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Abstract

Large Language Models (LLMs) are known
to memorize significant portions of their train-
ing data. Parts of this memorized content have
been shown to be extractable by simply query-
ing the model, which poses a privacy risk. We
present a novel approach which uses prompt-
tuning to control the extraction rates of memo-
rized content in LLMs. We present two prompt
training strategies to increase and decrease ex-
traction rates, which correspond to an attack
and a defense, respectively. We demonstrate
the effectiveness of our techniques by using
models from the GPT-Neo family on a pub-
lic benchmark. For the 1.3B parameter GPT-
Neo model, our attack yields a 9.3 percent-
age point increase in extraction rate compared
to our baseline. Our defense can be tuned to
achieve different privacy-utility trade-offs by a
user-specified hyperparameter. We achieve an
extraction rate reduction of up to 97.7% rela-
tive to our baseline, with a perplexity increase
of 16.9%.

1 Introduction

Pretrained large language models (LLMs; Devlin
et al., 2019; Radford et al., 2019; Raffel et al., 2020;
Soltan et al., 2022), commonly trained on massive
crowd-sourced corpora, have been of much interest
in the recent past due to their usage as backbones in
state-of-the-art models across multiple downstream
NLU tasks. However, they have been shown to
memorize significant portions of their training data
that can be extracted using appropriately-crafted
prompts (Carlini et al., 2020, 2022; Zhang et al.,
2021). Such extractions pose a privacy risk to the
contributors of the training data.

In this context, methods that allow developers
to control the extractability of memorized exam-
ples from LLMs are of much value. For example,

∗ Work done while the author was an intern at Amazon;
mustafa.ozdayi@utdallas.edu

† perisc@amazon.com

methods that increase extraction rates correspond
to attacks in an adversarial setting, and provide
developers with the ability to analyze privacy-risk.
Methods that decrease extraction rates, referred to
as defenses, are useful for protecting against such
attacks. Historically, defense methods tend to be
compute intensive (Abadi et al., 2016; Dupuy et al.,
2021).

In this work, we train continuous soft-prompts
(Lester et al. 2021; hereafter referred to simply as
prompts) and leverage them as a way of passing
an external signal into an LLM, to control the ex-
traction of memorized data. We freeze the model
weights, and only use the trained prompt to con-
trol the generation. First, we train prompts in an
attack setting and study the extent of extractable
memorized content in our models. Second, we ex-
plore a defense setting where we create prompts
that reduce extraction rates and achieve different
privacy-utility trade-offs, via a user-specified hy-
perparameter. Since the original model weights
are frozen in both these settings, our methods are
compute efficient across the board.

To the best of our knowledge, our work is the
first to adapt the use of instructive prompts for the
analysis and mitigation of privacy in LLMs. We
have released the code developed for our experi-
ments1.

2 Background and Related Work

Previous work has shown that LLMs display mem-
orization and has explored a range of methods that
quantify extractability (Carlini et al., 2018, 2020,
2022). Differentially-private training (Dwork,
2006; Abadi et al., 2016) is a popular method
that has been used to mitigate this risk. However,
it tends to reduce model utility and requires re-
training of the LLM, which might not be feasible
due to heavy computational burden.

1https://github.com/amazon-science/controlling-llm-
memorization
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Figure 1: A schematic of our setup. The upper section
shows our training and testing setup while the lower
section shows our evaluation metrics.

The use of instructive prompts for language mod-
els has been extensively researched, including use
during pretraining (Raffel et al., 2020), as a sec-
ond stage of training (Sanh et al., 2022; Wei et al.,
2021), and during inference to guide model output
(Brown et al., 2020). Within the third category, in
order to improve upon manual prompt engineering
researchers have implemented methods to learn dis-
crete natural language prompts (Shin et al., 2020),
to mine them (Jiang et al., 2020), or, neglecting
natural language, to learn continuous prompts (Li
and Liang, 2021; Lester et al., 2021).

Our work leverages continuous prompts as a way
of passing an external signal to a model to trigger
a desired model behavior (i.e., less or more memo-
rized data in open language generation, which map
to an extraction attack and defense, respectively).

