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Abstract
Generative pre-trained Transformer (GPT) has
demonstrates its great success in natural lan-
guage processing and related techniques have
been adapted into molecular modeling. Con-
sidering that text is the most important record
for scientific discovery, in this paper, we pro-
pose MolXPT, a unified language model of text
and molecules pre-trained on SMILES (a se-
quence representation of molecules) wrapped
by text. Briefly, we detect the molecule names
in each sequence and replace them to the cor-
responding SMILES. In this way, the SMILES
could leverage the information from surround-
ing text, and vice versa. The above wrapped
sequences, text sequences from PubMed and
SMILES sequences from PubChem are all fed
into a language model for pre-training. Exper-
imental results demonstrate that MolXPT out-
performs strong baselines of molecular prop-
erty prediction on MoleculeNet, performs com-
parably to the best model in text-molecule trans-
lation while using less than half of its param-
eters, and enables zero-shot molecular genera-
tion without finetuning.

1 Introduction

Generative pre-trained Transformer (GPT), like
GPT-3 (Brown et al., 2020) and ChatGPT (Ope-
nAI, 2022), have obtained great success in natural
language processing. They usually have billions of
parameters and are trained on large corpus (Taylor
et al., 2022; Singhal et al., 2022). By witnessing
their great power, people start transferring language
models to chemical (Bagal et al., 2022) and bio-
logical domains (Ferruz et al., 2022). For exam-
ple, a small molecule (e.g., an oral drug) can be
represented using simplified molecular-input line-
entry system (SMILES) (Weininger, 1988), which
is a sequence obtained by traversing the molecu-
lar graph using depth-first-search and several rules
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for branching, aromaticity, etc. After serializing
molecules, people pre-train language models on
SMILES (Bagal et al., 2022; Tong et al., 2021;
Frey et al., 2022) and obtain promising results for
molecular generation.

Text is the most important record for molecu-
lar science and more generally, scientific discov-
ery (Beltagy et al., 2019). It describes detailed
properties of molecules, like how to synthesize the
molecule (Feng et al., 2016), whether the molecule
is toxic (Juurlink et al., 2003), etc. BioGPT (Luo
et al., 2022) and PubMedGPT (Bolton et al., 2022)
are two language models trained on biomedical lit-
erature. Recently, a new trend is to jointly model
SMILES and scientific text so as to obtain shared
representations across the two modalities. MolT5
is a T5-like (Raffel et al., 2020) model, where sev-
eral spans of the text/SMILES are masked in the
encoder and they should be reconstructed in the
decoder. Galactica (Taylor et al., 2022) is a GPT-
like (Brown et al., 2020) model pre-trained on var-
ious types of inputs, like text, SMILES, protein
sequences, etc. Although those models demon-
strate progress in prediction and generation tasks,
they do not explicitly leverage the relation between
molecules and text. An intuition is that, in scien-
tific literature, when a molecule name appears in
a sentence, the surrounding context could be a de-
scription of the molecule. This should be useful
information for joint training but is ignored in those
models.

To leverage such relations, in this work, we
propose a novel molecule-text language model
(MolXPT), which is trained on “wrapped” se-
quences: Given a sentence, we detect the molec-
ular names with named entity recognition tools,
and if any, replace them to the corresponding
SMILES and obtain the “wrapped” sequence be-
tween SMILES and text. We pre-train a 24-layer
MolXPT (with 350M parameters) on 8M wrapped
sequences, as well as 30M SMILES from PubChem
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Figure 1: Framework of MolXPT. MolXPT is pretrained on text from PubMed, SMILES from PubChem and
wrapped sequences between SMILES and text. The wrapped sequences are obtained by applying NER and entity
linking to text and then replacing matched molecular mentions with SMILES. MolXPT can be finetuned for various
text and molecular downstream tasks, like molecular property prediction and molecule-text translation.

(Kim et al., 2022) and 30M titles and abstracts from
PubMed (a popular biomedical literature search en-
gine).

After pre-training, we finetune MolXPT on
MoleculeNet (a benchmark about molecular prop-
erty prediction) (Wu et al., 2018) and molecule-text
translation (Edwards et al., 2022) using prompt-
based finetuning. On MoleculeNet, MolXPT out-
performs strong baselines with sophisticated design
like GEM (Fang et al., 2022). On text-molecule
translation, MolXPT performs comparably with
the state-of-the-art model, MolT5-large (Edwards
et al., 2022). MolT5-large has 800M parameters
while MolXPT only uses 44% of its parameters.
We also verify that MolXPT has the zero-shot abil-
ity on text-to-molecule generation.

2 Our Method

MolXPT is a language model pre-trained on het-
erogeneous data including scientific text, SMILES
sequences, and “wrapped” sequences between
SMILES and text. Due to the flexible input, we
can finetune it for various text and molecular tasks.
The framework of MolXPT is in Figure 1.

