation. The generation pro-
cess can be considered as using the conditional
probability to select a new token at each step given
input and previously generated tokens:

p (o | g (x, t) ; θ) =
|o|∏

i=1

p (oi | o<i, g (x, t) ; θ) ,

where g (x, t) represents the transformation func-
tion that fills the target t into the template and forms
the input sequence with the input text x. Specif-
ically, g (x, t) will generate a combination of in-
put text and template with special tokens: “<s>
template </s></s> x </s>”. The template con-
tains two sentences: “The target is <target>. The
stance is <stance>”. We will fill in <target>
placeholder with the actual target and keep the
<stance> placeholder for the decoder to generate.

The generated output o is a fully-filled template,
where both target and stance placeholders are re-
placed by actual or predicted values. The model is
trained by minimizing the log-likelihood over the
whole generated sequence:

Ls = − log p (o | g (x, t) ; θ)

= −
|O|∑

i=1

log p (oi | o<i, g (x, t) ; θ) .

The final predicted stance label is obtained with a
post-processing function that tries to find the polar-
ity word after the prompt for stance.

2.2.1 Joint Target Prediction
Another advantage of using generation-based archi-
tecture is that we can leverage auxiliary generative
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Stance Detection
Input Target is high-speed rail. Stance is <stance> .
Output Target is high-speed rail. Stance is supportive.
Target Prediction
Input Stance is supportive. Target is <target> .
Output Stance is supportive. Target is high-speed rail.
Unlikelihood Training
Input Target is high-speed rail. Stance is <stance> .
Output Target is high-speed rail. Stance is opposite.

Table 2: Examples input and output templates for stance
detection, target prediction, and unlikelihood training.

tasks to help train stance detection. We use tar-
get prediction, which is to infer the target tokens t
given stance label y and input text x:

ft (x, y; θ) = t.

Target prediction can provide the connection of
stance to target in an opposite direction of stance
detection. It can also enhance the representation of
target tokens by learning to decode them.

The input sequence of target prediction is similar
to stance detection, consisting of a partially-filled
template and input text. The template used for
joint target prediction is slightly different than the
one used for stance detection, where we switch
the position of two sentences so that the stance
information shows up first. We will fill in the actual
stance text in the input sequence, and leave the
<target> placeholder for the decoder to generate.

2.2.2 Unlikelihood Training
Log-likelihood objective optimizes the likelihood
over the entire distribution. However, in our task,
especially when generating the stance labels, we
should specifically focus on several candidate to-
kens. Therefore, we introduce unlikelihood train-
ing (Welleck et al., 2020), where we use unlikely
tokens, i.e. incorrect stance predictions, to replace
the ground-truth sequence and optimize with the
unlikelihood loss for the replaced tokens.

Specifically, for an output sequence o, we as-
sume ok is the stance label and replaced it with an
incorrect stance prediction o′k while keeping other
tokens to form incorrect sequence o′. The combi-
nation of likelihood and unlikelihood will be:

Lu = log p
(
o′k | o′

<k, g (x, t) ; θ
)

−
∑

i ̸=k

log p
(
o′i | o′

<i, g (x, t) ; θ
)
,

For each ground-truth sequence, we can construct
two sequences for unlikelihood training with the

other two incorrect stance labels. Table 2 illus-
trates the examples for different input and output
templates for stance prediction, target prediction,
and unlikelihood training.

2.2.3 Incorporating Wikipedia Knowledge
He et al. (2022) collect relevant Wikipedia snip-
pets for each target and propose to incorporate
Wikipedia knowledge to enhance target represen-
tations for BERT-based (Devlin et al., 2019) clas-
sification, which demonstrates a significant im-
provement. We follow He et al. (2022) and incor-
porate Wikipedia knowledge into our generation-
based method. Specifically, we append Wikipedia
snippets to the end of our input sequence: “<s>
template </s></s> x </s></s> Wikipedia snip-
pet </s>”. We use the new input sequence to per-
form both training and inference while the output
sequences remain as the fully-filled templates.

2.2.4 Training Objective
The final training objective is the combination of
loss functions from stance detection, target predic-
tion, and unlikelihood training:

L = Ls + αtLt + αuLu,

where Lt represents the log-likelihood loss over
the output template for target prediction, αt, αu are
used to balance different loss functions.

3 Experiments

3.1 Data
VAST contains 18,548 examples from New York
Times “Room for Debate” section with 5,630 dif-
ferent targets for zero-shot and few-shot stance
detection. The original examples of VAST are col-
lected from Habernal et al. (2018) under Apache-
2.0 license2. We use Wikipedia knowledge col-
lected by He et al. (2022), which uses API to
crawl Wikipedia pages for targets. Wikipedia con-
tent can be used under Creative Commons Attribu-
tion Share-Alike license (CC-BY-SA)3. We use the
same training/devlopment/test split as Allaway and
McKeown (2020).

3.2 Experimental Setup
We conduct our experiments on VAST (Allaway
and McKeown, 2020). We compare our model

2https://github.com/UKPLab/argument-reasoning
-comprehension-task/blob/master/LICENSE

3https://en.wikipedia.org/wiki/Wikipedia:Reus
ing_Wikipedia_content

1493

https://github.com/UKPLab/argument-reasoning-comprehension-task/blob/master/LICENSE
https://github.com/UKPLab/argument-reasoning-comprehension-task/blob/master/LICENSE
https://en.wikipedia.org/wiki/Wikipedia:Reusing_Wikipedia_content
https://en.wikipedia.org/wiki/Wikipedia:Reusing_Wikipedia_content


Model Precision Recall F1

BERT Classification 72.6 72.0 72.1
BART w/ Template 75.7 75.1 75.3

+ Topic Prediction 76.0 75.6 75.7
+ Unlikelihood 76.4 75.9 75.9

+ Wikipedia 78.0 77.3 77.4

Table 3: Performance of different model variants on the
overall precision, recall and F1 on the development set
(%). Each of our model variants is on top of the variant
from its previous row.

