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Abstract

As a subjective metric to evaluate the quality of
synthesized speech, Mean opinion score (MOS)
usually requires multiple annotators to score
the same speech. Such an annotation approach
requires a lot of manpower and is also time-
consuming. MOS prediction model for auto-
matic evaluation can significantly reduce labor
cost. In previous works, it is difficult to accu-
rately rank the quality of speech when the MOS
scores are close. However, in practical applica-
tions, it is more important to correctly rank the
quality of synthesis systems or sentences than
simply predicting MOS scores. Meanwhile,
as each annotator scores multiple audios dur-
ing annotation, the score is probably a relative
value based on the first or the first few speech
scores given by the annotator. Motivated by
the above two points, we propose a general
framework for MOS prediction based on pair
comparison (MOSPC), and we utilize C-Mixup
algorithm to enhance the generalization perfor-
mance of MOSPC. The experiments on BVCC
and VCC2018 show that our framework out-
performs the baselines on most of the correla-
tion coefficient metrics, especially on the met-
ric KTAU related to quality ranking. And our
framework also surpasses the strong baseline in
ranking accuracy on each fine-grained segment.
These results indicate that our framework con-
tributes to improving the ranking accuracy of
speech quality.

1 Introduction

Speech quality evaluation metrics are designed to
reflect the speech quality of synthesized speech.
Speech quality evaluation metrics include objective
metrics (Kubichek, 1993; Kim, 2005; Malfait et al.,
2006) and subjective metrics (Wester et al., 2016a).

MOS prediction is the task of constructing an
automatic evaluation metric by fitting the subjec-
tive evaluation metric MOS. The training process
of previous works mainly focus on predicting the
MOS of a single speech. By reviewing the anno-

tation process of MOS, we found that comparison
may be a potential scoring strategy employed by
some of the annotators. Specifically, in the dataset
VCC2018, each annotator scored an average of
226 speech. As each annotator annotates multiple
speech in succession, the scores given by some an-
notators may be relative scores after comparison
(e.g., the first or first few utterances scored by the
annotator may be used as a benchmark). More-
over, compared with predicting the specific MOS
score values of the speech samples, ranking the
quality of speech samples has more practical ap-
plication value and is often more difficult when
speech samples have close MOS scores. Many pre-
vious works (Cooper et al., 2022) have raised the
problem of generalization, and the performance
will be significantly degraded when facing the out-
of-distribution (OOD) problems. Motivated by the
above points, we propose a MOS prediction model
based on pairwise comparison (MOSPC). Our con-
tributions can be summarized as follows:

• We propose a general framework for MOS
prediction based on pair comparison, which
forces the model to pay more attention to cor-
rectly rank the quality of two speech samples.
To verify that MOSPC contributes to speech
quality ranking, we test the ranking accuracy
on the validation set on fine-grained MOS
score segments. Then we utilize the C-Mixup
algorithm to enhance the performance of gen-
eralization on BVCC.

• Our proposed framework outperforms the
baselines on BVCC and VCC2018 on most
of the correlation coefficient metrics, espe-
cially on the metric KTAU related to quality
ranking. And our framework surpasses the
strong baseline in ranking accuracy on each
fine-grained segment. These results indicate
that our framework contributes to improving
ranking accuracy. The model trained with
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VCC2018 and BVCC outperforms baselines
on the OOD datasets VCC2016 and BC2019
in zero-shot experiments respectively. In ad-
dition, we analyze the performance of our
model for fine-grained OOD categories, such
as unseen-system, unseen-listener and unseen-
speaker.

2 Related Work

A classic work in MOS prediction task is
MOSNET (Lo et al., 2019), which adopts the
model structure of CNN-BiLSTM and proposes
a loss function combining frame-level loss and
utterance-level loss. Due to the need for manual
annotation, few data can be used in the MOS pre-
diction task. To reduce data waste, MBNET (Leng
et al., 2021) proposes a MOS predictor consisting
of a meanNet and a biasNet. LDNET (Huang et al.,
2022) observed that MBNet removes biasNet at
inference and only retains meanNet, which is in-
efficient. Therefore, LDNET improves MBNET
by adopting an encoder-decoder structure to re-
duce the waste of parameters. DDOS (Tseng et al.,
2022) proposes to eliminate the domain mismatch
between self-supervised learning (ssl) model and
MOS prediction data, and adds score distribution of
each utterance to model learning. UTMOS (Saeki
et al., 2022) is based on ensemble learning of strong
and weak learners. Fusion-SSL (Yang et al., 2022)
uses late fusion, and fuses the results of 7 ssl mod-
els to predict MOS value. Cooper et al. (2022)
makes a analysis of the OOD problem of MOS
prediction. The OOD problems in MOS predic-
tion mainly include unseen-system, unseen-listener,
unseen-speaker in the test and validation sets.

