
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics
Volume 2: Short Papers, pages 1512–1521

July 9-14, 2023 ©2023 Association for Computational Linguistics

Controlling the Extraction of Memorized Data
from Large Language Models via Prompt-Tuning

Mustafa Safa Ozdayi1∗, Charith Peris2†, Jack Fitzgerald2, Christophe Dupuy2,
Jimit Majmudar2, Haidar Khan2, Rahil Parikh2, Rahul Gupta2

1Department of Computer Science, The University of Texas at Dallas
2Alexa AI, Amazon

Abstract

Large Language Models (LLMs) are known
to memorize significant portions of their train-
ing data. Parts of this memorized content have
been shown to be extractable by simply query-
ing the model, which poses a privacy risk. We
present a novel approach which uses prompt-
tuning to control the extraction rates of memo-
rized content in LLMs. We present two prompt
training strategies to increase and decrease ex-
traction rates, which correspond to an attack
and a defense, respectively. We demonstrate
the effectiveness of our techniques by using
models from the GPT-Neo family on a pub-
lic benchmark. For the 1.3B parameter GPT-
Neo model, our attack yields a 9.3 percent-
age point increase in extraction rate compared
to our baseline. Our defense can be tuned to
achieve different privacy-utility trade-offs by a
user-specified hyperparameter. We achieve an
extraction rate reduction of up to 97.7% rela-
tive to our baseline, with a perplexity increase
of 16.9%.

1 Introduction

Pretrained large language models (LLMs; Devlin
et al., 2019; Radford et al., 2019; Raffel et al., 2020;
Soltan et al., 2022), commonly trained on massive
crowd-sourced corpora, have been of much interest
in the recent past due to their usage as backbones in
state-of-the-art models across multiple downstream
NLU tasks. However, they have been shown to
memorize significant portions of their training data
that can be extracted using appropriately-crafted
prompts (Carlini et al., 2020, 2022; Zhang et al.,
2021). Such extractions pose a privacy risk to the
contributors of the training data.

In this context, methods that allow developers
to control the extractability of memorized exam-
ples from LLMs are of much value. For example,

∗ Work done while the author was an intern at Amazon;
mustafa.ozdayi@utdallas.edu

† perisc@amazon.com

methods that increase extraction rates correspond
to attacks in an adversarial setting, and provide
developers with the ability to analyze privacy-risk.
Methods that decrease extraction rates, referred to
as defenses, are useful for protecting against such
attacks. Historically, defense methods tend to be
compute intensive (Abadi et al., 2016; Dupuy et al.,
2021).

In this work, we train continuous soft-prompts
(Lester et al. 2021; hereafter referred to simply as
prompts) and leverage them as a way of passing
an external signal into an LLM, to control the ex-
traction of memorized data. We freeze the model
weights, and only use the trained prompt to con-
trol the generation. First, we train prompts in an
attack setting and study the extent of extractable
memorized content in our models. Second, we ex-
plore a defense setting where we create prompts
that reduce extraction rates and achieve different
privacy-utility trade-offs, via a user-specified hy-
perparameter. Since the original model weights
are frozen in both these settings, our methods are
compute efficient across the board.

To the best of our knowledge, our work is the
first to adapt the use of instructive prompts for the
analysis and mitigation of privacy in LLMs. We
have released the code developed for our experi-
ments1.

2 Background and Related Work

Previous work has shown that LLMs display mem-
orization and has explored a range of methods that
quantify extractability (Carlini et al., 2018, 2020,
2022). Differentially-private training (Dwork,
2006; Abadi et al., 2016) is a popular method
that has been used to mitigate this risk. However,
it tends to reduce model utility and requires re-
training of the LLM, which might not be feasible
due to heavy computational burden.

1https://github.com/amazon-science/controlling-llm-
memorization

1512

https://github.com/amazon-science/controlling-llm-memorization
https://github.com/amazon-science/controlling-llm-memorization

Figure 1: A schematic of our setup. The upper section
shows our training and testing setup while the lower
section shows our evaluation metrics.

The use of instructive prompts for language mod-
els has been extensively researched, including use
during pretraining (Raffel et al., 2020), as a sec-
ond stage of training (Sanh et al., 2022; Wei et al.,
2021), and during inference to guide model output
(Brown et al., 2020). Within the third category, in
order to improve upon manual prompt engineering
researchers have implemented methods to learn dis-
crete natural language prompts (Shin et al., 2020),
to mine them (Jiang et al., 2020), or, neglecting
natural language, to learn continuous prompts (Li
and Liang, 2021; Lester et al., 2021).