3 Method

Prompt-tuning requires the prepending of a prompt
to the prefix embedding and access to the training
loss (see Figure 1). Given these constraints, we
explore a white-box attack where the adversary has
access to the target model parameters, and a black-
box defense where the adversary interacts with the
target model via an API. We therefore do not test
our defense against our own attack.

Let [prefix || suffix] be a sequence in the training

set where the prefix is of length k tokens. Carlini
et al. (2022) defined a suffix to be k-extractable
if the model generates the suffix exactly, after be-
ing prompted with its the corresponding length-
k prefix. Our white-box attack aims to increase
the number of k-extractable sequences, while our
black-box defense aims to reduce the number of
k-extractable sequences that can be extracted by an
adversary who submits prefixes via an API.

3.1 Attack
In the attack setting, we assume that the adversary
has a set of [ prefix || suffix ] sequences Strain,
sampled from the training set of the target model.
Their goal is to extract the suffixes corresponding
to a disjoint set of prefixes, denoted by Stest

2.
To do so, the adversary first initializes a prompt:

a continuous set of l × e parameters where e is the
embedding size of the model, and l is the length of
the prompt, a hyperparameter decided by the adver-
sary. The prompt is trained over Strain to facilitate
the correct generation of suffixes. To do this, we
first prepend the prompt to the embedding of the
prefix and pass the joint embedding through the
model for generation. We then minimize the loss
objective (see below) with respect to the prompt
while keeping the parameters of the model frozen.

We explore two loss objectives. The first is
causal language modeling (hereafter referred to as
CLM), where we minimize the cross-entropy loss
over the entire sequence (Radford et al., 2019). In
the second, the prompt is optimized by minimizing
the cross entropy loss of only the suffixes, given
the prefixes. Here, the training is aligned with our
inference task such that during training the model
is penalized only on the suffix tokens; hence we
refer to it as aligned CLM. During inference, the
learned prompt is prepended to each embedding
of the prefixes in Stest, and the joint embedding is
passed to the model for generation (see Figure 1).

3.2 Defense
In the defense setting, the defender (API owner)
trains the prompt, and prepends it to the incoming
prefixes before passing them to the model. Our
algorithm is inspired by machine-unlearning liter-
ature (Halimi et al., 2022), and defenses against
membership inference and backdoor attacks (Chen
et al., 2022; Ozdayi et al., 2021). We introduce a

2For simplicity, we assume all prefixes are k-length. This
can easily be ensured by padding or truncating different length
prefixes if needed in a real-world setting.
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hyperparameter named learning threshold denoted
by θ. During prompt training (see Section 3.1),
when loss is less than θ we do gradient ascent to
penalize the prompt. If the loss is greater than θ,
we perform gradient descent with respect to the
prompt as usual. Training is stopped once the av-
erage epoch loss is equal or above θ. This allows
us to increase training loss in a controlled manner
and stabilize it around θ. Through this process, we
can achieve various privacy-utility trade-offs effi-
ciently without re-training any part of the model.
To explore θ, we set the initial value to be slightly
above the model training loss and increase in steps
of 0.25 until desired performance is achieved.

4 Experiments

For our experiments, we use the 125M and 1.3B
parameter variants of the GPT-Neo models (Black
et al., 2021). These are public, decoder-only trans-
former models (Vaswani et al., 2017) trained using
CLM on the Pile dataset (Gao et al., 2020). We
extract Strain and Stest from the Language Model
Extraction Benchmark dataset (Google-Research).
This dataset contains 15k sequences sampled from
the training split of the Pile where each sequence
is partitioned into a prefix and suffix. In the default
evaluation setting, both prefix and suffix consist of
50 tokens. We ensure a random train/test split of
14k/1k samples.