Our proposed MOSPC adopts dynamic pairwise
comparison. Compared with the previous meth-
ods (Lo et al., 2019; Leng et al., 2021; Huang et al.,
2022; Yang et al., 2022), our method pays more
attention to correctly evaluating the relative quality
of speech.

3 Method

In this section, we will introduce the overall struc-
ture of MOSPC and the implementation of pairwise
comparison, as well as the C-Mixup algorithm used
to enhance generalization performance.

3.1 Preliminary

Given a dataset D including N speech samples,
denoted as D = {[x1, y1], [x2, y2], . . . , [xN , yN ]},

Figure 1: Overall model structure for inference.

Figure 2: Training process based on pair comparison.

xi and yi denote the ith speech sample and its
ground truth. We denote the kth ssl model as fk,
k ∈ {1, 2, . . . , 7}, then the predicted MOS of the
kth ssl model for input xi can be represented as
mki = fk(xi). F represents the fusion model,
which consists of 7 ssl models and a fusion layer.
mi = F (xi) denotes the predicted MOS made by
the fusion model.

3.2 MOSPC

3.2.1 Fusion Model
Our model is based on Fusion-SSL (Yang et al.,
2022). The overall model structure is shown
in Figure 1. The fusion model mainly consists
of 7 ssl models: wav2vec_small, wav2vec_large,
hubert_base, wav2vec_large(lv60), wavlm_base,
wavlm_base+, wavlm_large and a fusion layer.
The fusion layer is a fully connected layer. Dur-
ing inference, speech xi is fed to ssl model
f1, f2, . . . , f7 separately, and the MOS values
m1i,m2i, . . . ,m7i are obtained. Then the MOS
values are concatenated and fed into the fusion
layer to predict MOS value mi. During training, we
leverage pairwise comparison to force the model to
pay more attention to the relative quality of speech.

3.2.2 Training in Stages
Pair Comparison Our proposed training process
is shown in Figure 2. We dynamically make pairs
in each batch and constrain each speech sample to
form at most two pairs in order to prevent overfit-
ting. The speech samples xi and xj are input into
the ssl model respectively, then MOS scores mki
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Table 1: Results on VCC2018 and BVCC. The left side of the table shows the results of our proposed MOSPC and
baselines on VCC2018. The right side of the table shows the results of our proposed MOSPC and baselines on
BVCC.

VCC2018 BVCC
utterance-level system-level utterance-level system-level

MSE LCC SRCC KTAU MSE LCC SRCC KTAU MSE LCC SRCC KTAU MSE LCC SRCC KTAU
MOSNET 0.538 0.643 0.589 - 0.084 0.957 0.888 - 0.816 0.294 0.263 - 0.563 0.261 0.266 -
LDNET 0.441 0.664 0.626 0.465 0.022 0.978 0.932 0.825 0.338 0.774 0.773 0.582 0.139 0.896 0.893 0.714
MBNET 0.426 0.680 0.647 - 0.029 0.977 0.949 - 0.433 0.727 0.753 0.564 0.228 0.844 0.870 0.685

Fusion-SSL 0.359 0.740 0.711 0.542 0.018 0.991 0.984 0.914 0.156 0.902 0.901 0.735 0.051 0.960 0.962 0.848
MOSPC 0.352 0.748 0.721 0.551 0.020 0.993 0.988 0.938 0.148 0.906 0.906 0.742 0.054 0.960 0.962 0.841

and mkj are predicted, and the loss function Lpair

is calculated jointly. All 7 ssl models are trained
in such a pair comparison manner. Loss function
Lpair consists of three parts: the relative ranking
loss Lrank and the L1 loss of two speech samples
denoted by Ld1 and Ld2 respectively:

Lpair = (1− β) ∗ Lrank + β ∗ (Ld1 + Ld2) (1)

where β is a hyperparameter, the model learns
to predict MOS scores by optimizing Ld1,Ld2,
and learns to rank two audios by optimizing
Lrank (Burges et al., 2005). Refer to Appendix
A for more details of Lrank.

