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Abstract

Hybrid retrievers can take advantage of both
sparse and dense retrievers. Previous hybrid re-
trievers leverage indexing-heavy dense retriev-
ers. In this work, we study “Is it possible to re-
duce the indexing memory of hybrid retrievers
without sacrificing performance?” Driven by
this question, we leverage an indexing-efficient
dense retriever (i.e. DrBoost) and introduce a
LITE retriever that further reduces the mem-
ory of DrBoost. LITE is jointly trained on
contrastive learning and knowledge distillation
from DrBoost. Then, we integrate BM25, a
sparse retriever, with either LITE or DrBoost to
form light hybrid retrievers. Our Hybrid-LITE
retriever saves 13× memory while maintaining
98.0% performance of the hybrid retriever of
BM25 and DPR. In addition, we study the gen-
eralization capacity of our light hybrid retriev-
ers on out-of-domain dataset and a set of adver-
sarial attacks datasets. Experiments showcase
that light hybrid retrievers achieve better gen-
eralization performance than individual sparse
and dense retrievers. Nevertheless, our analy-
sis shows that there is a large room to improve
the robustness of retrievers, suggesting a new
research direction.

1 Introduction

The classical IR methods, such as BM25 (Robert-
son et al., 2009), produce sparse vectors for ques-
tion and documents based on bag-of-words ap-
proaches. Recent research pays attention toward
building neural retrievers which learn dense embed-
dings of the query and document into a semantic
space (Karpukhin et al., 2020; Khattab and Za-
haria, 2020). Sparse and dense retrievers have their
pros and cons, and the hybrid of sparse and dense
retrievers can take advantage of both worlds and
achieve better performance than individual sparse
and dense retrievers. Therefore, hybrid retrievers
are widely used in practice (Ma et al., 2021b; Chen
et al., 2021).

Figure 1: The teacher model (DrBoost) consists of N
weak-learners and produces embeddings of dimension
N*D. The student model (LITE) has one weak-learner
and produces two embeddings: one has dimension of D,
and one has dimension of N*D. The smaller embeddings
learn to maximize the similarity between question and
positive context embeddings, and the larger embeddings
learn the embeddings from the teacher model.

Previous hybrid retrievers are composed of
indexing-heavy dense retrievers (DR), in this work,
we study the question “Is it possible to reduce
the indexing memory of hybrid retrievers without
sacrificing performance?” To answer this ques-
tion, we reduce the memory by using the state-of-
the-art indexing-efficient retriever, DrBoost (Lewis
et al., 2021), a boosting retriever with multiple
“weak” learners. Compared to DPR (Karpukhin
et al., 2020), a representative DR, DrBoost reduces
the indexing memory by 6 times while maintain-
ing the performance. We introduce a LITE model
that further reduces the memory of DrBoost, which
is jointly trained on retrieval task via contrastive
learning and knowledge distillation from DrBoost
(see Figure 1). We then integrate BM25 with ei-
ther LITE and DrBoost to form light hybrid re-
trievers (Hybrid-LITE and Hybrid-DrBoost) to as-
sess whether light hybrid retrievers can achieve
memory-efficiency and sufficient performance.

We conduct experiments on the NaturalQuestion
dataset (Kwiatkowski et al., 2019) and draw inter-
esting results. First of all, LITE retriever maintains
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98.7% of the teacher model performance and re-
duces its memory by 2 times. Second, our Hybrid-
LITE saves more than 13× memory compared to
Hybrid-DPR, while maintaining more than 98.0%
performance; and Hybrid-DrBoost reduces the in-
dexing memory (8×) compared to Hybrid-DPR
and maintains at least 98.5% of the performance.
This shows that the light hybrid model can achieve
sufficient performance while reducing the indexing
memory significantly, which suggests the practi-
cal usage of light retrievers for memory-limited
applications, such as on-devices.

One important reason for using hybrid retriev-
ers in real-world applications is the generalization.
Thus, we further study if reducing the indexing
memory will hamper the generalization of light hy-
brid retrievers. Two prominent ideas have emerged
to test generalization: out-of-domain (OOD) gener-
alization and adversarial robustness (Gokhale et al.,
2022). We study OOD generalization of retriev-
ers on EntityQuestion (Sciavolino et al., 2021).
To study the robustness, we leverage six tech-
niques (Morris et al., 2020) to create adversarial
attack testing sets based on NQ dataset. Our exper-
iments demonstrate that Hybrid-LITE and Hybrid-
DrBoost achieve better generalization performance
than individual components. The study of robust-
ness shows that hybrid retrievers are always bet-
ter than sparse and dense retrievers. Nevertheless
all retrievers are vulnerable, suggesting room for
improving the robustness of retrievers, and our
datasets can aid the future research.