Our evaluation metric of choice is Exact extrac-
tion rate which is the fraction of correctly gener-
ated suffixes (i.e., all tokens of the generated suffix
match with ground-truth suffix) over the test set.
We additionally discuss fractional extraction rate
and present results in Appendix A. As a baseline,
we use the attack analyzed in Carlini et al. (2022),
which consists of feeding the prefixes to the model,
and generating suffixes with greedy decoding. This
is the only extraction attack for this setting apart
from our work, to the best of our knowledge. Our
training setup is discussed in Appendix B. All ex-
periments are repeated over 5 runs with a new ran-
dom train/test split in each run.

4.1 Attack
We explore the performance of our attack across
several dimensions: prompt length, suffix size, pre-
fix size, and beam size. We use greedy-decoding
in all cases, except the beam size experiments.

Prompt Length First, we explore prompt length
in the context of the default setting (prefix and suf-

fix consist of 50 tokens; Figures 2-A1 and 2-A2).
We note that prompts tuned with both CLM and
aligned CLM provide improvements over the base-
line in all cases, with aligned CLM providing the
best performance. Given this, we train prompts
using the aligned CLM objective for all other ex-
periments, including our defense.

With aligned CLM, we achieve the highest ex-
traction rates of 25.8% and 54.3% for the 125M
and 1.3B models, respectively (an improvement of
8.9 and 9.3 percentage points, respectively), with
a 100 token prompt (blue line). We observe that ex-
traction rates increase with prompt length and tend
to saturate after prompt length 100. Over-fitting
was ruled out as a potential cause of saturation as
there is no increase in test loss observed during
training. This suggests that there is a max limit on
the parameter count in the prompt that might add
value for extraction purposes given our objective.
We note that more sophisticated training strategies
(designing better loss functions, better prompt ini-
tialization etc.) might yield better extraction rates.

Suffix Size Next, we fix the prefix size to 50 and
vary the suffix size. As shown in Figures 2-B1
and 2-B2, extraction rates decrease roughly expo-
nentially with suffix size. We note that as suffix size
increases, longer prompts (≥ 20) provide greater
improvements over the baseline. For example, with
a prompt length of 100 (blue line) using the 1.3B
model, at suffix size 5 we observe an extraction
rate increase of 5.3 percentage points. Whereas at
suffix size 50, the increase is 9.3 percentage points.

Prefix Size Next, we fix the suffix size to 50 and
vary the prefix size. As shown in Figures 2-C1
and 2-C2, extraction rates increase roughly loga-
rithmically (as in Carlini et al. 2022). Contrary to
suffix size, we observe that the gaps between base-
line and attacks decrease with increasing prefix
size. This suggests that our attack stands to benefit
a less informed adversary (small prefix sizes) when
compared to the baseline.

Beam Decoding Finally, we utilize the default
setting with prefix and suffix sizes at 50 tokens
and vary the beam size (beam size=1 corresponds
to greedy decoding). The results are shown in
Figures 2-D1 and 2-D2. We observe that extrac-
tion rates increase across the board when increas-
ing beam size from 1 to 5. However, improve-
ments tend to plateau or oscillate when beam size
is greater than 5. The 1.3B model benefits more
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Figure 2: The change in exact extraction rates against prompt length (2-A1, 2-A2), suffix size (2-B1, 2-B2), prefix
size (2-C1, 2-C2) and beam size (2-D1, 2-D2). Top panels show the GPT-Neo-125M results while the bottom panels
show GPT-Neo-1.3B results. The transparent polygons about each line represent 95% confidence intervals across
the points.

Model θ
Exact Extract

Rate
Pile Test

PPL

GPT-Neo
125M

0∗ 0.169 ± 0.007 15.71 ± 0.431
1.25 0.031 ± 0.005 16.601 ± 0.197
1.5 0.006 ± 0.001 17.499 ± 0.156
1.75 0.001 ± 0.0 19.691 ± 0.598

GPT2
124M - 0.004 ± 0.002 30.323 ± 1.019

GPT-Neo
1.3B

0∗ 0.450 ± 0.015 9.213 ± 0.232
0.5 0.108 ± 0.02 9.758 ± 0.245
0.75 0.022 ± 0.004 10.267 ± 0.094
1 0.01 ± 0.002 10.775 ± 0.248

GPT2
1.5B - 0.019 ± 0.002 17.155 ± 0.545

Table 1: Exact extraction rates and corresponding per-
plexities for our defense setting, with different values of
θ. Values are reported as mean ± std. Extraction rates
that are smaller than the corresponding GPT2 varient of
similar size, achieved while perplexity values are also
smaller, are good. (∗no defense).

from increasing beam size achieving the highest ex-
traction rate of 61.4%, at a beam size of 20 (with
a prompt length of 150). The highest extraction
rate achieved for the 125M model was 28.3% at a
beam size of 15 (with a prompt length of 100).

