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Abstract

Incomplete utterance rewriting (IUR) aims to
restore the incomplete utterance with sufficient
context information for comprehension. This
paper introduces a simple yet efficient IUR
method. Different from prior studies, we first
employ only one-layer MLP architecture to
mine latent semantic information between joint
utterances for IUR task (MIUR). After that,
we conduct a joint feature matrix to predict the
token type and thus restore the incomplete ut-
terance. The well-designed network and simple
architecture make our method significantly su-
perior to existing methods in terms of quality
and inference speed1.

1 Introduction

Multi-turn dialogue modeling is a research area
focusing on developing systems that can engage
in multiple conversation turns with humans. This
type of modeling is often used in the field of human-
machine interaction to improve the ability of arti-
ficial intelligence systems to communicate with
humans in a natural and intuitive way. One of the
challenges of multi-turn dialogue modeling is to ac-
curately understand and respond to the context and
meaning of the conversation, as well as to handle
incomplete or ambiguous utterances that may be
used for brevity or to convey meaning. As shown
in Table 1, the incomplete utterance u3 refers to
the semantic of "新冠肺炎" (COVID-19) with
"那" (that). The limited context provided by a
single utterance, such as u3, can lead to referential
ambiguity and semantic incompleteness in down-
stream applications like retrieval-based dialogue
systems, as demonstrated in a study by Ni et al.
(2022). In addition, Su et al. (2019) has revealed
that coreference and ellipsis are prevalent in more
than 70% of utterances, particularly in pro-drop

∗Corresponding author
1Our code is available at https://github.com/

IMU-MachineLearningSXD/MIUR

Turn Utterance (Translation)

u1
你知道新冠肺炎吗

Do you know COVID-19

u2
是的，我知道

Yes, I know

u3
那是什么

What is that

u′3
新冠肺炎是什么

What is COVID-19

Table 1: An example of incomplete utterance rewriting.
u1 and u2 denote the context utterances. u3 is the in-
complete utterance. u′3 is the rewritten utterance.

languages like Chinese. These linguistic phenom-
ena in conversation present a significant challenge
for the development of practical conversational AI
systems.

To address this issue, recent works (Kumar and
Joshi, 2016; Su et al., 2019; Pan et al., 2019; Xu
et al., 2020) proposed the Incomplete Utterance
Rewriting (IUR) task, which aims to transform an
incomplete or context-dependent statement into a
self-contained, semantically equivalent one that can
be understood without any additional context. As
shown in Table 1, IUR (u3 → u′3) task makes the
downstream dialogue modeling more precise.

Despite previous works achieving promising re-
sults, the speed of autoregressive generation re-
mains a limiting factor. To improve the speed,
Huang et al. (2021) fuses the sequence label-
ing and non-autoregressive generation, which pre-
dicts missing elements in incomplete utterance
and rewritten utterance. In addition, Liu et al.
(2020) formulates IUR as semantic segmentation
task based on U-Net (Ronneberger et al., 2015) and
achieves better performance at a faster speed. How-
ever, above mentioned models are still not simple
enough.

In this paper, we propose a simple yet efficient
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Figure 1: The architecture of our proposed model.

solution that our model first employs MLP archi-
tecture to simultaneously mine the semantic as-
sociations between the context utterances and the
incomplete utterance, and capture attention infor-
mation between them. After MLP architecture,
we obtain the joint feature maps and further con-
struct the token-pair edit matrix. Finally, the above
matrix is edited according to prediction edit type
tokens to generate the final rewritten utterance. Ex-
periments show that our approach achieves better
performance on several datasets across different do-
mains and languages with low resource costs and a
much faster inference speed.

2 Methodology

In this section, we elaborate on our proposed ap-
proach. As shown in Figure 1, our method mainly
consists of two modules: MLP backbone network
and joint feature matrix. For a multi-turn dia-
logue utterances (u1, u2, ..., ut), we concatenate
all the context utterances to produce an m-length
word sequence c = (c1, c2, ..., cm) and employ a
special mask [SEP ] to separate different context
utterances. Meanwhile, all the incomplete utter-
ances are denoted as an n-length word sequence
x = (x1, x2, ..., xn).