Our work leverages continuous prompts as a way
of passing an external signal to a model to trigger
a desired model behavior (i.e., less or more memo-
rized data in open language generation, which map
to an extraction attack and defense, respectively).

3 Method

Prompt-tuning requires the prepending of a prompt
to the prefix embedding and access to the training
loss (see Figure 1). Given these constraints, we
explore a white-box attack where the adversary has
access to the target model parameters, and a black-
box defense where the adversary interacts with the
target model via an API. We therefore do not test
our defense against our own attack.

Let [prefix || suffix] be a sequence in the training

set where the prefix is of length k tokens. Carlini
et al. (2022) defined a suffix to be k-extractable
if the model generates the suffix exactly, after be-
ing prompted with its the corresponding length-
k prefix. Our white-box attack aims to increase
the number of k-extractable sequences, while our
black-box defense aims to reduce the number of
k-extractable sequences that can be extracted by an
adversary who submits prefixes via an API.

3.1 Attack
In the attack setting, we assume that the adversary
has a set of [prefix || suffix] sequences Strain,
sampled from the training set of the target model.
Their goal is to extract the suffixes corresponding
to a disjoint set of prefixes, denoted by Stest

2.
To do so, the adversary first initializes a prompt:

a continuous set of l × e parameters where e is the
embedding size of the model, and l is the length of
the prompt, a hyperparameter decided by the adver-
sary. The prompt is trained over Strain to facilitate
the correct generation of suffixes. To do this, we
first prepend the prompt to the embedding of the
prefix and pass the joint embedding through the
model for generation. We then minimize the loss
objective (see below) with respect to the prompt
while keeping the parameters of the model frozen.

We explore two loss objectives. The first is
causal language modeling (hereafter referred to as
CLM), where we minimize the cross-entropy loss
over the entire sequence (Radford et al., 2019). In
the second, the prompt is optimized by minimizing
the cross entropy loss of only the suffixes, given
the prefixes. Here, the training is aligned with our
inference task such that during training the model
is penalized only on the suffix tokens; hence we
refer to it as aligned CLM. During inference, the
learned prompt is prepended to each embedding
of the prefixes in Stest, and the joint embedding is
passed to the model for generation (see Figure 1).

3.2 Defense
In the defense setting, the defender (API owner)
trains the prompt, and prepends it to the incoming
prefixes before passing them to the model. Our
algorithm is inspired by machine-unlearning liter-
ature (Halimi et al., 2022), and defenses against
membership inference and backdoor attacks (Chen
et al., 2022; Ozdayi et al., 2021). We introduce a

2For simplicity, we assume all prefixes are k-length. This
can easily be ensured by padding or truncating different length
prefixes if needed in a real-world setting.

1513

hyperparameter named learning threshold denoted
by θ. During prompt training (see Section 3.1),
when loss is less than θ we do gradient ascent to
penalize the prompt. If the loss is greater than θ,
we perform gradient descent with respect to the
prompt as usual. Training is stopped once the av-
erage epoch loss is equal or above θ. This allows
us to increase training loss in a controlled manner
and stabilize it around θ. Through this process, we
can achieve various privacy-utility trade-offs effi-
ciently without re-training any part of the model.
To explore θ, we set the initial value to be slightly
above the model training loss and increase in steps
of 0.25 until desired performance is achieved.

4 Experiments

For our experiments, we use the 125M and 1.3B
parameter variants of the GPT-Neo models (Black
et al., 2021). These are public, decoder-only trans-
former models (Vaswani et al., 2017) trained using
CLM on the Pile dataset (Gao et al., 2020). We
extract Strain and Stest from the Language Model
Extraction Benchmark dataset (Google-Research).
This dataset contains 15k sequences sampled from
the training split of the Pile where each sequence
is partitioned into a prefix and suffix. In the default
evaluation setting, both prefix and suffix consist of
50 tokens. We ensure a random train/test split of
14k/1k samples.

Our evaluation metric of choice is Exact extrac-
tion rate which is the fraction of correctly gener-
ated suffixes (i.e., all tokens of the generated suffix
match with ground-truth suffix) over the test set.
We additionally discuss fractional extraction rate
and present results in Appendix A. As a baseline,
we use the attack analyzed in Carlini et al. (2022),
which consists of feeding the prefixes to the model,
and generating suffixes with greedy decoding. This
is the only extraction attack for this setting apart
from our work, to the best of our knowledge. Our
training setup is discussed in Appendix B. All ex-
periments are repeated over 5 runs with a new ran-
dom train/test split in each run.