C-Mixup We observed degradation in generaliza-
tion performance in the experiments on the BVCC
dataset. Therefore, after experiments in Section
5.2 and 5.3, for each ssl model trained on BVCC,
we adopt C-Mixup (Yao et al., 2022; Cheng et al.,
2023) to enhance the generalization performance.
C-Mixup proportionally combines in-set samples in
pairs to construct pseudo-out-of-set samples to im-
prove the generalization performance of the model.
Refer to Appendix B for details of C-Mixup al-
gorithm. To distinguish the model from the one
trained without C-Mixup, we named the model
trained with C-Mixup as MOSPC-C.

4 Dataset

The datasets adopted in this paper include main
track data and out-of-domain data. Main track data
include VCC2018 and BVCC, and out-of-domain
data include VCC2016, BC2019 and ASV2019.
See Appendix C for details of datasets.

5 Experiments and Discussion

In this section, we will compare the performance of
MOSPC with the baselines (Lo et al., 2019; Leng
et al., 2021; Huang et al., 2022) and strong base-
line Fusion-SSL (Yang et al., 2022) on the datasets

BVCC and VCC2018. We test the generalization
performance on BC2019 and VCC2016. We also
list the ranking accuracy of fine-grained MOS seg-
ments.

5.1 Experiment Settings
We leverage a fusion layer and 7 ssl models to form
the overall model. Each ssl model was trained in
the pair comparison manner with SGD optimizer
for 1000 epochs. We applied early stopping based
on the L1 loss of the validation set with 20 epochs
patience, and set the learning rate to 1e-4, batch
size of 8. The hyperparameter β was set to be 0.6.
After training on the BVCC in a pair comparison
manner, we also use the C-Mixup algorithm to en-
hance the generalization performance of the model.
When trained with the C-Mixup algorithm, We set
the bandwidth to be 1.0, α to be 2.0. We imple-
mented our models in Fairseq (Ott et al., 2019). All
experiments were performed on 7 32GB GPUs.

5.2 MOS Prediction Results
The left side of Table 1 shows the results of MO-
SPC and baselines on VCC2018. MOSPC outper-
forms baselines in all correlation coefficient metrics
of utterance-level. At the system-level, all corre-
lation coefficient metrics outperform baselines ex-
cept the MSE, which was slightly higher by 0.002.
The remarkable thing is that the KTAU of system-
level surpasses the baselines significantly. KTAU
is a correlation coefficient metric used to indicate
the ranking correlation between the predicted value
and the ground truth. These results indicate that our
framework contributes to the ranking correctness
improvement, which is in line with our motivation.

The right side of Table 1 shows the results of
our proposed MOSPC and baselines on BVCC.
The results show that our model outperforms previ-
ous works on all correlation coefficient metrics
at utterance-level, especially on KTAU. At the
system-level our framework matches the strong
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baseline performance on LCC and SRCC. As there
are unseen-system samples in the BVCC validation
set, the performance of system-level will be af-
fected by the samples from unseen systems. These
results also imply that the pair-wise training may
impair the generalization performance. To solve
this problem, we adopted C-Mixup algorithm to im-
prove the generalization performance of our model
trained on BVCC.

5.3 Ranking Accuracy on Fine-Grained MOS
Segments

To prove that our proposed framework contributes
to the improvement of speech ranking accuracy, we
analyzed the ranking accuracy of speech quality on
fine-grained MOS score segments. As shown in
Table 2, on BVCC and VCC2018, we divided the
ground truth 1-5 into four segments with a score
interval of 1. On each fine-grained MOS segments
and the overall MOS segment 1-5, we calculated
the ranking accuracy on each speech pair (xi, xj)
with ground truth |yi − yj | ∈ (0, 1]. This is be-
cause, from our motivation, we pay more attention
to whether our proposed framework can accurately
rank speech with different but close score values.

Table 2: Ranking accuracy on fine-grained MOS seg-
ments. "1-2","2-3","3-4" and "4-5" are the fine-grained
segments and "1-5" is the overall segment.

BVCC
1-2 2-3 3-4 4-5 1-5

Fusion-SSL 0.728 0.724 0.739 0.675 0.778
MOSPC 0.731 0.737 0.742 0.679 0.787

VCC2018
Fusion-SSL 0.482 0.469 0.515 0.509 0.493

MOSPC 0.489 0.473 0.517 0.514 0.494

The top half of Table 2 shows the fine-grained
MOS segments ranking results on the validation
set of BVCC. The bottom half of Table 2 shows the
fine-grained MOS segments ranking results on the
validation set of VCC2018. The result shows that
our proposed framework outperforms the strong
baseline in ranking accuracy on each segment on
both BVCC and VCC2018. These results indicate
that our framework contributes to improving the
ranking accuracy of speech samples with different
but close MOS scores.