2.1 Pre-training corpus
For scientific text, we use the titles and abstracts
of 30M papers from PubMed1. For molecular
SMILES, we randomly choose 30M molecules
from PubChem2 (Kim et al., 2022).

The wrapped sequences are constructed via a
“detect and replace” pipeline. We first use BERN2
(Sung et al., 2022), a widely used named entity
recognition (NER) tool for biomedical purpose, to
detect all mentions of molecules and link them to
the entities in public knowledge bases like ChEBI

1https://ftp.ncbi.nlm.nih.gov/pubmed/
2https://pubchem.ncbi.nlm.nih.gov/

(Hastings et al., 2016). After that, we can retrieve
the molecular SMILES of the matched entities. Fi-
nally, we replace the molecular mentions to their
corresponding SMILES. An example is shown in
the left panel of Figure 1. The wrapped sequences
must contain at least one molecular SMILES. We
eventually obtain 8M wrapped sequences in total.

Text and SMILES are tokenized separately. For
text, we use byte-pair encoding (BPE) (Sennrich
et al., 2016) to split the words into subwords.
The number of BPE merge operation is 40k. For
SMILES sequences (including those in wrapped
sequences), we tokenize them with the regular ex-
pression from (Schwaller et al., 2018). For each
SMILES sequence S, we add a start-of-molecule
token ⟨som⟩ at the beginning of S and append an
end-of-molecule token ⟨eom⟩ at the end of S.

2.2 Model and training

Model architecture: MolXPT has the same archi-
tecture as the GPT models (Radford et al., 2019).
Due to computational resource limitation, in this
paper, we follow the GPT-2medium configuration
with 24 layers, 1024 hidden size and 16 attention
heads. The maximum length of input we can pro-
cess is 2048 and the vocabulary size is 44536. In
total, our model has 350M parameters.
Pre-training: The pre-training objective function
of MolXPT is the negative log-likelihood. Math-
ematically, let D = {xi}i denote the collection
of sequences of the three types of the data, and
xi = (si,1, si,2, · · · , si,ni) is the i-th sequence with
ni tokens. The training objective function is:

min− 1

|D|

|D|∑

i=1

ni∑

j=1

logP (si,j |si,j−1, si,j−2, · · · , s1).

The pre-training details are left in Appendix B.
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Dataset BBBP Tox21 ClinTox HIV BACE SIDER Avg
#Molecules 2039 7831 1478 41127 1513 1478

G-Contextual 70.3± 1.6 75.2± 0.3 59.9± 8.2 75.9± 0.9 79.2± 0.3 58.4± 0.6 69.8
G-Motif 66.4± 3.4 73.2± 0.8 77.8± 2.0 73.8± 1.4 73.4± 4.0 60.6± 1.1 70.9
GROVERbase 70.0± 0.1 74.3± 0.1 81.2± 3.0 62.5± 0.9 82.6± 0.7 64.8± 0.6 72.6
GROVERlarge 69.5± 0.1 73.5± 0.1 76.2± 3.7 68.2± 1.1 81.0± 1.4 65.4± 0.1 72.3
GraphMVP 72.4± 1.6 75.9± 0.5 79.1± 2.8 77.0± 1.2 81.2± 0.9 63.9± 1.2 74.9
MGSSL 70.5± 1.1 76.5± 0.3 80.7± 2.1 79.5± 1.1 79.7± 0.8 61.8± 0.8 74.8
GEM 72.4± 0.4 78.1 ± 0.1 90.1± 1.3 80.6 ± 0.9 85.6± 1.1 67.2± 0.4 79.0

KV-PLM 74.6± 0.9 72.7± 0.6 – 74.0± 1.2 – 61.5± 1.5 –
Galactica 66.1 68.9 82.6 74.5 61.7 63.2 69.5
MoMu 70.5± 2.0 75.6± 0.3 79.9± 4.1 76.2± 0.9 77.1± 1.4 60.5± 0.9 73.3

MolXPT 80.0 ± 0.5 77.1± 0.2 95.3 ± 0.2 78.1± 0.4 88.4 ± 1.0 71.7 ± 0.2 81.9

Table 1: Results on MoleculeNet. The evaluation metric is ROC-AUC. Bold fonts indicate the best results.