2 Related Work

Hybrid Retriever integrates the sparse and
dense retriever and ranks the documents by inter-
polating the relevance score from each retriever.
The most popular way to obtain the hybrid ranking
is applying linear combination of the sparse/dense
retriever scores (Karpukhin et al., 2020; Ma et al.,
2020; Luan et al., 2021; Ma et al., 2021a; Luo
et al., 2022). Instead of using the scores, Chen
et al. (2022) adopts Reciprocal Rank Fusion (Cor-
mack et al., 2009) to obtain the final ranking by
the ranking positions of each candidate retrieved
by individual retriever. Arabzadeh et al. (2021)
trains a classification model to select one of the
retrieval strategies: sparse, dense or hybrid model.
Most of the hybrid models rely on heavy dense
retrievers, and one exception is (Ma et al., 2021a),
where they use linear projection, PCA, and product

quantization (Jegou et al., 2010) to compress the
dense retriever component. Our hybrid retrievers
use either DrBoost or our proposed LITE as the
dense retrievers, which are more memory-efficient
and achieve better performance than the methods
used in (Ma et al., 2021a).

Indexing-Efficient Dense Retriever. Efficiency
includes two dimensions: latency (Seo et al., 2019;
Lee et al., 2021; Varshney et al., 2022) and mem-
ory. In this work, our primary focus is on memory,
specifically the memory used for indexing. Most
of the existing DRs are indexing heavy (Karpukhin
et al., 2020; Khattab and Zaharia, 2020; Luo,
2022). To improve the indexing efficiency, there
are mainly three types of techniques. One is to
use vector product quantization (Jegou et al., 2010).
Second is to compress a high dimension dense vec-
tor to a low dimension dense vector, for e.g. from
768 to 32 dimension (Lewis et al., 2021; Ma et al.,
2021a). The third way is to use a binary vector (Ya-
mada et al., 2021; Zhan et al., 2021). Our proposed
method LITE (§3.2) reduces the indexing memory
by joint training of retrieval task and knowledge
distillation from a teacher model.

Generalization of IR. Two main benchmarks
have been proposed to study the OOD generaliza-
tion of retrievers, BEIR (Thakur et al., 2021b) and
EntityQuestion (Sciavolino et al., 2021). As shown
by previous work (Thakur et al., 2021b; Chen et al.,
2022), the generalization is one major concern of
DR. To address this limitation, Wang et al. (2021)
proposed GPL, a domain adaptation technique to
generate synthetic question-answer pairs in specific
domains. A follow-up work Thakur et al. (2022)
trains BPR and JPQ on the GPL synthetic data to
achieve efficiency and generalization. Chen et al.
(2022) investigates a hybrid model in the OOD set-
ting, yet different from us, they use a heavy DR
and do not concern the indexing memory. Most
existing work studies OOD generalization, and
much less attention paid toward the robustness of
retrievers (Penha et al., 2022; Zhuang and Zuccon,
2022; Chen et al.). To study robustness, Penha et al.
(2022) identifies four ways to change the syntax
of the queries but not the semantics. Our work
is a complementary to Penha et al. (2022), where
we leverage adversarial attack techniques (Morris
et al., 2020) to create six different testing sets for
NQ dataset (Kwiatkowski et al., 2019).
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3 Model

In this section, we first review DrBoost (Lewis
et al., 2021), and our model LITE which further
reduces the memory of DrBoost, and lastly, we de-
scribe the hybrid retrievers that integrate light dense
retrievers (i.e. LITE and DrBoost) and BM25.

3.1 Reivew of DrBoost
DrBoost is based on ensemble learning to form a
strong learner by a sequence of weak leaners, and
each weak learner is trained to minimize the mis-
takes of the combination of the previous learners.
The weak learner has the similar architecture as
DPR (Karpukhin et al., 2020) (review of DPR is
given in Appendix A), but the output vectors are
compressed to a much lower dimension by a linear
regression layer W,

viq = Wq ·Vi
q, vic = Wc ·Vi

c, (1)

where Vi
q/c are the representation of ques-

tion/document given by the embeddings of spe-
cial tokens [CLS] of a high dimension, viq/c are
the lower embeddings produced by the ith weak
learner. The final output representation of DrBoost
is the concatenation of each weak learners’ repre-
sentations as expressed by Eq. 2.

q = [v1q , . . . , v
n
q ], c = [v1c , . . . , v

n
c ], (2)

where n is the total number of weak learners in the
DrBoost. The training objective of DrBoost is

Lcon = − log
esim(q,c+)

esim(q,c+) +
∑j=n

j=1 e
sim(q,c−j )

, (3)

where sim(q, c) is the inner-dot product.