4.1 Attack
We explore the performance of our attack across
several dimensions: prompt length, suffix size, pre-
fix size, and beam size. We use greedy-decoding
in all cases, except the beam size experiments.

Prompt Length First, we explore prompt length
in the context of the default setting (prefix and suf-

fix consist of 50 tokens; Figures 2-A1 and 2-A2).
We note that prompts tuned with both CLM and
aligned CLM provide improvements over the base-
line in all cases, with aligned CLM providing the
best performance. Given this, we train prompts
using the aligned CLM objective for all other ex-
periments, including our defense.

With aligned CLM, we achieve the highest ex-
traction rates of 25.8% and 54.3% for the 125M
and 1.3B models, respectively (an improvement of
8.9 and 9.3 percentage points, respectively), with
a 100 token prompt (blue line). We observe that ex-
traction rates increase with prompt length and tend
to saturate after prompt length 100. Over-fitting
was ruled out as a potential cause of saturation as
there is no increase in test loss observed during
training. This suggests that there is a max limit on
the parameter count in the prompt that might add
value for extraction purposes given our objective.
We note that more sophisticated training strategies
(designing better loss functions, better prompt ini-
tialization etc.) might yield better extraction rates.

Suffix Size Next, we fix the prefix size to 50 and
vary the suffix size. As shown in Figures 2-B1
and 2-B2, extraction rates decrease roughly expo-
nentially with suffix size. We note that as suffix size
increases, longer prompts (≥ 20) provide greater
improvements over the baseline. For example, with
a prompt length of 100 (blue line) using the 1.3B
model, at suffix size 5 we observe an extraction
rate increase of 5.3 percentage points. Whereas at
suffix size 50, the increase is 9.3 percentage points.

Prefix Size Next, we fix the suffix size to 50 and
vary the prefix size. As shown in Figures 2-C1
and 2-C2, extraction rates increase roughly loga-
rithmically (as in Carlini et al. 2022). Contrary to
suffix size, we observe that the gaps between base-
line and attacks decrease with increasing prefix
size. This suggests that our attack stands to benefit
a less informed adversary (small prefix sizes) when
compared to the baseline.

Beam Decoding Finally, we utilize the default
setting with prefix and suffix sizes at 50 tokens
and vary the beam size (beam size=1 corresponds
to greedy decoding). The results are shown in
Figures 2-D1 and 2-D2. We observe that extrac-
tion rates increase across the board when increas-
ing beam size from 1 to 5. However, improve-
ments tend to plateau or oscillate when beam size
is greater than 5. The 1.3B model benefits more

1514

Figure 2: The change in exact extraction rates against prompt length (2-A1, 2-A2), suffix size (2-B1, 2-B2), prefix
size (2-C1, 2-C2) and beam size (2-D1, 2-D2). Top panels show the GPT-Neo-125M results while the bottom panels
show GPT-Neo-1.3B results. The transparent polygons about each line represent 95% confidence intervals across
the points.

Model θ
Exact Extract

Rate
Pile Test

PPL

GPT-Neo
125M

0∗ 0.169 ± 0.007 15.71 ± 0.431
1.25 0.031 ± 0.005 16.601 ± 0.197
1.5 0.006 ± 0.001 17.499 ± 0.156
1.75 0.001 ± 0.0 19.691 ± 0.598

GPT2
124M - 0.004 ± 0.002 30.323 ± 1.019

GPT-Neo
1.3B

0∗ 0.450 ± 0.015 9.213 ± 0.232
0.5 0.108 ± 0.02 9.758 ± 0.245
0.75 0.022 ± 0.004 10.267 ± 0.094
1 0.01 ± 0.002 10.775 ± 0.248

GPT2
1.5B - 0.019 ± 0.002 17.155 ± 0.545

Table 1: Exact extraction rates and corresponding per-
plexities for our defense setting, with different values of
θ. Values are reported as mean ± std. Extraction rates
that are smaller than the corresponding GPT2 varient of
similar size, achieved while perplexity values are also
smaller, are good. (∗no defense).

from increasing beam size achieving the highest ex-
traction rate of 61.4%, at a beam size of 20 (with
a prompt length of 150). The highest extraction
rate achieved for the 125M model was 28.3% at a
beam size of 15 (with a prompt length of 100).

4.2 Defense
Finally, we evaluate the privacy-utility trade-off of
our black-box defense. As mentioned in Section 3,
our defense is designed for a black-box adversary,
and cannot be tested against our white-box attack.