Prompt-based finetuning: MolXPT can be fine-
tuned for downstream tasks about molecules and
text. Adding classification or regression heads to
pre-trained backbone models introduces the gap
between pre-training and finetuning (Brown et al.,
2020; Chen et al., 2022; Gu et al., 2022). There-
fore, we adopt prompt-based finetuning (Gao et al.,
2021) to unify different tasks into a sequence gener-
ation task, which is consistent with the pre-training
objective. Briefly, given a task, we convert the in-
put and output into text and/or SMILES sequences,
equip the sequences with task-specific prompts and
finetune using language modeling loss. Prompts
for MoleculeNet and text-molecule translation are
introduced in the Section 3.1 and 3.2 respectively.
Discussion: Some works also try to jointly model
text and molecules. Zeng et al. (2022) propose
KV-PLM, where SMILES sequences are appended
after molecule names for pre-training. Su et al.
(2022) use contrastive learning between text and
molecular graphs. Our MolXPT is a generative
model while the above two models are not. Both of
them are built upon SciBERT (Beltagy et al., 2019),
a BERT model (Devlin et al., 2019) for scientific
literature. MolXPT is complementary to them.

3 Experiments

We evaluated MolXPT on two downstream tasks:
(1) molecular property prediction on MoleculeNet
(Wu et al., 2018), which is to predict whether the
given molecule has specific properties; (2) the gen-
eration between text descriptions and molecules
(Edwards et al., 2022), where both molecules and
text should be considered. In this section, we fo-
cus on introducing task definition, prompt design

and results while leaving the detailed finetuning
hyper-parameters in Appendix C.

3.1 Results on MoleculeNet
MoleculeNet (Wu et al., 2018) is a widely-used
benchmark for molecular modeling, which has
more than 700k compounds for various different
properties. We choose six molecular classification
tasks for evaluation, which are BBBP, Tox21, Clin-
Tox, HIV, BACE and SIDER. Details are left in
Appendix A. We follow GEM (Fang et al., 2022)
to split the data into training/validation/test sets
based on the scaffold. For these tasks, the input is
a SMILES and the output is a binary label.
Finetuning strategy: Previous molecular property
prediction models mainly use SMILES sequences
or molecular graphs as input, while we can use
the “wrapped” sequences. For example, one task
is to predict the blood-brain barrier penetration
(BBBP) of a molecule. Therefore, the prompt is
“We can conclude that the BBB penetration of ⟨som⟩
⟨SMILES⟩ ⟨eom⟩ is ⟨tag⟩”, where ⟨SMILES⟩ denotes
the molecular SMILES, and ⟨tag⟩ denotes the clas-
sification result. For the BBBP task, we design
⟨tag⟩ as “true” or “false”, indicating whether the
compound can or cannot cross BBB.

Different tasks have different prompts (see Ap-
pendix C.1), but we put the tags to the last token of
the prompt for all tasks. Let (si,1, si,2, · · · , si,Ti)
denote the i-th wrapped sequence for the down-
stream task with Ti tokens, where si,Ti is the tag of
the sequence. Denote that there are N samples for
finetuning. The finetuning strategy could be either

min− 1

N

N∑

i=1

logP (si,Ti |si,<Ti), (1)
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indicating that we finetune the tags only, or

min− 1

N

N∑

i=1

1

Ti

Ti∑

j=1

logP (si,j |si,<j), (2)

indicating that we finetune the full prompts. Ac-
cording to our exploration, Eqn.(1) achieves
slightly better results and we use it for all tasks
(see Appendix C.4 for the results).

Let ptrue and pfalse denote the probabilities of
tags “true” and “false” after encoding the pre-
fix “We can conclude that the BBB penetration
of ⟨som⟩ ⟨SMILES⟩ ⟨eom⟩ is”. The probabilities
that ⟨SMILES⟩ can and cannot cross blood-brain
barrier are normalized as ptrue/(ptrue + pfalse) and
pfalse/(ptrue + pfalse) respectively. The finetuning
hyper-parameters are in Appendix C.2.

We compare MolXPT with two types of base-
lines: (1) pre-trained language model base-
lines including KV-PLM (Zeng et al., 2022),
Galactica (Taylor et al., 2022) and MoMu (Su
et al., 2022). (2) pre-trained Graph Neu-
ral Network (GNN) baselines including G-
Contextual (Rong et al., 2020), G-Motif (Rong
et al., 2020), GROVERbase (Rong et al., 2020),
GROVERlarge (Rong et al., 2020), GraphMVP (Liu
et al., 2022), MGSSL (Zhang et al., 2021) and
GEM (Fang et al., 2022). The evaluation metric is
the ROC-AUC score. The results are in Table 1.

MolXPT outperforms the GNN baselines pre-
trained on pure molecular data, indicating the ef-
fectiveness of pre-training with scientific text cor-
pus. Compared with Galactica which also uses
both SMILES and text for pre-training GPT-like
model, MolXPT obtains better performance. Note
that Galactica does not purposely build and train
on the “wrapped” sequences, whose importance is
demonstrated via our empirical results. A possible
explanation of the superior performance is that the
SMILES describes the component and structural
information of molecules, while the text describes
the general properties. They are complementary to
each other, and joint training on them brings more
effective representations.