3.2 LITE: Joint Training with Knowledge
Distillation

Since DrBoost has N encoders, the computation
of query representations takes N times as a single
encoder. To save latency, Lewis et al. (2021) trains
a student encoder which learns the N embeddings
from the teacher encoders. As a result, while the
student model consists of only one encoder, it pro-
duces the same indexing memory as the teacher
model. Here, we want to further reduce the student
indexing memory. To achieve this, we introduce a
LITE retriever (see Figure 1), which produces two
embeddings for an input text: one has a smaller di-
mension (vq/c,s) for retrieval task, and the other one

is a larger dimension (vq/c,l) for learning knowl-
edge from the N teacher models. The small and
large embeddings are obtained by compressing the
[CLS] token embedding via separate linear regres-
sion layers, mathematically,

vq/c,s = Wq/c,s ·Vq/c, vq/c,l = Wq/c,l ·Vq/c

(4)
vq/c,s is optimized by the contrastive loss (E.q. 3).
And vq/c,l learns the teacher model embeddings.
The knowledge distillation (KD) loss is composed
of three parts (Eq. 5): 1) the distance between stu-
dent question embeddings and the teacher question
embeddings, 2) the distance between student con-
text embeddings and the teacher context embed-
dings, and 3) the distance between student question
embeddings and the teacher positive context em-
beddings.

LKD = ∥vq,l − q∥2 + ∥vc,l − c∥2 + ∥vq,l − c+∥2
(5)

The final objective of the student model is,

Ljoint = Lcon + LKD. (6)

In contrast to the distillation method in Dr-
Boost, which solely learns the embeddings from
the teacher model, LITE is simultaneously trained
on both the retrieval task and the knowledge distil-
lation task. During the inference time, LITE only
utilizes the retrieval embeddings (vc,s ) to achieve
indexing-efficiency. It is also notable that LITE is a
flexible training framework capable of incorporat-
ing most neural retrievers as its backbone models,
despite our work being solely reliant on DrBoost.

3.3 Memory Efficient Hybrid Model
Our hybrid models retrieve the final documents in
a re-ranking manner. We first retrieve the top-k
documents using BM25 and dense retriever (Dr-
Boost or LITE) separately. The document scores
produced by these two retrievers are denoted by
SBM25 and SDR respectively. We apply MinMax
normalization to original socres to obtain S′

BM25

and S′
DR ranging from [0, 1]. For each document,

we get a new score for final ranking:

Shybrid = w1 × S′
BM25 + w2 × S′

DR, (7)

where w1 and w2 denote the weights of BM25
and DrBoost scores respectively. In our experi-
ments, we simply set equal weights (i.e. 0.5) to
each method. If a context is not retrieved by either
retriever, then its score for that retriever is 0.
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Figure 2: Examples of the adversarial attack questions.
Underline denotes the change from the original question.
The examples from the top to the bottom are augmented
by CS, WD, SR, WOS, SI, and BT.

4 Adversarial Attack Robustness Dataset

Adversarial attacks are used to asses model’s ro-
bustness, where testing samples are obtained by
small perturbations of the original samples, and
such perturbations keep the label unchanged. To
test the robustness of IR systems, we create 6 dif-
ferent adversarial attacks1 for NQ (Kwiatkowski
et al., 2019). Each method is chosen because they
do not change the original meaning of the queries
and the relevant documents should be the same
as the original relevant documents (see Figure 2).
The six methods include: Char-Swap (CS): aug-
ments words by swapping characters out for other
characters; Word Deletion (WD): delete a word
randomly from the original query; Synonym Re-
placement (SR): replaces a word in the query with
a synonym from the WordNet (Miller, 1995); Word-
Order-Swap (WOS): swaps the order of the words
in the original query; Synonym Insertion (SI): in-
sert a synonym of a word from the WordNet to the
original query; Back-Translation (BT) translates
the original query into a target language and trans-
lates it back to the source language. Figure 2 shows
an example of each attacked instance2.