2.1 MLP Backbone Network
We first concatenate the context utterances
and the incomplete utterances to construct a
joint m + n length word sequence H =

(c1, c2, ..., cm, x1, x2, ..., xn). Besides, pretrained
language models have been found to be highly
effective in various natural language processing
tasks. Hence, we employ BERT (Devlin et al.,
2019) to initialize the word vector matrix H, where
H ∈ R(m+n)×768. MLP backbone network con-
tains two MLP blocks. Specifically, the first MLP
block is responsible for mining the global semantic
association information between context utterances
c and incomplete utterance x. The second MLP
block aims to learn the confidence level for each
word embedding. This further enables the model
to focus on important word information. It is im-
portant for the follow-up edit type classification,
including substitute, insert and none. Each MLP
block contains two fully-connected layers and a
nonlinearity applied independently. For clarity and
simplicity, we exclude the transposition process
and the whole process can be represented as:

I∗,i = H∗,i+W2σ(W1LN(H∗,i)),

Kj,∗ = Ij,∗+W4σ(W3LN(Ij,∗)),
(1)

where i = 1, 2, .., 768, j = 1, 2, ..,m + n and σ
represents GELU (Hendrycks and Gimpel, 2016).
In addition, MLP backbone contains other standard
architectural components: skip-connections (He
et al., 2016) and LayerNorm (LN ) (Ba et al., 2016).

In contrast to the approach taken by Tolstikhin
et al. (2021), who treated the word vector matrix
H as an image and employed 1× 1 convolution on
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non-overlapping image patches, we directly input
the word vector matrix H into the MLP backbone
network. Our operation avoids the loss of semantic
spatial information resulting from 1×1 convolution.
Furthermore, since the number of words in each
utterance varies, we utilize padding operation and
copy mechanism (Gu et al., 2016; Zeng et al., 2018)
to maintain a consistent sequence length. It is worth
noting that our approach employs a one-layer MLP
backbone network.

2.2 Joint Feature Matrix

Furthermore, to further capture the relevance be-
tween word embeddings, we employ three similar-
ity functions: dot product similarity (dot Sim.),
cosine similarity (cos Sim.), and linear similar-
ity (linear Sim.). The word-to-word embeddings
relevance between each context utterance’s word
embedding Kcm and each incomplete utterance’s
word embedding Kxn are captured using a 3-
dimensional joint feature matrix J(cm, xn) repre-
sented as follows:

J(cm, xn) = [Kcm ·Kxn ; cos(Kcm ,Kxn);

linear(Kcm ,Kxn)].
(2)

Finally, we employ BatchNorm (Ioffe and
Szegedy, 2015) on joint feature matrix J(cm, xn)
to expedite and stabilize the training process. The
batch is obtained by computing the mean and vari-
ance of the batch activation, which captures global
information. After applying the BatchNorm opera-
tion, the matrix J(cm, xn) is flattened, and each
feature vector is mapped to one of three token
types: Substitute, Insert, or None. This generates
the token-pair edit matrix.

2.3 Supervised Label

Prior to training our model in the supervised fash-
ion, we need to create word-level labels through
the following process to construct our training set.
Specifically, we first calculate the longest common
subsequence (LCS) between the incomplete utter-
ance and the rewritten utterance. Then, we align
the incomplete utterance, the rewritten utterance,
and the LCS using a greedy strategy. Finally, we
identify the corresponding tokens in the rewritten
utterance and mark them accordingly. Please re-
fer to Algorithm 1 in Appendix A for a detailed
description.

3 Experiments

3.1 Experimental Setup

Datasets We conduct the experiments on three
IUR benchmarks from different domains and
languages, including RESTORATION-200K (Pan
et al., 2019), REWRITE (Su et al., 2019) and
CANARD (Elgohary et al., 2019). The statistics of
the datasets are shown in Appendix B.