3.2 Results on text-molecule translation
We evaluated the performance of MolXPT on
CheBI-20 (Edwards et al., 2021), a bidirectional
text-molecule translation dataset. It consists of
33,010 molecule-description pairs. We use the data
split provided by MolT5 (Edwards et al., 2022),
where the training, validation and test sets account

80%, 10% and 10% of total data. For molecule-to-
text generation, given a molecular SMILES S, the
prompt is: “The description of ⟨som⟩ S ⟨eom⟩ is:
The molecule is”, followed by the text description
of S. For text-to-molecule generation, given a text
description T , the prompt is: “T . The compound
is ⟨som⟩”, and the model will generate the molec-
ular SMILES ended with ⟨eom⟩. We compare our
method with MolT5 (Edwards et al., 2022).

For molecule-to-text generation, the results are
evaluated by NLP metrics including BLEU (Pa-
pineni et al., 2002), Rouge (Lin, 2004) and ME-
TEOR (Banerjee and Lavie, 2005). “Text2mol”
is a deep learning based metric proposed by Ed-
wards et al. (2022) to measure the similarity of
the text-molecule pairs. For text-to-molecule gen-
eration, we evaluate the following metrics: the
proportion of the generated SMILES that exactly
match the reference SMILES (denoted as “Ex-
act”); the Tanimoto similarity of three types of
fingerprints: MACCS (Durant et al., 2002), RDK
(Schneider et al., 2015) and Morgan (Rogers and
Hahn, 2010); the FCD score (Preuer et al., 2018),
which measures the molecule distances by a pre-
trained model; the percentage of the valid generated
SMILES. The results are reported in Table 2.

We observe that MolXPT achieves signifi-
cantly better performance than MolT5-small and
MolT5-base, and has comparable performance with
MolT5-large. Note that MolT5-large has 800M
parameters while MolXPT only uses 44% of its
parameters. For both tasks, our model performs the
best on Text2Mol metric, indicating that MolXPT
captures the alignment between text and molecule
better. We attribute it to the wrapped sequences,
by which the model can learn the relation between
molecule and text explicitly.

We further verify the zero-shot text-to-molecule
generation ability of MolXPT. The pre-trained
MolXPT takes the text as input and directly gen-
erates molecules without finetuning. The top-1
and top-5 fingerprint similarity is in Table 3. In-
deed, compared with the full data setting, the per-
formance drops, but still reasonable numbers. In
addition, the zero-shot MolXPT successfully recov-
ers 33 molecules based on the text (see Appendix
D).

4 Conclusions and Future Work

We propose MolXPT, a generative model pre-
trained on scientific text, molecular SMILES and
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Molecule-to-text BLEU-2 BLEU-4 Rouge-1 Rouge-2 Rouge-L METEOR Text2Mol

MolT5-small (77M) 0.519 0.436 0.620 0.469 0.563 0.551 0.540
MolT5-base (250M) 0.540 0.457 0.634 0.485 0.578 0.569 0.547
MolT5-Large (800M) 0.594 0.508 0.654 0.510 0.594 0.614 0.582

MolXPT (350M) 0.594 0.505 0.660 0.511 0.597 0.626 0.594

Text-to-molecule Exact↑ MACCS↑ RDK↑ Morgan↑ FCD↓ Text2mol↑ Validity↑
MolT5-small 0.079 0.703 0.568 0.517 2.49 0.482 0.721
MolT5-medium 0.081 0.721 0.588 0.529 2.18 0.496 0.772
MolT5-large 0.311 0.834 0.746 0.684 1.20 0.554 0.905

MolXPT 0.215 0.859 0.757 0.667 0.45 0.578 0.983

Table 2: Results of molecule-to-text (top) and text-to-molecule generation (bottom). For FCD, the smaller, the better.
For the remaining metrics, the larger, the better. MolT5 results are from Table 1 and 2 of (Edwards et al., 2022).
MolT5 parameters are from https://github.com/blender-nlp/MolT5. Bold fonts indicate the best results.

MACCS RDK Morgan

Zero-shot (Top-1) 0.540 0.383 0.228
Zero-shot (Top-5) 0.580 0.423 0.423
Full data (Top-1) 0.841 0.746 0.660

Table 3: Zero-shot text-to-molecule generation.

their wrapped sequences. We train a 24-layer
MolXPT with 350M parameters. By prompt-based
finetuning, it improves strong baselines on Molecu-
leNet and achieves comparable results with the best
model on molecule-text translation but using much
fewer parameters.