Model Zero-Shot Few-Shot Overall

TGA-Net 66.6 66.3 66.5
BERT-GCN 68.6 69.7 69.2
CKE-Net 70.2 70.1 70.1
WS-BERT 75.3 73.6 74.5
Our Model 76.4 78.0 77.3

Table 4: Stance detection performance (%) on VAST.
Our model significantly outperforms previous work on
all metrics. Our results are obtained from averaging per-
formances over 5 random seeds. p < 0.001 on overall
F1 using Z-test with variance as the standard deviation
over multiple runs.

with several existing systems including 1) TGA-
Net (Allaway and McKeown, 2020); 2) BERT-
GCN (Lin et al., 2021); 3) CKE-Net (Liu et al.,
2021); 4) WS-BERT (He et al., 2022). Following
their setup, we use macro-average F1 as the eval-
uation metric, and we report performance on the
subset of test set for zero-shot and few-shot, and
the overall test set.

We use BART-base4 as our base model, of which
the number of parameters is roughly consistent with
baselines on BERT-base5. Our best model is opti-
mized with AdamW (Loshchilov and Hutter, 2019)
for 30 epochs with a learning rate of 1e-5. We use
a linear scheduler with a warmup proportion of 0.1
and the training batch size is 32. We use greedy
search during inference. We reported performances
on development set and test set using the averaged
results from 5 different random seeds. Test results
are reported based on the best overall F1 perfor-
mance on the development set. αt is set to 1 and
αu is set to 0.5. Our final model takes about 5
hours for training on one Nvidia RTX 3090 GPU.

4https://huggingface.co/facebook/bart-base
5https://huggingface.co/bert-base-uncased

(a) Our model (b) BERT classification

Figure 2: The t-SNE visualization of intermediate rep-
resentations from our model and BERT classification
model. Color map: Supportive, Opposite, Neutral.

3.3 Results

3.3.1 Comparing with Model Variants

We first conduct comparison of some of our model
variants to illustrate the effectiveness of our pro-
posed components. The results are shown in Ta-
ble 3. From the comparison of BERT-based clas-
sification (BERT Classification) and BART-based
denoising generation from templates (BART w/
Template), we can find that adopting the generation
framework can significantly improve the model per-
formance. Our proposed topic prediction and un-
likelihood training can further boost performance.
The final model with knowledge from Wikipedia,
verifies the effectiveness of Wikipedia knowledge
for stance detection with a generative framework.

3.3.2 Comparing with Existing Systems

Our overall performance is shown in Table 4. Our
method can significantly outperform those previ-
ous baselines, indicating the effectiveness of our
proposed generation framework for zero-shot and
few-shot stance detection with varies topics.

3.4 Qualitative Analysis

Figure 2 show the t-SNE (van der Maaten and Hin-
ton, 2008) visualization of intermediate representa-
tions before the classification layer from our model
and BERT classification model on the development
set. We use random initialization with perplexity as
50 for visualization and we color each visualized
instance with its corresponding stance label. The
visualization of BERT classification shows small
clusters with hybrid labels, While we can see that
instances with our generation method are clustered
with labels, where neutral labels are at the top and
supportive labels are generally at the bottom.
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4 Related Work

Zero-shot and few-shot stance detection. Zero-
shot and few-shot stance detection focus on de-
tecting stances for unseen or low-resource tar-
gets. Allaway and McKeown (2020) construct
a dataset with varied topics that can be used to
test stance detection under zero-shot and few-shot
settings. Previous efforts mostly focus on model-
ing targets, documents, or their connections. All-
away and McKeown (2020) obtain generalized
topic representation through clustering. Liu et al.
(2021) use commonsense knowledge graph to en-
hance the connection between target and document.
Liang et al. (2022a,b) use contrastive learning to
learn target features. He et al. (2022) incorporate
Wikipedia knowledge to enhance target represen-
tations. While in our work, we use a conditional
generation framework to build the connections be-
tween input, target, and label text semantics.

Text processing via conditional generation.
Our work is also motivated by the recent success
of tackling text processing problems as conditional
generation (Lewis et al., 2020; Raffel et al., 2022).
In addition to the conventional text generation prob-
lems, conditional generation frameworks are effec-
tively applied in information extraction (Li et al.,
2021), question answering (Lewis and Fan, 2019;
Raffel et al., 2022) and sentiment analysis (Yan
et al., 2021). In our work, we further explore stance
detection via conditional generation.

5 Conclusion

In this paper, we propose a generation-based frame-
work for zero-shot and few-shot stance detection
that generate stance label from pre-defined tem-
plates. We further propose an auxiliary task, joint
target prediction that takes stance label and input
text to generate targets, and unlikelihood training
on manually constructed incorrect generation out-
put. Combining with Wikipedia knowledge for
target from He et al. (2022), our model can achieve
new state-of-the-art performance on VAST.

Limitations

Because of the nature of our framework design, our
work requires a diverse set of targets during train-
ing, which is important for target prediction and
therefore the stance detection method. It is diffi-
cult to be applied to other stance detection datasets

when there are limited training resources with re-
gard to targets, such as Conforti et al. (2020) and
Mohammad et al. (2016). Besides, the model is
trained on news-related debate corpus, so it may
need further domain adaptation if applying the
model to other domains such as social media.

We are using an auto-regressive generation
framework, which will also require extra inference
time to generate the whole output sequence com-
pared to the classification model. We would en-
courage readers to compare it with classification
methods for efficiency when it will be applied in a
time-sensitive scenario.
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