5.4 OOD Experiments
We first analyze the generalization performance
of models trained with VCC2018 on VCC2016.

As shown in Table 3, since VCC2016 only has
system-level labels, we only present the system-
level results. Our proposed framework outperforms
previous works in all metrics, and the improvement
is also significant in the KTAU metric, which again
proves that our proposed framework contributes to
correctly ranking the relative quality of speech.

Table 3: Zero-shot experiment results on VCC2016.

VCC2016
system-level

MSE LCC SRCC KTAU
MBNET 0.207 0.931 0.906 -
LDNET 0.215 0.939 0.896 0.768

Fusion-SSL 0.209 0.971 0.889 0.768
MOSPC 0.121 0.983 0.935 0.832

As mentioned before, from the experiments on
the BVCC validation set we found that the pair-
wise training method may lead to a decrease in
generalization performance, so we leveraged the
C-Mixup algorithm to improve the generalization
performance on the BVCC after experiments in sec-
tion 5.2 and 5.3. Table 4 lists the zero-shot results
of BC2019. The zero-shot results indicate that after
training with C-Mixup, the generalization perfor-
mance improved significantly, and the robustness
to the unseen-system and multi-languages OOD
challenges is also improved.

Table 4: Zero-shot experiment results on BC2019.
MOSPC-C indicates the model trained with C-Mixup
algorithm

BC2019
utterance-level system-level

LCC SRCCKTAU LCC SRCCKTAU
LDNET 0.384 0.365 0.252 0.500 0.473 0.354
DDOS 0.678 0.694 0.502 0.766 0.797 0.637

Fusion-SSL0.718 0.642 0.469 0.803 0.792 0.601
MOSPC 0.704 0.709 0.523 0.731 0.778 0.594

MOSPC-C 0.756 0.711 0.521 0.816 0.851 0.667

We followed (Cooper et al., 2022) analyzing the
performance of our model on the fine-grained OOD
categories of unseen-system, unseen-listener and
unseen-speaker with ASV2019 and BC2019. We
first adopted ASV2019 and BC2019 to fine-tune
the model trained on BVCC respectively. As shown
in table 5, we report the mean and standard devi-
ations of squared errors for the unseen categories
on utterance-level. The results indicate that our
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Table 5: Analysis of fine-grained OOD catagories. Mean and standard deviations of squared errors for fine-grained
OOD catagories of unseen-speaker, unseen-system and unseen-listener are shown.

unseen-speaker unseen-system unseen-listener
ASV2019 ASV2019 BC2019 ASV2019

Fusion-ssl 1.104±1.641 1.114±1.707 0.191±0.225 1.032±1.558
MOSPC 1.098±1.602 1.124±1.690 0.189±0.213 1.041±1.572

MOSPC-C 1.089±1.587 1.103±1.673 0.179±0.217 1.030±1.547

proposed method performs better on the category
unseen-listener than on unseen-speaker and unseen-
system.

6 Conclusion

This paper proposes a general framework for MOS
prediction based on pairwise comparisons (MO-
SPC) to solve the problem that it is difficult for
MOS prediction models to correctly rank speech
quality when the MOS scores are close. The main
track experiment results show that MOSPC outper-
forms baselines on most of the correlation coeffi-
cient metrics, especially on the metric KTAU re-
lated to speech quality ranking. Moreover, MOSPC
surpasses the strong baseline in ranking accuracy
on each fine-grained segment. These results indi-
cate that training in a pair comparison manner con-
tributes to improving ranking accuracy. We lever-
age C-Mixup algorithm to enhance the generaliza-
tion performance. On the OOD datasets VCC2016
and BC2019, our method outperforms baselines
on all metrics. We also analyze the performance
on fine-grained OOD categories. Our method per-
forms better for the unseen-listener OOD category
than for the unseen-speaker and unseen-system
OOD categories.

7 Limitation

MOSPC can improve ranking accuracy on each
fine-grained MOS score segment, but at the same
time, the training method based on pair comparison
may impair the generalization performance. As
there are unseen-systems in the BVCC validation
set, the system-level results of BVCC are affected
by the generalization performance degradation. We
introduced the C-Mixup algorithm to enhance the
generalization performance, which increased the
complexity of the experiment to some extent.
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A Details of the Relative Ranking Loss

Lrank was introduced by rankNet(Burges et al.,
2005). Lrank is similar in form to cross entropy
loss:

Lrank = −L ∗ log(P )− (1− L) ∗ log(1− P )
(2)

where Lrank maps the outputs mki, mkj into prob-
ability P via a logistic function:

P =
emki−mkj

1 + emki−mkj
(3)

The value of L depends on the ground truths of two
speech samples.