For future work, first, we will train larger
MolXPT to further verify the performances across
different tasks and the zero-shot/in-context (Xie
et al., 2022) learning ability. Second, how to fur-
ther enhance the interaction between molecules
and text (e.g., using contrastive learning to enhance
consistency) should be studied. Third, how to effec-
tively adapt MolXPT into other molecule and text
tasks such as text-guided molecule optimization is
another direction to explore.

Limitations

One limitation of our method is that when training
larger models, it requires more computation re-
sources, whose cost is relatively high. However, af-
ter pre-training, we will release our models so that
readers can directly use them without pre-training
again.

Broader Impacts

We provide a new generative pre-trained model on
molecules and text. On one hand, the model can be
used to speed up scientific discovery, like molecule
design, drug optimization, etc. On the other hand,
once the model is trained on clinical data (which
also describes the usage of drug molecules), it
might lead to personal information leaky. We will
enhance data filtration to anonymize all personal
information, and will design new models to protect
the information.

Acknowledgement

The authors Zequn Liu and Ming Zhang are par-
tially supported by National Natural Science Foun-
dation of China (NSFC Grant Number 62276002).

References
Viraj Bagal, Rishal Aggarwal, P. K. Vinod, and U. Deva

Priyakumar. 2022. Molgpt: Molecular generation us-
ing a transformer-decoder model. Journal of Chemi-
cal Information and Modeling, 62(9):2064–2076.

Satanjeev Banerjee and Alon Lavie. 2005. Meteor: An
automatic metric for mt evaluation with improved
correlation with human judgments. In Proceedings
of the ACL workshop on intrinsic and extrinsic evalu-
ation measures for machine translation and/or sum-
marization, pages 65–72.

Iz Beltagy, Kyle Lo, and Arman Cohan. 2019. SciB-
ERT: A pretrained language model for scientific text.
In Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the
9th International Joint Conference on Natural Lan-
guage Processing (EMNLP-IJCNLP), pages 3615–
3620, Hong Kong, China. Association for Computa-
tional Linguistics.

1610

https://github.com/blender-nlp/MolT5
https://doi.org/10.1021/acs.jcim.1c00600
https://doi.org/10.1021/acs.jcim.1c00600
https://doi.org/10.18653/v1/D19-1371
https://doi.org/10.18653/v1/D19-1371


Elliot Bolton, David Hall, Michihiro Yasunaga, Tony
Lee, Chris Manning, and Percy Liang. 2022. Pub-
MedGPT 2.7B.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel Ziegler, Jeffrey Wu, Clemens
Winter, Chris Hesse, Mark Chen, Eric Sigler, Ma-
teusz Litwin, Scott Gray, Benjamin Chess, Jack
Clark, Christopher Berner, Sam McCandlish, Alec
Radford, Ilya Sutskever, and Dario Amodei. 2020.
Language models are few-shot learners. In Ad-
vances in Neural Information Processing Systems,
volume 33, pages 1877–1901. Curran Associates,
Inc.

Yulong Chen, Yang Liu, Li Dong, Shuohang Wang,
Chenguang Zhu, Michael Zeng, and Yue Zhang.
2022. Adaprompt: Adaptive model training for
prompt-based nlp. arXiv preprint arXiv:2202.04824.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171–4186, Minneapolis, Minnesota. Association for
Computational Linguistics.

Joseph L Durant, Burton A Leland, Douglas R Henry,
and James G Nourse. 2002. Reoptimization of mdl
keys for use in drug discovery. Journal of chemi-
cal information and computer sciences, 42(6):1273–
1280.

Carl Edwards, Tuan Lai, Kevin Ros, Garrett Honke, and
Heng Ji. 2022. Translation between molecules and
natural language. arXiv preprint arXiv:2204.11817.

Carl Edwards, ChengXiang Zhai, and Heng Ji. 2021.
Text2mol: Cross-modal molecule retrieval with nat-
ural language queries. In Proceedings of the 2021
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 595–607.

Xiaomin Fang, Lihang Liu, Jieqiong Lei, Donglong
He, Shanzhuo Zhang, Jingbo Zhou, Fan Wang, Hua
Wu, and Haifeng Wang. 2022. Geometry-enhanced
molecular representation learning for property pre-
diction. Nature Machine Intelligence, 4(2):127–134.

Minghao Feng, Bingqing Tang, Steven H Liang, and
Xuefeng Jiang. 2016. Sulfur containing scaffolds
in drugs: synthesis and application in medicinal
chemistry. Current topics in medicinal chemistry,
16(11):1200–1216.

Noelia Ferruz, Steffen Schmidt, and Birte Höcker. 2022.
Protgpt2 is a deep unsupervised language model for
protein design. Nature Communications, 13(1):4348.

Nathan Frey, Ryan Soklaski, Simon Axelrod, Siddharth
Samsi, Rafael Gomez-Bombarelli, Connor Coley,
and Vijay Gadepally. 2022. Neural scaling of deep
chemical models. ChemRxiv.