Baselines We compare the performance of
our method with the following baselines: (i)
Generation models need to generate rewritten
utterances from scratch, including Seq2Seq
model L-Gen (Bahdanau et al., 2015), the hybrid
pointer generator network L-Ptr-Gen (See et al.,
2017), the basic transformer models T-Gen and
T-Ptr-Gen (Vaswani et al., 2017), Syntactic (Kumar
and Joshi, 2016), PAC (Pan et al., 2019), L-Ptr-λ
and T-Ptr-λ (Su et al., 2019). The above models are
limited by the speed of generation. (ii) Structure
aware models contain RUN(Liu et al., 2020) and
SARG (Huang et al., 2021).

For more information about other experimental
setups, please see Appendix B.

3.2 Main Results

Table 2 shows the experimental results on
RESTORATION-200K. Our proposed approach,
MIUR, achieves competitive results compared to
all previous State-of-the-Art methods as shown in
Table 2. The results indicate MIUR can effectively
mine the semantic information between utterances
with two types of MLP architecture. Furthermore,
we discovered that MIUR places more emphasis
on rewriting precision (Pn) metrics. The first MLP
architecture captures global semantic associations
between context utterances and incomplete utter-
ance, while the second MLP architecture focuses
more on significant word embedding information.
Our approach effectively combines two different
MLPs and provides an effective guideline for the
subsequent construction of the joint feature map
matrix, leading our approach to concentrate more
on essential word information and to pursue higher
rewriting precision. Additionally, we achieve com-
parable Recalln results to the baselines. The exper-
imental results of REWRITE and CANARD also
come to the same conclusion, which can be found
in Appendix C.
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Model P1 R1 F1 P2 R2 F2 P3 R3 F3 B1 B2 R1 R2

Syntactic 67.4 37.2 47.9 53.9 30.3 38.8 45.3 25.3 32.5 84.1 81.2 89.3 80.6

L-Gen 65.5 40.8 50.3 52.2 32.6 40.1 43.6 27.0 33.4 84.9 81.7 88.8 80.3

L-Ptr-Gen 66.6 40.4 50.3 54.0 33.1 41.1 45.9 28.1 34.9 84.7 81.7 89.0 80.9

PAC 70.5 58.1 63.7 55.4 45.1 49.7 45.2 36.6 40.4 89.9 86.3 91.6 82.8

T-Ptr-λ♥ - - 51.0 - - 40.4 - - 33.3 90.3 87.4 90.1 83.0

SARG♥ - - 62.4 - 52.5 - - 46.3 92.2 89.6 92.1 86.0
RUN 73.2 64.6 68.6 59.5 53.0 56.0 50.7 45.1 47.7 92.3 89.6 92.4 85.1

MIUR (Ours) 76.4 63.7 69.5 62.7 52.7 57.3 54.3 45.9 49.7 93.0 90.1 92.6 85.7

Table 2: Experimental results on RESTORATION-200K. All results are taken from the original papers. Dashes:
results are not reported in the responding literature. ♥: results are derived from (Huang et al., 2021).

3.3 Inference Speed

Table 3 presents a comparison of the inferential
speed of our model with the baselines. All mod-
els were implemented in PyTorch and run on a
single NVIDIA V100. We can observe that the pro-
posed MIUR achieves the fastest inference speed
compared with the SOTA methods. Specifically,
MIUR’s speed is 3.14 times faster than that of
L-Gen (n_Beam=1). Moreover, Compared with
RUN in the second place, MIUR achieves 20% im-
provement in the inference speed. This enhanced
performance can be attributed to the fact that our
model employs only a one-layered MLP backbone
to capture inter-utterances semantic information,
without utilizing other modules. The simplified
architecture, thus, contributes to the model’s faster
inference speed without compromising the perfor-
mance.

Model Speedup

L-Gen (n_Beam=1) 1.00 ×
L-Ptr-Net (n_Beam=1) 0.57 ×
L-Ptr-Gen (n_Beam=1) 0.93 ×
T-Gen (n_Beam=1) 0.25 ×
T-Ptr-Net (n_Beam=1) 0.13 ×
T-Ptr-Gen (n_Beam=1) 0.14 ×
SARG (n_Beam=1) 2.63 ×
RUN 2.61 ×
MIUR (Ours) 3.14 ×

Table 3: The inference speed comparison be-
tween MIUR and baselines on RESTORATION-200K.
n_Beam stands for the beam size in beam search, not
applicable for RUN and MIUR.