Therefore, we utilize the baseline attack (Section 4)
to quantify privacy. We note that longer prompts
did not add value in a defense setting, so we resort
to using a prompt of length 1. We utilize perplexity
(PPL) on generated suffixes, to quantify the utility
of the model in addition to using exact extraction
rate as in Section 3.1. To measure PPL, we use a
random subset of 1k sequences sampled from the
test split of the Pile, ensuring that PPL is measured
on data unseen by the model. We also compare our
metrics with those of similar sized models that were
not trained on the Pile dataset (GPT2 models). Our
premise here is that better performance in terms of
privacy and utility, when compared to an out-of-
domain model of similar size, would mean that our
defense mechanism is of value to an API owner.

In Table 1, we display our results obtained using
the default evaluation setting (prefix and suffix com-
prise of 50 tokens). Our defense achieves lower
extraction rates with competitive PPL values. For
the 125M model, we achieve an exact extraction
rate reduction of 99.4% relative to baseline with a
PPL increase of 25.3% at θ = 1.75. For the 1.3B
model, the extraction rate is reduced by 97.7% rel-
ative to baseline with a PPL increase of 16.9% at
θ = 1. The ability to achieve lower extraction rates
with lower PPL values as measured against the
GPT2 models of the corresponding size, provides
evidence that our defense is effective.

1515

5 Conclusion

We present the first known effort to leverage
prompt-tuning to control the extractability of mem-
orized data from LLMs in an open language genera-
tion task. We develop a novel data extraction attack
and defense, and illustrate their performance under
various settings. Our attack consistently outper-
forms the baseline in terms of exact extraction rate.
Our defense provides competitive privacy-utility
trade-offs and would prove beneficial to API own-
ers with model trained on sensitive content. These
results are achieved efficiently, without any change
to the original model weights. We details avenues
of future work in Appendix C

6 Limitations

We briefly mention some limitations of our work.
First, we have only used a single dataset, and a
single model family in our experiments. This is
mainly due to the fact that the benchmark we use
is the only publicly available dataset at this time
to the best of our knowledge. We also solely fo-
cused on extraction metrics, but did not do a deeper
analysis on the extracted sequences. A fine-grained
analysis of extracted sequences could yield impor-
tant insights for understanding memorization and
extraction in LLMs. Similarly, we also did not an-
alyze what our prompts converge to, and whether
they yield explainable prompts at the time of con-
verge. Such analysis can provide better insights as
to why, for example, training prompts with aligned
CLM performs better that the basic CLM setting.
Finally, we believe the evaluation of our defense
could be improved further by measuring other util-
ity metrics (e.g., accuracy) on downstream tasks.

7 Ethical Considerations

We leverage prompt-tuning to control the ex-
tractability of memorized data from LLMs in an
open language generation task and explore two
settings; an attack and a defense. We acknowl-
edge that our attack methodology could be misused
by an adversary with white-box access to extract
memorized private information from a target large
language model. Our goal is to raise awareness
in the community to the possibility and severity
of this nature of attack. We hope that developers,
armed with this knowledge, can use relevant de-
fense mechanisms to avoid such potential misuse.

Acknowledgements

The authors would like to thank Wael Hamza for
helpful discussions on this topic and Stephen Rawls
for help with securing the GPU instances that were
required for experimentation.

1516

References
Huggingface accelerate.

Martín Abadi, Andy Chu, Ian J. Goodfellow, H. B.
McMahan, Ilya Mironov, Kunal Talwar, and
Li Zhang. 2016. Deep learning with differential pri-
vacy. Proceedings of the 2016 ACM SIGSAC Confer-
ence on Computer and Communications Security.

Sid Black, Leo Gao, Phil Wang, Connor Leahy,
and Stella Biderman. 2021. GPT-Neo: Large
Scale Autoregressive Language Modeling with Mesh-
Tensorflow.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel Ziegler, Jeffrey Wu, Clemens
Winter, Chris Hesse, Mark Chen, Eric Sigler, Ma-
teusz Litwin, Scott Gray, Benjamin Chess, Jack
Clark, Christopher Berner, Sam McCandlish, Alec
Radford, Ilya Sutskever, and Dario Amodei. 2020.
Language models are few-shot learners. In Ad-
vances in Neural Information Processing Systems,
volume 33, pages 1877–1901. Curran Associates,
Inc.

Nicholas Carlini, Daphne Ippolito, Matthew Jagielski,
Katherine Lee, Florian Tramèr, and Chiyuan Zhang.
2022. Quantifying memorization across neural lan-
guage models. ArXiv, abs/2202.07646.