Tianyu Gao, Adam Fisch, and Danqi Chen. 2021.
Making pre-trained language models better few-shot
learners. In Proceedings of the 59th Annual Meet-
ing of the Association for Computational Linguistics
and the 11th International Joint Conference on Natu-
ral Language Processing (Volume 1: Long Papers),
pages 3816–3830.

Yuxian Gu, Xu Han, Zhiyuan Liu, and Minlie Huang.
2022. Ppt: Pre-trained prompt tuning for few-shot
learning. In Proceedings of the 60th Annual Meet-
ing of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 8410–8423.

Janna Hastings, Gareth Owen, Adriano Dekker, Mar-
cus Ennis, Namrata Kale, Venkatesh Muthukrishnan,
Steve Turner, Neil Swainston, Pedro Mendes, and
Christoph Steinbeck. 2016. Chebi in 2016: Improved
services and an expanding collection of metabolites.
Nucleic acids research, 44(D1):D1214–D1219.

David N Juurlink, Muhammad Mamdani, Alexander
Kopp, Andreas Laupacis, and Donald A Redelmeier.
2003. Drug-drug interactions among elderly patients
hospitalized for drug toxicity. Jama, 289(13):1652–
1658.

Sunghwan Kim, Jie Chen, Tiejun Cheng, Asta Gindu-
lyte, Jia He, Siqian He, Qingliang Li, Benjamin A
Shoemaker, Paul A Thiessen, Bo Yu, Leonid Za-
slavsky, Jian Zhang, and Evan E Bolton. 2022.
PubChem 2023 update. Nucleic Acids Research,
51(D1):D1373–D1380.

Diederik P Kingma and Jimmy Ba. 2015. Adam: A
method for stochastic optimization. In ICLR (Poster).

Chin-Yew Lin. 2004. Rouge: A package for automatic
evaluation of summaries. In Text summarization
branches out, pages 74–81.

Shengchao Liu, Hanchen Wang, Weiyang Liu, Joan
Lasenby, Hongyu Guo, and Jian Tang. 2022. Pre-
training molecular graph representation with 3d ge-
ometry. In International Conference on Learning
Representations.

Renqian Luo, Liai Sun, Yingce Xia, Tao Qin, Sheng
Zhang, Hoifung Poon, and Tie-Yan Liu. 2022.
BioGPT: generative pre-trained transformer for
biomedical text generation and mining. Briefings
in Bioinformatics, 23(6).

OpenAI. 2022. Chatgpt: Optimizing language models
for dialogue. Technical blog.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic evalua-
tion of machine translation. In ACL, pages 311–318.

1611

https://crfm.stanford.edu/2022/12/15/pubmedgpt.html
https://crfm.stanford.edu/2022/12/15/pubmedgpt.html
https://proceedings.neurips.cc/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.1038/s41467-022-32007-7
https://doi.org/10.1038/s41467-022-32007-7
https://doi.org/10.26434/chemrxiv-2022-3s512
https://doi.org/10.26434/chemrxiv-2022-3s512
https://doi.org/10.1093/nar/gkac956
https://openreview.net/forum?id=xQUe1pOKPam
https://openreview.net/forum?id=xQUe1pOKPam
https://openreview.net/forum?id=xQUe1pOKPam
https://doi.org/10.1093/bib/bbac409
https://doi.org/10.1093/bib/bbac409
https://openai.com/blog/chatgpt/
https://openai.com/blog/chatgpt/


Kristina Preuer, Philipp Renz, Thomas Unterthiner,
Sepp Hochreiter, and Gunter Klambauer. 2018.
Frechet chemnet distance: a metric for generative
models for molecules in drug discovery. Journal
of chemical information and modeling, 58(9):1736–
1741.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, Ilya Sutskever, et al. 2019. Language
models are unsupervised multitask learners. OpenAI
blog, 1(8):9.

Colin Raffel, Noam Shazeer, Adam Roberts, Kather-
ine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J. Liu. 2020. Exploring the
limits of transfer learning with a unified text-to-text
transformer. Journal of Machine Learning Research,
21(140):1–67.

David Rogers and Mathew Hahn. 2010. Extended-
connectivity fingerprints. Journal of chemical in-
formation and modeling, 50(5):742–754.

Yu Rong, Yatao Bian, Tingyang Xu, Weiyang Xie,
Ying Wei, Wenbing Huang, and Junzhou Huang.
2020. Self-supervised graph transformer on large-
scale molecular data. Advances in Neural Informa-
tion Processing Systems, 33:12559–12571.

Nadine Schneider, Roger A Sayle, and Gregory A Lan-
drum. 2015. Get your atoms in order: An open-
source implementation of a novel and robust molecu-
lar canonicalization algorithm. Journal of chemical
information and modeling, 55(10):2111–2120.