3.4 Ablation Study

To verify the effectiveness of MLP architecture in
our model, we conduct a thorough ablation study
in Table 4. Notably, EM and P2 metrics signifi-
cantly decreased when the model did not use MLP
backbone architecture. The results again prove
that MLP backbone can effectively mine latent se-
mantic information between utterances and provide
more precise guidance for the follow-up edit type
classification. In addition, MIUR uses only one
type of MLP architecture alone can also lead to per-
formance degradation. Since the first MLP architec-
ture can effectively mine the semantic associations
between context utterances and incomplete utter-
ance, and the second MLP architecture increased
focus on capturing attention information between
utterances. It’s only with the full MLP structure
that MIUR can capture semantic information more
accurately and to a wider extent.

w/o MLP MLP 1 MLP 2 EM P2 R2 F2 B2

4 4 67.7 86.1 78.6 82.2 91.2
4 66.4 84.8 78.3 81.4 90.6

4 66.6 85.4 78.1 81.6 90.7

4 65.1 82.4 77.3 80.1 90.5

Table 4: The ablation results on REWRITE dataset.

As mentioned in Section 2.1, we perform an
ablation study about using two different padding
strategies to ensure consistent sequence length.
Table 5 indicates that the model obtains a small
performance improvement using copy mechanism,
which further increases the semantic interaction
between utterances. But this operation limits in-
ference speed. Given a tiny improvement using
copy mechanism, our model employs zero padding
method.
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Padding Strategy EM P2 R2 F2 Speedup

zero padding 67.73 86.12 78.63 82.21 1.00 ×
copy mechanism 67.81 86.22 78.69 82.33 0.96 ×

Table 5: The ablation results on REWRITE dataset.

3.5 More Discussion for MLP

To further investigate whether our proposed MLP
backbone can effectively mine the semantic associ-
ations between utterances, we visualize the word
embeddings composed of the context utterances
and the incomplete utterance in Figure 2. The y-
axis represents our selection of 40 words consist-
ing of the context utterances and the incomplete
utterance. The x-axis represents the features of
the first 100 dimensions of our intercepted word
embeddings. It is not difficult to notice that word
embeddings appear more distinctly characterized
by vertical stripes after MLP backbone. Conse-
quently, this further indicates that semantic infor-
mation between words is more closely related, and
our method can effectively learn the semantic re-
latedness between words after passing through the
MLP network we designed.
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Figure 2: Visualization of word embedding matrix. (a)
denotes the initial word embedding and (b) denotes the
word embedding after MLP backbone.

4 Conclusion & Future Work

In this paper, we propose a simple yet effective
IUR method. We utilize one-layer MLP structure
to mine the inter-utterance semantic information
from different perspectives. This improves the abil-
ity to predict the correct token between incomplete
utterance and rewritten utterance. Benefiting from

the fact that our model effectively employs MLP to
IUR task, allowing our approach to achieve signifi-
cant results in terms of performance and inference
speed. This study represents the first preliminary
exploration of the use of MLP on IUR task. In
the future, we will investigate on extending our
approach to other dialogue areas.

Limitations

One limitation of current token-pair edit matrix
based incomplete utterance rewriting models is that
they are only able to select tokens that have ap-
peared in the context utterances. Thus, these mod-
els, including our own, are unable to generate new
words, such as conjunctions and prepositions, to
improve metrics such as fluency. However, this can
be addressed by incorporating an additional word
dictionary as proposed by Liu et al. (2020) to im-
prove fluency for out-of-vocabulary words (OOV).
In addition, we will consider combining generative
models (GPT (Radford et al., 2019), T5 (Raffel
et al., 2020) etc.) to assist in the recovery of the
incomplete utterances in the future works.
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A Constructing Supervised Labels

We describe here the algorithm for building word-
level supervised labels. Taking Table 1 as an ex-
ample, given U as "那是什么" (What is that) and
U ′ as "新冠肺炎是什么" (What is COVID-19).
Their longest common subsequence (LCS) is "是
什么" (What is). Hence, "那" (that) is marked
as [DEL] in U and "新冠肺炎" (COVID-19) is
marked as [ADD] in U ′. Correspondingly, the edit
type (supervised label) is Substitute.