5 Experiments and Results

Existing Methods. We include four existing
methods in this work, DrBoost (Lewis et al.,
2021), DPR (Karpukhin et al., 2020), SPAR (Chen
et al., 2021) and a heavy hybrid model BM25 +
DPR (Karpukhin et al., 2020). In Table 1, the per-
formance of DrBoost is from the original paper
and the performance of the other three methods are

1We use TextAttack library (Morris et al., 2020).
2The adversarial robustness dataset is available in this link.

from (Chen et al., 2021).

Our Baselines. Three baselines are presented,
BM25, DPR32, and DrBoost-2. DPR32 refers to
DPR with a linear projection layer to representa-
tion to 32 dimension. DrBoost-2 takes DPR32 as
the first weak learner, and uses it to mine nega-
tive passages to train the next weak learner and
then combine these two models. We do not go be-
yond 2 weak learners because our goal is to achieve
memory-efficiency while increasing the number of
encoders in the DrBoost will yield larger indexing.

Our Models. LITE and the three light hybrid
models are presented. LITE is trained by the
method we introduce in §3.2 with the distilled
knowledge from DrBoost-2 teacher model. We
present three hybrid models BM25 + LITE, BM25
+ DPR32, and BM25 + DrBoost-2, which are
memory-efficient compared to existing methods.
Next we present the experiments and the findings.

5.1 Memory Efficiency and Performance
LITE achieves much better performance com-
pared to DPR32 even though both use the same
amount of memory. LITE also maintains more than
98% knowledge of its teacher (DrBoost-2), and
importantly saves 2× of indexing memory. Such
results shows the effectiveness of LITE.

Hybrid-LITE achieves better performance than
DrBoost-2 while using less indexing memory.
Hybrid-LITE also matches the performance of Dr-
Boost in terms of R@100 (87.4 v.s. 87.2) while
using 3× less memory. Compared with Hybrid-
DPR, Hybrid-LITE maintains 98.4% performance
but uses 13× less memory. Compared with the
SOTA model SPAR, Hybrid-LITE achieves 98.2%
performance and uses 25× less memory.

Hybrid-DrBoost-2 achieves almost similar per-
formance as DrBoost which contains 6 encoders.
This shows the effects of BM25 match the capacity
of 4 encoders in the DrBoost. We also compare
Hybrid-DrBoost-2 with BM25 + DRP or SPAR,
where our model achieves almost 99% performance
but uses less than 8× or 16× of memory.

5.2 Out-of-Domain Generalization
We study the out-of-domain generalization of re-
triever on EntityQuestion (Sciavolino et al., 2021),
which consists of simple entity centric questions
but shown to be difficult for dense retrievers. We
train the model on NQ and test on EQ.
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Method Index-M
NQ EntityQuestion

(GB) R@20 R@100 R@20 R@100

Existing Method
DrBoost 15.4/13.5 81.3 87.4 51.2 63.4
DPR 61.5 79.5 86.1 56.6 70.1
BPR 2 77.9 85.7 - -
BM25+DPR 63.9 82.6 88.6 73.3 82.3
SPAR 123.0 83.6 88.8 74.0 82.0
Our Baseline
BM25 2.4 63.9 78.8 71.2 79.7
DPR32 2.5 70.4 80.0 31.1 45.5
DrBoost-2 5.1 77.3 84.5 41.3 54.2
Our Model
LITE 2.5 75.1 83.4 35.0 48.1
Hybrid-LITE 4.9 79.9 87.2 71.5 80.8
Hybrid-DPR32 4.9 77.7 86.2 70.8 80.5
Hybrid-DrBoost-2 7.5 80.4 87.5 72.4 81.4

Table 1: Performance of existing methods, our baselines
and our hybrid model on NQ dataset. The performance
of DrBoost on NQ is using 6 weak learners (15.4 GB
indexing memory) and of EntityQuestion is using 5
weak learners (13.5 GB).

First of all, our experimental results show that
the performance of DPR32, DrBoost-2, and LITE
are much worse than BM25 on EQ. Nevertheless,
our hybrid models improve both BM25 and dense
retriever performance. Our light hybrid models
achieve similar performance as hybrid-DPR and
SPAR, which demonstrates that our light hybrid
retrievers exhibit good OOD generalization.

5.3 Adversarial Attack Robustness

The robustness is evaluated in terms of both perfor-
mance (higher R@K means more robust) and the
average drop w.r.t the original performance on NQ
dataset (smaller drop means more robust).