Nicholas Carlini, Chang Liu, Úlfar Erlingsson, Jernej
Kos, and Dawn Xiaodong Song. 2018. The secret
sharer: Evaluating and testing unintended memo-
rization in neural networks. In USENIX Security
Symposium.

Nicholas Carlini, Florian Tramèr, Eric Wallace,
Matthew Jagielski, Ariel Herbert-Voss, Katherine
Lee, Adam Roberts, Tom B. Brown, Dawn Xiaodong
Song, Úlfar Erlingsson, Alina Oprea, and Colin Raf-
fel. 2020. Extracting training data from large lan-
guage models. In USENIX Security Symposium.

Dingfan Chen, Ning Yu, and Mario Fritz. 2022. Re-
laxloss: Defending membership inference attacks
without losing utility. ArXiv, abs/2207.05801.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171–4186, Minneapolis, Minnesota. Association for
Computational Linguistics.

Christophe Dupuy, Radhika Arava, Rahul Gupta, and
Anna Rumshisky. 2021. An efficient dp-sgd mecha-
nism for large scale nlu models. ICASSP 2022 - 2022
IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP), pages 4118–4122.

Cynthia Dwork. 2006. Differential privacy. In Encyclo-
pedia of Cryptography and Security.

Leo Gao, Stella Rose Biderman, Sid Black, Laurence
Golding, Travis Hoppe, Charles Foster, Jason Phang,
Horace He, Anish Thite, Noa Nabeshima, Shawn
Presser, and Connor Leahy. 2020. The pile: An
800gb dataset of diverse text for language modeling.
ArXiv, abs/2101.00027.

Google-Research. Google-research/lm-extraction-
benchmark.

Anisa Halimi, Swanand Kadhe, Ambrish Rawat, and
Nathalie Baracaldo. 2022. Federated unlearning:
How to efficiently erase a client in fl?

Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan
Allen-Zhu, Yuanzhi Li, Shean Wang, and Weizhu
Chen. 2021. Lora: Low-rank adaptation of large
language models. ArXiv, abs/2106.09685.

Zhengbao Jiang, Frank F. Xu, Jun Araki, and Graham
Neubig. 2020. How can we know what language
models know? Transactions of the Association for
Computational Linguistics, 8:423–438.

Diederik P. Kingma and Jimmy Ba. 2014. Adam:
A method for stochastic optimization. CoRR,
abs/1412.6980.

Brian Lester, Rami Al-Rfou, and Noah Constant. 2021.
The power of scale for parameter-efficient prompt
tuning. In Proceedings of the 2021 Conference on
Empirical Methods in Natural Language Processing,
pages 3045–3059, Online and Punta Cana, Domini-
can Republic. Association for Computational Lin-
guistics.

Xiang Lisa Li and Percy Liang. 2021. Prefix-tuning:
Optimizing continuous prompts for generation. In
Proceedings of the 59th Annual Meeting of the Asso-
ciation for Computational Linguistics and the 11th
International Joint Conference on Natural Language
Processing (Volume 1: Long Papers), pages 4582–
4597, Online. Association for Computational Lin-
guistics.

Jimit Majmudar, Christophe Dupuy, Charith S. Peris,
Sami Smaili, Rahul Gupta, and Richard S. Zemel.
2022. Differentially private decoding in large lan-
guage models. ArXiv, abs/2205.13621.

Mustafa Safa Ozdayi, Murat Kantarcioglu, and Yulia R.
Gel. 2021. Defending against backdoors in feder-
ated learning with robust learning rate. Proceedings
of the AAAI Conference on Artificial Intelligence,
35(10):9268–9276.

Adam Paszke, Sam Gross, Francisco Massa, Adam
Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca
Antiga, Alban Desmaison, Andreas Kopf, Edward
Yang, Zachary DeVito, Martin Raison, Alykhan Te-
jani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang,
Junjie Bai, and Soumith Chintala. 2019. Pytorch:

1517

https://huggingface.co/docs/accelerate/index
https://doi.org/10.5281/zenodo.5297715
https://doi.org/10.5281/zenodo.5297715
https://doi.org/10.5281/zenodo.5297715
https://proceedings.neurips.cc/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://github.com/google-research/lm-extraction-benchmark
https://github.com/google-research/lm-extraction-benchmark
https://doi.org/10.48550/ARXIV.2207.05521
https://doi.org/10.48550/ARXIV.2207.05521
https://doi.org/10.1162/tacl_a_00324
https://doi.org/10.1162/tacl_a_00324
https://doi.org/10.18653/v1/2021.emnlp-main.243
https://doi.org/10.18653/v1/2021.emnlp-main.243
https://doi.org/10.18653/v1/2021.acl-long.353
https://doi.org/10.18653/v1/2021.acl-long.353
https://ojs.aaai.org/index.php/AAAI/article/view/17118
https://ojs.aaai.org/index.php/AAAI/article/view/17118
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf

An imperative style, high-performance deep learning
library. In Advances in Neural Information Process-
ing Systems 32, pages 8024–8035. Curran Associates,
Inc.