B Other Experimental Setups

Evaluation Following the previous works, we
apply BLEUn (Bn) (Papineni et al., 2002),
ROUGEn (Rn) (Lin, 2004), EM (exact match),
Rewriting Precisionn, Recalln and F-scoren
(Pn,Rn,Fn) (Pan et al., 2019) as the automatic
evaluation metrics.

Implementation Details We implement our
proposed model via pytorch . All experiments
are trained on a single NVIDIA Tesla V100. We
use Adam (Kingma and Ba, 2015) optimizer and
employ grid search to find the best hyperparam-
eters based on the performance on the validation
datasets. The learning rate is set to 1e − 5 for all
datasets. The best models are selected by early
stopping on the validation datasets, and the max
epoch is 100.

C Additional Experimental Results

Table 7 and Table 8 show the experimental results
on REWRITE and CANARD, respectively. Our

Algorithm 1: Construct Supervised Labels

Input: U : the incomplete utterance

U ′: the rewritten utterance

Output: L: the supervised label

1 Computing the LCS between U and U ′.

2 for wx ∈ U do
3 if wx /∈ LCS then
4 mark(wx) = [DEL]

5 end

6 end
7 for w′x ∈ U ′ do
8 if w′x /∈ LCS then
9 mark(w′x) = [ADD]

10 end

11 end
12 The same mark is combined into one span.

13 Comparing U and U ′ at the span level.

14 for (sx, s
′
x) ∈ (U,U ′) do

15 if sx = [DEL] and s′x = [ADD] then
16 L = Substitute

17 else
18 L = Insert

19 end

20 end
21 return L

method also achieves competitive results on all
scores. The results again demonstrate the effective-
ness of our model.

RESTORATION-200K REWRITE CANARD

Language Chinese Chinese English

# Train 194K 18K 32K

# Dev 5K 2K 4K

# Test 5K - 6K

Avg. Con length 25.8 17.7 85.4

Avg. Inc length 8.6 6.5 7.5

Avg. Rew length 12.4 10.5 11.6

Table 6: Statistics of three experimented datasets. "Avg"
for average, "Con" for context utterance, "Inv" for in-
complete utterance, "Rew" for rewritten utterance.
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Model EM B2 B4 R2 RL

L-Gen 47.3 81.2 73.6 80.9 86.3

L-Ptr-Gen 50.5 82.9 75.4 83.8 87.8

L-Ptr-Net 51.5 82.7 75.5 84.0 88.2

L-Ptr-λ 42.3 82.9 73.8 81.1 84.1

T-Gen 35.4 72.7 62.5 74.5 82.9

T-Ptr-Gen 53.1 84.4 77.6 85.0 89.1

T-Ptr-Net 53.0 83.9 77.1 85.1 88.7

T-Ptr-λ 52.6 85.6 78.1 85.0 89.0

RUN 66.4 91.4 86.2 90.4 93.5

MIUR (Ours) 67.7 91.2 86.4 90.7 93.7

Table 7: Experimental results on REWRITE.

Model B1 B2 B4 R1 R2 RL

Copy 52.4 46.7 37.8 72.7 54.9 68.5

Rronoun Sub 60.4 55.3 47.4 73.1 63.7 73.9

L-Ptr-Gen 67.2 60.3 50.2 78.9 62.9 74.9

RUN 70.5 61.2 49.1 79.1 61.2 74.7

MIUR (Ours) 71.3 63.4 51.7 81.6 64.5 77.4

Table 8: Experimental results on CANARD.

D Effect of BatchNorm

To further explore the validity of BatchNorm for
our model, we conducted controlled experiments
on REWRITE. As shown in Figure 3, Figure 3(a)
indicates the loss of training on REWRITE dataset
with BN and without. Figure 3(b) shows the EM
metrics of REWRITE validation set with BN and
without. We can observe that the incorporation
of BatchNorm after the construction of the joint
feature matrix leads to faster convergence and en-
hances the model’s ability to learn global semantic
information efficiently.
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Figure 3: (a) shows the loss of training on REWRITE
dataset with BatchNorm and without. (b) shows the EM
metrics of REWRITE validation set with BatchNorm
and without.
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