From Table 2, we observe that all models per-
form worse compared to the original performance
on all adversarial attack sets, which showcase that
the current retrievers are not robust enough. Inter-
estingly, while it is expected that BM25 will be
robust on word-order-swap (WOS) attack, it is not
straightforward that a dense retriever is also robust
on this type of questions. This shows that the order
of the words in the question is not important for
the dense retriever neither. We also see that char-
swap (CS) is the most difficult attack, which means
that both types of retrievers might not perform well
when there are typos in the questions.

Diving into the individual performance of each
retriever, we see that some models are more robust
than others. For example, LITE is more robust than
DPR32. We also compare the hybrid model with
the pure dense retriever counterparts (e.g. compare

Method
R@100

Ori CS WD SR WOS SI BT Drop

BM25 78.8 68.2 71.7 74.5 78.3 77.2 71.2 5.9
DPR32 80.8 61.9 65.8 75.3 76.4 73.3 71.1 10.3
LITE 83.4 69.3 71.8 78.9 81.2 79.0 75.6 7.9
DrBoost-2 84.5 71.6 80.1 74.7 82.6 80.4 77.9 7.8
DPR768 86.1 74.8 78.9 82.5 85.0 83.4 80.3 5.5

+DPR32 86.2 74.4 78.0 82.7 84.9 83.2 78.6 6.1
+LITE 87.2 76.5 78.0 83.7 86.6 85.4 80.8 5.1
+DrBoost-2 87.5 77.7 84.6 81.0 86.7 85.9 81.9 5.2
+DPR768 88.3 78.6 82.9 85.4 87.7 86.6 82.6 4.4

Table 2: Ori: Original question; CS: CharSwap;
WD:Word deletion; WSR: WordNet synonym replace-
ment; WOR: Word order swaps; RSI :Random synonym
insertion; BT: Back Translation. The smaller the Aver-
age Drop is, the more robust the model is.

hybrid Drboost-2 with DrBoost-2), and find that
hybrid models are consistently more robust. This
suggests that the hybrid model can mitigate the per-
formance drop of both BM25 and dense retriever.

6 Conclusion

To achieve indexing efficiency, in this work, we
study light hybrid retrievers. We introduce LITE,
which is jointly trained on retrieval task via con-
trastive learning and knowledge distillation from a
more capable teacher models which requires heav-
ier indexing-memory. While in this work, we
mainly take DrBoost as the teacher model, LITE
is a flexible training framework that can be incor-
porated with most of the neural retriever. Then,
we integrate BM25 with LITE or DrBoost to form
light hybrid retrievers. Our light hybrid models
achieve sufficient performance and largely reduce
the memory. We also study the generalization of
retrievers and suggest that all sparse, dense, and hy-
brid retrievers are not robust enough, which opens
up a new avenue for research.

Limitation

The main limitation of this work is the technical
novelty of hybrid retriever. Hyrbid-DrBoost is built
on top of DrBoost, and the interpolation of BM25
with DrBoost. However, we would like to point out
that our study can serve as an important finding for
real-life applications. Previous retrievers are built
on top of indexing-heavy dense retrievers, such as
DPR. This limits their applications where memory
is a hard constraints, for example, on-devices. Our
study suggests that a light hybrid retriever can save
memory but maintain sufficient performance.

1621



References
Negar Arabzadeh, Xinyi Yan, and Charles LA Clarke.

2021. Predicting efficiency/effectiveness trade-offs
for dense vs. sparse retrieval strategy selection. In
Proceedings of the 30th ACM International Con-
ference on Information & Knowledge Management,
pages 2862–2866.

Tao Chen, Mingyang Zhang, Jing Lu, Michael Bender-
sky, and Marc Najork. 2022. Out-of-domain seman-
tics to the rescue! zero-shot hybrid retrieval models.
In European Conference on Information Retrieval,
pages 95–110. Springer.

Xilun Chen, Kushal Lakhotia, Barlas Oğuz, Anchit
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A Preliminary

BM25 Robertson et al. (2009), is a bag-of-words
ranking function that scores the query (Q) and doc-
ument (D) based on the term frequency. The fol-
lowing equation is the one of the most prominent
instantiations of the function,

score(D,Q) =
n∑

i=1

IDF(qi)·

f(qi, D) · (k1 + 1)

f(qi, D) + k1 · (1− b+ b · |D|
avgdl )

,

(8)

where IDF(qi) is the inverse document frequency
of query term qi, f(qi, D) is the frequency of qi
in document D, |D| is the length of the document
D, and avgdl is the average length of all docu-
ments in the corpus. In practice, k1 ∈ [1.2, 2.0]
and b = 0.75. BM25 is an unsupervised method
that generalizes well in different domains (Thakur
et al., 2021a).