Alec Radford, Jeff Wu, Rewon Child, David Luan,
Dario Amodei, and Ilya Sutskever. 2019. Language
models are unsupervised multitask learners.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J. Liu. 2020. Exploring the limits
of transfer learning with a unified text-to-text trans-
former. J. Mach. Learn. Res., 21(1).

Jeff Rasley, Samyam Rajbhandari, Olatunji Ruwase, and
Yuxiong He. 2020. Deepspeed: System optimiza-
tions enable training deep learning models with over
100 billion parameters. In Proceedings of the 26th
ACM SIGKDD International Conference on Knowl-
edge Discovery amp; Data Mining, KDD ’20, page
3505–3506, New York, NY, USA. Association for
Computing Machinery.

Victor Sanh, Albert Webson, Colin Raffel, Stephen
Bach, Lintang Sutawika, Zaid Alyafeai, Antoine
Chaffin, Arnaud Stiegler, Arun Raja, Manan Dey,
M Saiful Bari, Canwen Xu, Urmish Thakker,
Shanya Sharma Sharma, Eliza Szczechla, Taewoon
Kim, Gunjan Chhablani, Nihal Nayak, Debajyoti
Datta, Jonathan Chang, Mike Tian-Jian Jiang, Han
Wang, Matteo Manica, Sheng Shen, Zheng Xin Yong,
Harshit Pandey, Rachel Bawden, Thomas Wang, Tr-
ishala Neeraj, Jos Rozen, Abheesht Sharma, An-
drea Santilli, Thibault Fevry, Jason Alan Fries, Ryan
Teehan, Teven Le Scao, Stella Biderman, Leo Gao,
Thomas Wolf, and Alexander M Rush. 2022. Multi-
task prompted training enables zero-shot task gener-
alization. In International Conference on Learning
Representations.

Taylor Shin, Yasaman Razeghi, Robert L. Logan IV,
Eric Wallace, and Sameer Singh. 2020. AutoPrompt:
Eliciting knowledge from language models with auto-
matically generated prompts. In Empirical Methods
in Natural Language Processing (EMNLP).

Saleh Soltan, Shankar Ananthakrishnan, Jack FitzGer-
ald, Rahul Gupta, Wael Hamza, Haidar Khan, Charith
Peris, Stephen Rawls, Andy Rosenbaum, Anna
Rumshisky, Chandana Satya Prakash, Mukund Srid-
har, Fabian Triefenbach, Apurv Verma, Gokhan Tur,
and Prem Natarajan. 2022. Alexatm 20b: Few-shot
learning using a large-scale multilingual seq2seq
model. arXiv.

Ashish Vaswani, Noam M. Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. ArXiv, abs/1706.03762.

Eric Wallace, Shi Feng, Nikhil Kandpal, Matt Gardner,
and Sameer Singh. 2019. Universal adversarial trig-
gers for attacking and analyzing nlp. In Conference
on Empirical Methods in Natural Language Process-
ing.

Jason Wei, Maarten Bosma, Vincent Y. Zhao, Kelvin
Guu, Adams Wei Yu, Brian Lester, Nan Du, An-
drew M. Dai, and Quoc V. Le. 2021. Finetuned
language models are zero-shot learners.

Chiyuan Zhang, Daphne Ippolito, Katherine Lee,
Matthew Jagielski, Florian Tramèr, and Nicholas Car-
lini. 2021. Counterfactual memorization in neural
language models. ArXiv, abs/2112.12938.

A Fractional Extraction Rate Results

Fractional extraction rate is the fraction of gener-
ated tokens that are both correct and in the right
position, over the dataset (see lower section of Fig-
ure 2). Our reason to measure this metric is to pro-
vide a more detailed assessment of risks associated
with extraction. Exact extraction rate is particu-
larly important in cases where the attacker requires
an exact match in order for the extraction to be
of use; a good example is the case of extracting a
credit card number. In such cases, even getting a
few tokens incorrect will render the attack useless.
However, when the attacker cares more about the
meaning of the extracted sequences, fractional ex-
traction rate can be a better metric to assess the risk.
This is because a human might be able to infer the
correct meaning of the sequence even when few
tokens are wrong.