L =





0, yi < yj

0.5, yi = yj

1, yi > yj

(4)

B C-Mixup

For ssl model fk and input speech sample (xi, yi),
we need to sample another instance (xj , yj) from
the training set. C-Mixup first constructs a sam-
pling probability distribution based on a symmetric
Gaussian kernel for each audio sample xi:

P ((xj , yj) | (xi, yi)) ∝ exp(−d(i, j)

2σ2
) (5)

where d(i, j) = d(yi, yj) = ∥yi − yj∥22 represents
the distance between yi and yj , and σ represents
the bandwidth which is a hyperparameter. Subse-
quently, these conditional probabilities are normal-
ized into a probability mass function that sums to
one, and another sample is selected by sampling
through the probability mass function. Figure 3
illustrates the training process of C-Mixup. Each
ssl model in this work contains two parts: feature
extractor and encoder. xi and xj are fed into the fea-
ture extractor respectively to obtain embedding ei
and ej . Then ei and ej are proportionally combined
to construct the embedding êij of pseudo-out-of-set
sample:

êij = λ ∗ ei + (1− λ) ∗ ej (6)

where λ ∼ Beta(α, α), and α is the parameter
of the Beta distribution. α is a hyperparameter.
The remaining models take the pseudo-out-of-set
embedding êij as input to predict MOS score m̂ij ,

Figure 3: Illustration of the training process of C-Mixup.

and compute the L1 loss with ŷij . ŷij is constructed
in the same way as êij :

ŷij = λ ∗ yi + (1− λ) ∗ yj (7)

consistent with the main track, each ssl model is
trained with C-Mixup algorithm separately.

C Details of Dataset

C.1 Main Track Data

C.1.1 VCC2018

Samples in VCC2018 were all sampled from Voice
Conversion Challenge 2018(Lorenzo-Trueba et al.,
2018a), including 20580 English speech samples
synthesized by 38 systems. A total of 267 profes-
sional annotators participated in the speech label-
ing. Each speech was scored by four annotators,
and the four integer scores were averaged as the la-
bel. For the sake of comparison, We split VCC2018
into training sets with a size of 13580, validation
sets with a size of 3000 and test sets with a size of
4000.

C.1.2 BVCC

BVCC integrates data from multiple synthetic
speech competitions, including Blizzard Chal-
lenge(King et al., 2008; Kinga and Karaiskosb,
2009, 2010, 2011; King and Karaiskos, 2014;
Kinga and Karaiskosb, 2016), the Voice Conver-
sion Challenge(Toda et al., 2016; Wester et al.,
2016b; Lorenzo-Trueba et al., 2018b; Zhao et al.,
2020; Das et al., 2020) and publicly-available
samples from systems implemented in ESP-
net(Watanabe et al., 2018). BVCC includes a total
of 7106 English speech samples submitted by 187
systems. We split BVCC into training, validation
and test sets with a rate of 70%, 15% and 15%.
Each speech was scored by eight annotators, and
the eight integer scores were averaged as the label.
Unlike VCC2018, BVCC has samples from unseen
systems in its validation set.
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C.2 Out-of-domain Data
C.2.1 VCC2016
In order to compare with previous works, we adopt
VCC2016 to test the OOD performance of mod-
els trained with VCC2018. VCC2016 includes
26028 speech samples synthesized by 20 systems.
VCC2016 has only system-level labels and without
utterance-level labels.

C.2.2 BC2019
We adopt BC2019 to test the OOD performance of
models trained with BVCC. Samples in BC2019
are all sampled from Blizzard Challenge 2019, and
are Chinese TTS synthesized speech rated by Chi-
nese native speakers. Since all samples of BVCC
are in English, BC2019 can be used as a cross-
language OOD case to test the generalization per-
formance of models trained with BVCC. BC2019
has provided 136 labeled samples for training, 136
samples for validation, and additional 540 unla-
beled data.

C.3 ASV2019
We follow (Cooper et al., 2022) utilizing
ASV2019(Wang et al., 2020; Todisco et al., 2019)
to analyze the performance of our model on fine-
grained OOD experiments. Samples in ASV2019
are all in English and sampled from the human
assessment results data on the ASVspoof2019
database LA scenario. As scores in human assess-
ment results data are distributed from 0 to 9, We
linearly project the scores to 1-5.
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