DPR Dense passage retriever involves two en-
coders: the question encoder Eq produces a dense
vector representation Vq for an input question q,
and the context encoder Ec produces a dense vec-
tor Vc representation for an input context c. Both
encoders are BERT models and the output vectors
are the embeddings of the special token [CLS] in
front of the input text (Eq. 9).

Vq = Eq(q)[CLS], Vc = Ec(c)[CLS]. (9)

The score of c w.r.t q is the inner-dot product of
their representations (Eq 10).

sim(q, c) = V⊤
q Vc. (10)

DPR uses contrastive loss to optimize the model
such that the score of positive context c+ is higher
than the score of the negative context c−. Mathe-
matically, DPR maximizes the following objective
function,

Lcon = − log
esim(q,c+)

esim(q,c+) +
∑j=n

j=1 e
sim(q,c−j )

,

(11)
where n is the number of negative contexts. For
better representation learning, DPR uses BM25 to
mine the hard negative context and the in-batch
negative context to train the model.
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Metric O-DrBoost R-DrBoost LITE-DrBoost H-LITE-DrBoost

R@20 77.3 75.6 77.9 81.0
R@100 84.5 83.9 84.7 87.5

Table 3: Three DrBoost (with 2 weak learners) and one
hybrid retriever. O-DrBoost: the original DrBoost, R-
DrBoost:replace the first weak learner in O-DrBoost
with LITE, LITE-DrBoost: use LITE as the first weak
learner and mine negative using LITE to train a new
weak learner to form a DrBoost, H-LITE-DrBoost: hy-
brid BM25 with LITE-DrBoost.

B Ablation Study

In this section, we conduct ablation studies to see
the effects of the proposed methods, and all models
are trained and tested on NQ dataset.

B.1 LITE Can Improve DrBoost

Recall that DPR32 is one encoder in DrBoost-2,
and since LITE performs better than DPR32 (see
Table 1), we ask the question can LITE replaces
DPR32 to form a stronger DrBoost-2 model? To an-
swer this question, we compare the performance of
R-DrBoost-2 (i.e. replace DPR32 with LITE) with
the original DrBoost-2. From Table 3, We observe
that R-DrBoost-2 performs worse than DrBoost-2,
indicating that the encoders in the DrBoost indeed
relate and complement to each other and replac-
ing an unrelated encoder degrades the performance.
Then we ask another question, can we train a weak
learner that minimizes the error of LITE, and com-
bine LITE with the new weak learner to form a
stronger DrBoost (L-DrBoost-2)? Table 3 shows
L-DrBoost-2 is better than DrBoost-2, and hybrid
L-DrBoost-2 is better than hybrid DrBoost-2 as
well (81.0 v.s. 80.4 on R@20). This indicates that
starting with a stronger weak learner can yield a
stronger DrBoost.

B.2 Hybrid model consistently improves the
DrBoost performance.

We study six DrBoost models with 1-6 weak learn-
ers. In Figure 3, we see that the performance of
hybrid models consistently improves the DrBoost
performance, demonstrating the results of BM25
and DrBoost complement each other and combin-
ing two models improves individual performance.
We also see that the improvement is larger when the
DrBoost is weaker, e.g. hybrid model significantly
improves DPR32.

Figure 3: Compare DrBoost, BM25 and the Hybrid
models performance.

Model Method
NQ

R20 R100

Hybrid(32*2)
Simple Sum 79.03 84.63

Multiplication 79.03 84.63
MinMax and Sum 80.41 87.47

Hybrid(32*6)
Simple Sum 81.61 86.12

Multiplication 81.19 86.12
MinMax and Sum 81.52 88.28

Table 4: Compare three hybrid scores. We study two
hybrid model, BM25 with 2 weak learners (32*2) and
BM25 with 6 weak learners (32*6)

B.3 Different Hybrid Scores
In our hybrid model, besides the hybrid scores we
introduced in §3.3, we also study two different
hybrid scores of BM25 and the DrBoost. Simple
Summation is to add two scores together, and mul-
tiplication is to mutiply two scores. We compare
two hybrid models’ performance, Hybrid-DrBoost-
2 and Hybrid-DrBoost-6. Table 4 shows that the
MinMax normalization performs the best (except
that simple summation is slightly better in terms of
R@20 for hybrid models with 6 weak learners).
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