The results related to this metric are shown in
Figure 3. Comparing these results with the exact
extraction rate results (Figure 2), we observe the
same trends across all of our experiment. We note
that the same shared trends are observed in the case
of our defense. In this case the fractional extraction
rate results are tabulated in Table 2.

B Training Setup

Our soft-prompts are initialized to random word
embeddings as described in Lester et al. (2021).
We use a batch size of 128 and an Adam opti-
mizer (Kingma and Ba, 2014) with a learning rate
of 5e − 4. For the attack setting, the prompts are
trained for 15 epochs. In the defense case, the
prompts are trained until training loss stabilizes
around the specified θ value (as described in Sec-
tion 3.2), which happens within 2-3 epochs in our
experiments.

We use a Pytorch (Paszke et al., 2019) imple-
mentation where we leverage the HuggingFace Ac-
celerate (HF) and DeepSpeed (Rasley et al., 2020)
libraries to handle distributed training over 8 GPUs
with fp16 mixed precision. On a p3dn.24xlarge
instance, the average attack prompt training time

1518

http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
https://doi.org/10.1145/3394486.3406703
https://doi.org/10.1145/3394486.3406703
https://doi.org/10.1145/3394486.3406703
https://openreview.net/forum?id=9Vrb9D0WI4
https://openreview.net/forum?id=9Vrb9D0WI4
https://openreview.net/forum?id=9Vrb9D0WI4
https://www.amazon.science/publications/alexatm-20b-few-shot-learning-using-a-large-scale-multilingual-seq2seq-model
https://www.amazon.science/publications/alexatm-20b-few-shot-learning-using-a-large-scale-multilingual-seq2seq-model
https://www.amazon.science/publications/alexatm-20b-few-shot-learning-using-a-large-scale-multilingual-seq2seq-model
https://doi.org/10.48550/ARXIV.2109.01652
https://doi.org/10.48550/ARXIV.2109.01652

Figure 3: The change in fractional extraction rates against prompt length (3-A1, 3-A2), suffix size (3-B1, 3-B2),
prefix size (3-C1, 3-C2) and beam size (3-D1, 3-D2). Top panels show the GPT-Neo-125M results while the bottom
panels show GPT-Neo-1.3B results. The transparent polygons about each line represent 95% confidence intervals
across the points.

Model θ
Fract Extract

Rate
Pile Test

PPL

GPT-Neo
125M

0∗ 0.35 ± 0.006 15.71 ± 0.431
1.25 0.192 ± 0.011 16.601 ± 0.197
1.5 0.123 ± 0.005 17.499 ± 0.156
1.75 0.087 ± 0.003 19.691 ± 0.598

GPT2
124M - 0.099 ± 0.003 30.323 ± 1.019

GPT-Neo
1.3B

0∗ 0.634 ± 0.013 9.213 ± 0.232
0.5 0.316 ± 0.022 9.758 ± 0.245
0.75 0.171 ± 0.004 10.267 ± 0.094
1 0.128 ± 0.006 10.775 ± 0.248

GPT2
1.5B - 0.166 ± 0.003 17.155 ± 0.545

Table 2: Fractional extraction rates and corresponding
perplexities for our defense setting, with different values
of θ. Values are reported as mean ± std. Extraction rates
that are smaller than the corresponding GPT2 varient of
similar size, achieved while perplexity values are also
smaller, are good.(∗no defense).

was 0.9 hours per prompt while the average defense
prompt training time was 0.02 hours per prompt.

C Future work

We have several avenues that we would like to ex-
plore in the context of future work. We envision
that more sophisticated training strategies might
yield better extraction rates in our attack setting
(designing better loss objectives, better initializa-
tion of soft-prompts etc.) and we would like to
explore this further.

We would like to explore different prompt learn-
ing algorithms such as other parameter-efficient
training methods (Li and Liang, 2021; Hu et al.,
2021), and hard-prompt learning methods (Wallace
et al., 2019), in order to conduct a more robust
analysis of extraction rates.

We would like to test the transferability of
trained prompts across different models and
datasets.

Finally, we would like to combine our defense
with other existing defenses such as those applied
at training time (e.g. versions of differentially pri-
vate stochastic gradient descent; Abadi et al. 2016;
Dupuy et al. 2021) or those applied at decoding
stage (e.g., differentially private decoding; Majmu-
dar et al. 2022). The goal would be to achieve better
privacy-utility trade-offs under a combination of
such defenses.