4.2 Defense
Finally, we evaluate the privacy-utility trade-off of
our black-box defense. As mentioned in Section 3,
our defense is designed for a black-box adversary,
and cannot be tested against our white-box attack.

Therefore, we utilize the baseline attack (Section 4)
to quantify privacy. We note that longer prompts
did not add value in a defense setting, so we resort
to using a prompt of length 1. We utilize perplexity
(PPL) on generated suffixes, to quantify the utility
of the model in addition to using exact extraction
rate as in Section 3.1. To measure PPL, we use a
random subset of 1k sequences sampled from the
test split of the Pile, ensuring that PPL is measured
on data unseen by the model. We also compare our
metrics with those of similar sized models that were
not trained on the Pile dataset (GPT2 models). Our
premise here is that better performance in terms of
privacy and utility, when compared to an out-of-
domain model of similar size, would mean that our
defense mechanism is of value to an API owner.

In Table 1, we display our results obtained using
the default evaluation setting (prefix and suffix com-
prise of 50 tokens). Our defense achieves lower
extraction rates with competitive PPL values. For
the 125M model, we achieve an exact extraction
rate reduction of 99.4% relative to baseline with a
PPL increase of 25.3% at θ = 1.75. For the 1.3B
model, the extraction rate is reduced by 97.7% rel-
ative to baseline with a PPL increase of 16.9% at
θ = 1. The ability to achieve lower extraction rates
with lower PPL values as measured against the
GPT2 models of the corresponding size, provides
evidence that our defense is effective.
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5 Conclusion

We present the first known effort to leverage
prompt-tuning to control the extractability of mem-
orized data from LLMs in an open language genera-
tion task. We develop a novel data extraction attack
and defense, and illustrate their performance under
various settings. Our attack consistently outper-
forms the baseline in terms of exact extraction rate.
Our defense provides competitive privacy-utility
trade-offs and would prove beneficial to API own-
ers with model trained on sensitive content. These
results are achieved efficiently, without any change
to the original model weights. We details avenues
of future work in Appendix C

6 Limitations

We briefly mention some limitations of our work.
First, we have only used a single dataset, and a
single model family in our experiments. This is
mainly due to the fact that the benchmark we use
is the only publicly available dataset at this time
to the best of our knowledge. We also solely fo-
cused on extraction metrics, but did not do a deeper
analysis on the extracted sequences. A fine-grained
analysis of extracted sequences could yield impor-
tant insights for understanding memorization and
extraction in LLMs. Similarly, we also did not an-
alyze what our prompts converge to, and whether
they yield explainable prompts at the time of con-
verge. Such analysis can provide better insights as
to why, for example, training prompts with aligned
CLM performs better that the basic CLM setting.
Finally, we believe the evaluation of our defense
could be improved further by measuring other util-
ity metrics (e.g., accuracy) on downstream tasks.

7 Ethical Considerations

We leverage prompt-tuning to control the ex-
tractability of memorized data from LLMs in an
open language generation task and explore two
settings; an attack and a defense. We acknowl-
edge that our attack methodology could be misused
by an adversary with white-box access to extract
memorized private information from a target large
language model. Our goal is to raise awareness
in the community to the possibility and severity
of this nature of attack. We hope that developers,
armed with this knowledge, can use relevant de-
fense mechanisms to avoid such potential misuse.
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A Fractional Extraction Rate Results

Fractional extraction rate is the fraction of gener-
ated tokens that are both correct and in the right
position, over the dataset (see lower section of Fig-
ure 2). Our reason to measure this metric is to pro-
vide a more detailed assessment of risks associated
with extraction. Exact extraction rate is particu-
larly important in cases where the attacker requires
an exact match in order for the extraction to be
of use; a good example is the case of extracting a
credit card number. In such cases, even getting a
few tokens incorrect will render the attack useless.
However, when the attacker cares more about the
meaning of the extracted sequences, fractional ex-
traction rate can be a better metric to assess the risk.
This is because a human might be able to infer the
correct meaning of the sequence even when few
tokens are wrong.