Philippe Schwaller, Theophile Gaudin, David Lanyi,
Costas Bekas, and Teodoro Laino. 2018. “found
in translation”: predicting outcomes of complex or-
ganic chemistry reactions using neural sequence-to-
sequence models. Chemical science, 9(28):6091–
6098.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2016. Neural machine translation of rare words with
subword units. In Proceedings of the 54th Annual
Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), pages 1715–1725,
Berlin, Germany. Association for Computational Lin-
guistics.

Karan Singhal, Shekoofeh Azizi, Tao Tu, S Sara Mah-
davi, Jason Wei, Hyung Won Chung, Nathan Scales,
Ajay Tanwani, Heather Cole-Lewis, Stephen Pfohl,
et al. 2022. Large language models encode clinical
knowledge. arXiv preprint arXiv:2212.13138.

Bing Su, Dazhao Du, Zhao Yang, Yujie Zhou, Jiang-
meng Li, Anyi Rao, Hao Sun, Zhiwu Lu, and Ji-
Rong Wen. 2022. A molecular multimodal founda-
tion model associating molecule graphs with natural
language. arXiv preprint arXiv:2209.05481.

Mujeen Sung, Minbyul Jeong, Yonghwa Choi,
Donghyeon Kim, Jinhyuk Lee, and Jaewoo Kang.
2022. Bern2: an advanced neural biomedical named
entity recognition and normalization tool. arXiv
preprint arXiv:2201.02080.

Ross Taylor, Marcin Kardas, Guillem Cucurull, Thomas
Scialom, Anthony Hartshorn, Elvis Saravia, Andrew
Poulton, Viktor Kerkez, and Robert Stojnic. 2022.
Galactica: A large language model for science. arXiv
preprint arXiv:2211.09085.

Xiaochu Tong, Xiaohong Liu, Xiaoqin Tan, Xutong
Li, Jiaxin Jiang, Zhaoping Xiong, Tingyang Xu,
Hualiang Jiang, Nan Qiao, and Mingyue Zheng. 2021.
Generative models for de novo drug design. Journal
of Medicinal Chemistry, 64(19):14011–14027.

David Weininger. 1988. Smiles, a chemical language
and information system. 1. introduction to methodol-
ogy and encoding rules. Journal of chemical infor-
mation and computer sciences, 28(1):31–36.

Zhenqin Wu, Bharath Ramsundar, Evan N Feinberg,
Joseph Gomes, Caleb Geniesse, Aneesh S Pappu,
Karl Leswing, and Vijay Pande. 2018. Moleculenet:
a benchmark for molecular machine learning. Chem-
ical science, 9(2):513–530.

Sang Michael Xie, Aditi Raghunathan, Percy Liang,
and Tengyu Ma. 2022. An explanation of in-context
learning as implicit bayesian inference. In Interna-
tional Conference on Learning Representations.

Zheni Zeng, Yuan Yao, Zhiyuan Liu, and Maosong Sun.
2022. A deep-learning system bridging molecule
structure and biomedical text with comprehension
comparable to human professionals. Nature Commu-
nications, 13(1):862.

Zaixi Zhang, Qi Liu, Hao Wang, Chengqiang Lu, and
Chee-Kong Lee. 2021. Motif-based graph self-
supervised learning for molecular property predic-
tion. Advances in Neural Information Processing
Systems, 34:15870–15882.

Appendix

A Datasets and Baselines of MoleculeNet

We choose the following tasks of MoleculeNet for
evaluation:
(1) BBBP contains compounds with binary labels
on blood-brain barrier penetration.
(2) Tox21 is a dataset for predicting the human
toxicity of compounds on 12 different targets.
(3) ClinTox contains drugs approved by the FDA
and those that have failed clinical trials for toxicity
reasons.
(4) HIV aims to predict whether a drug can inhibit
HIV replication.
(5) BACE describes binding results for a set of
inhibitors of human β-secretase 1.
(6) SIDER has compounds used in marketed
medicines with 27 categories of side effects.
We compare MolXPT with the following baselines:
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(1) GROVER is a self-supervised pre-trained graph
Transformer model. G-Contextual and G-Motif
are two variants of it pre-trained with contextual
property prediction task and motif prediction task.
(2) GraphMVP is a self-supervised pre-trained
GNN model using both 2D topological structures
and 3D geometric views of molecules.
(3) MGSSL leverages a retrosynthesis-based algo-
rithm BRICS and additional rules to find the motifs
and combines motif layers with atom layers.
(4) GEM is a geometry-enhanced pre-trained GNN
model.
(5) Galactica is a GPT-like model trained on a large
scientific corpus and many natural sequences like
SMILES. We report the result of Galactica-120B.
(6) KV-PLM is a BERT-like model where SMILES
sequences are appended after molecule names for
pre-training.
(7) MoMu uses contrastive learning to jointly pre-
train a BERT model for text and a GNN model for
molecules.