1519

ACL 2023 Responsible NLP Checklist

A For every submission:
�3 A1. Did you describe the limitations of your work?

See Section 6

�3 A2. Did you discuss any potential risks of your work?
See Ethical Considerations under Section 7

�3 A3. Do the abstract and introduction summarize the paper’s main claims?
See Abstract and Section 1.

�7 A4. Have you used AI writing assistants when working on this paper?
Left blank.

B �3 Did you use or create scientific artifacts?
See Section 4

�3 B1. Did you cite the creators of artifacts you used?
We’ve cited the models. We cited the dataset in the right way to the best of our knowledge.

�7 B2. Did you discuss the license or terms for use and / or distribution of any artifacts?
These are publicly available models and data and so their licenses are in accordance with our work.

� B3. Did you discuss if your use of existing artifact(s) was consistent with their intended use, provided
that it was specified? For the artifacts you create, do you specify intended use and whether that is
compatible with the original access conditions (in particular, derivatives of data accessed for research
purposes should not be used outside of research contexts)?
Not applicable. The artifacts we use have been used by multiple publications for the same purpose
as ours and are in accordance with their intended use. We do not create any model or data related
artifacts.

�7 B4. Did you discuss the steps taken to check whether the data that was collected / used contains any
information that names or uniquely identifies individual people or offensive content, and the steps
taken to protect / anonymize it?
This data is part of the Pile dataset (Gao et al. 2020) that has seen much study in previous publications
in the context of large language model training. Therefore, we do not take special steps to discuss
this.

�7 B5. Did you provide documentation of the artifacts, e.g., coverage of domains, languages, and
linguistic phenomena, demographic groups represented, etc.?
The dataset we use been discussed in Gao et al. 2020 citation and an interested reader will be able
to gather information here. The models are also discussed in the Black et al. 2021 citation.

�3 B6. Did you report relevant statistics like the number of examples, details of train / test / dev splits,
etc. for the data that you used / created? Even for commonly-used benchmark datasets, include the
number of examples in train / validation / test splits, as these provide necessary context for a reader
to understand experimental results. For example, small differences in accuracy on large test sets may
be significant, while on small test sets they may not be.
See Section 4.

The Responsible NLP Checklist used at ACL 2023 is adopted from NAACL 2022, with the addition of a question on AI writing
assistance.

1520

https://2023.aclweb.org/
https://2022.naacl.org/blog/responsible-nlp-research-checklist/
https://2023.aclweb.org/blog/ACL-2023-policy/
https://2023.aclweb.org/blog/ACL-2023-policy/

C �3 Did you run computational experiments?
See Section 4

�3 C1. Did you report the number of parameters in the models used, the total computational budget
(e.g., GPU hours), and computing infrastructure used?
See Section 4 and Training set up in Appendix B

�3 C2. Did you discuss the experimental setup, including hyperparameter search and best-found
hyperparameter values?
For training we utilize a set of parameters that have been commonly used in previous studies. For
theta (a hyper parameter that we introduce) see Table 1 for theta values that we explore. And
Appendix B for experimental setup.

�3 C3. Did you report descriptive statistics about your results (e.g., error bars around results, summary
statistics from sets of experiments), and is it transparent whether you are reporting the max, mean,
etc. or just a single run?
We show errorbars in all our plots, See Figure 2 and 3. We also report mean and stdev based on 5
runs.

�3 C4. If you used existing packages (e.g., for preprocessing, for normalization, or for evaluation), did
you report the implementation, model, and parameter settings used (e.g., NLTK, Spacy, ROUGE,
etc.)?
We clearly define our metrics in Section 4 and Appendix A. They do not use existing packages. We do
not do any pre-processing or normalization.

D �7 Did you use human annotators (e.g., crowdworkers) or research with human participants?
Left blank.

� D1. Did you report the full text of instructions given to participants, including e.g., screenshots,
disclaimers of any risks to participants or annotators, etc.?
Not applicable. Left blank.

� D2. Did you report information about how you recruited (e.g., crowdsourcing platform, students)
and paid participants, and discuss if such payment is adequate given the participants’ demographic
(e.g., country of residence)?
Not applicable. Left blank.

� D3. Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? For example, if you collected data via crowdsourcing, did your instructions to
crowdworkers explain how the data would be used?
Not applicable. Left blank.

� D4. Was the data collection protocol approved (or determined exempt) by an ethics review board?
Not applicable. Left blank.

� D5. Did you report the basic demographic and geographic characteristics of the annotator population
that is the source of the data?
Not applicable. Left blank.

1521