The results related to this metric are shown in
Figure 3. Comparing these results with the exact
extraction rate results (Figure 2), we observe the
same trends across all of our experiment. We note
that the same shared trends are observed in the case
of our defense. In this case the fractional extraction
rate results are tabulated in Table 2.

B Training Setup

Our soft-prompts are initialized to random word
embeddings as described in Lester et al. (2021).
We use a batch size of 128 and an Adam opti-
mizer (Kingma and Ba, 2014) with a learning rate
of 5e − 4. For the attack setting, the prompts are
trained for 15 epochs. In the defense case, the
prompts are trained until training loss stabilizes
around the specified θ value (as described in Sec-
tion 3.2), which happens within 2-3 epochs in our
experiments.

We use a Pytorch (Paszke et al., 2019) imple-
mentation where we leverage the HuggingFace Ac-
celerate (HF) and DeepSpeed (Rasley et al., 2020)
libraries to handle distributed training over 8 GPUs
with fp16 mixed precision. On a p3dn.24xlarge
instance, the average attack prompt training time
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Figure 3: The change in fractional extraction rates against prompt length (3-A1, 3-A2), suffix size (3-B1, 3-B2),
prefix size (3-C1, 3-C2) and beam size (3-D1, 3-D2). Top panels show the GPT-Neo-125M results while the bottom
panels show GPT-Neo-1.3B results. The transparent polygons about each line represent 95% confidence intervals
across the points.

Model θ
Fract Extract

Rate
Pile Test

PPL

GPT-Neo
125M

0∗ 0.35 ± 0.006 15.71 ± 0.431
1.25 0.192 ± 0.011 16.601 ± 0.197
1.5 0.123 ± 0.005 17.499 ± 0.156
1.75 0.087 ± 0.003 19.691 ± 0.598

GPT2
124M - 0.099 ± 0.003 30.323 ± 1.019

GPT-Neo
1.3B

0∗ 0.634 ± 0.013 9.213 ± 0.232
0.5 0.316 ± 0.022 9.758 ± 0.245
0.75 0.171 ± 0.004 10.267 ± 0.094
1 0.128 ± 0.006 10.775 ± 0.248

GPT2
1.5B - 0.166 ± 0.003 17.155 ± 0.545

Table 2: Fractional extraction rates and corresponding
perplexities for our defense setting, with different values
of θ. Values are reported as mean ± std. Extraction rates
that are smaller than the corresponding GPT2 varient of
similar size, achieved while perplexity values are also
smaller, are good.(∗no defense).

was 0.9 hours per prompt while the average defense
prompt training time was 0.02 hours per prompt.

C Future work

We have several avenues that we would like to ex-
plore in the context of future work. We envision
that more sophisticated training strategies might
yield better extraction rates in our attack setting
(designing better loss objectives, better initializa-
tion of soft-prompts etc.) and we would like to
explore this further.

We would like to explore different prompt learn-
ing algorithms such as other parameter-efficient
training methods (Li and Liang, 2021; Hu et al.,
2021), and hard-prompt learning methods (Wallace
et al., 2019), in order to conduct a more robust
analysis of extraction rates.

We would like to test the transferability of
trained prompts across different models and
datasets.

Finally, we would like to combine our defense
with other existing defenses such as those applied
at training time (e.g. versions of differentially pri-
vate stochastic gradient descent; Abadi et al. 2016;
Dupuy et al. 2021) or those applied at decoding
stage (e.g., differentially private decoding; Majmu-
dar et al. 2022). The goal would be to achieve better
privacy-utility trade-offs under a combination of
such defenses.
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