B Pre-training hyper-parameters

MolXPT is pre-trained for 200k steps on eight
A100 GPUs. The batchsize is 2048 tokens per
GPU. The gradients are accumulated for 16 steps
before updating. We use Adam (Kingma and Ba,
2015) optimizer for optimization. The peak learn-
ing rate is 0.0005 and the warm-up steps are 20000.
The learning rate scheduler is inverse square root
decay scheduler. The dropout is 0.1.

C Finetuning details of downstream tasks

C.1 Prompts for finetuning MoleculeNet

(1) BBBP: “We can conclude that the BBB penetra-
tion of ⟨som⟩ ⟨SMILES⟩ ⟨eom⟩ is true/false.”
(2) Tox21: “We can conclude that the ⟨som⟩
⟨SMILES⟩ ⟨eom⟩ activity outcome on ⟨target⟩ is
active/inactive. ” where ⟨target⟩ refers to corre-
sponding receptor or enzyme for each subtask, e.g.
the ⟨target⟩ of subtask "AR" is "Androgen Recep-
tor".
(3) ClinTox:“We can conclude that the clinical trial
toxicity of ⟨som⟩ ⟨SMILES⟩ ⟨eom⟩ is true/false.” for
subtask CT_TOX and “We can conclude that the
FDA approval status of ⟨som⟩ ⟨SMILES⟩ ⟨eom⟩ is
true/false.” for subtask FDA_APPROVED.
(4) HIV: “We can conclude that the screening re-
sult of ability to inhibit HIV replication of ⟨som⟩
⟨SMILES⟩ ⟨eom⟩ is active/inactive.”

(5) BACE: “We can conclude that the binding result
on beta-secretase 1 of ⟨som⟩ ⟨SMILES⟩ ⟨eom⟩ is
true/false.”
(6) SIDER:“We can conclude that the ⟨som⟩
⟨SMILES⟩ ⟨eom⟩ can bring about the side effect
of ⟨side-effect⟩ is true/false.” where ⟨side-effect⟩
refers to corresponding side-effect for each subtask.

C.2 Details of finetuning MoleculeNet
We grid search the following hyper-parameters:
learning rate in {3× 10−5, 5× 10−5}; dropout in
{0.1, 0.3}; total epochs from {30, 50}. The model
is selected according to validation performance.

C.3 Details of finetuning text-molecule
generation

For text-molecule generation, MolXPT is finetuned
for 100 steps on one P40 GPU with 1024 tokens
and 16 accumulated steps per device. Models are
finetuned for 100 epochs. The learning rate is
0.0001 and the dropout rate is grid searched from
[0.1, 0.2, 0.3, 0.4, 0.5]. Setting dropout rate as 0.4
and 0.5 achieves the best validation performance on
molecule-to-text generation and text-to-molecule
generation respectively. We use the corresponding
models for testing.

C.4 MoleculeNet finetuning strategy selection
We provide two finetune strategies in Eqn.(1) and
Eqn.(2). Their results are reported in Table 4. Their
results are similar and Eqn.(1) is slightly better.

D Zero-shot text-to-molecule generation

Given K generated molecule m̂1, m̂2, · · · , m̂K

and the reference molecule m, the top-K finger-
print similarity is

max
i∈[K]

similarity(m, m̂i). (3)

MolXPT generates 33 molecules that can exactly
match the reference molecules without finetuning.
Figure 2 shows three of the cases.
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Figure 2: Examples for zero-shot text-to-molecule generation. We randomly pick up three cases that MolXPT can
successfully generate the reference molecules without finetuning.

Dataset BBBP Tox21 ClinTox HIV BACE SIDER Avg

Devfull prompt 98.8± 0.2 78.8± 0.1 98.8± 0.1 82.9± 1.0 78.4± 0.3 67.7± 0.7 84.2
Devtags only 98.9± 0.3 78.8± 0.2 97.7± 0.1 85.3± 0.2 75.8± 0.8 69.4± 0.6 84.3

Testfull prompt 78.1± 0.4 77.2± 0.1 93.4± 0.1 78.1± 0.9 87.9± 0.3 70.0± 0.2 80.8
Testtags only 80.0± 0.5 77.1± 0.2 95.3± 0.2 78.1± 0.4 88.4± 1.0 71.7± 0.2 81.9

Table 4: Comparison of different finetuning strategies on MoleculeNet. “Dev” and “Test” denote validation set and
test set respectively. Subscripts represent finetuning full prompts (Eqn.(2)) or tags only respectively (Eqn.(1)). The
evaluation metric is ROC-AUC.
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