@inproceedings{agnew-etal-2023-mechanical,
title = "The Mechanical Bard: An Interpretable Machine Learning Approach to {S}hakespearean Sonnet Generation",
author = "Agnew, Edwin and
Qiu, Michelle and
Zhu, Lily and
Wiseman, Sam and
Rudin, Cynthia",
editor = "Rogers, Anna and
Boyd-Graber, Jordan and
Okazaki, Naoaki",
booktitle = "Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)",
month = jul,
year = "2023",
address = "Toronto, Canada",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2023.acl-short.140",
doi = "10.18653/v1/2023.acl-short.140",
pages = "1627--1638",
abstract = "We consider the automated generation of sonnets, a poetic form constrained according to meter, rhyme scheme, and length. Sonnets generally also use rhetorical figures, expressive language, and a consistent theme or narrative. Our constrained decoding approach allows for the generation of sonnets within preset poetic constraints, while using a relatively modest neural backbone. Human evaluation confirms that our approach produces Shakespearean sonnets that resemble human-authored sonnets, and which adhere to the genre{'}s defined constraints and contain lyrical language and literary devices.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="agnew-etal-2023-mechanical">
<titleInfo>
<title>The Mechanical Bard: An Interpretable Machine Learning Approach to Shakespearean Sonnet Generation</title>
</titleInfo>
<name type="personal">
<namePart type="given">Edwin</namePart>
<namePart type="family">Agnew</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Michelle</namePart>
<namePart type="family">Qiu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Lily</namePart>
<namePart type="family">Zhu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sam</namePart>
<namePart type="family">Wiseman</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Cynthia</namePart>
<namePart type="family">Rudin</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2023-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Anna</namePart>
<namePart type="family">Rogers</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jordan</namePart>
<namePart type="family">Boyd-Graber</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Naoaki</namePart>
<namePart type="family">Okazaki</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Toronto, Canada</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>We consider the automated generation of sonnets, a poetic form constrained according to meter, rhyme scheme, and length. Sonnets generally also use rhetorical figures, expressive language, and a consistent theme or narrative. Our constrained decoding approach allows for the generation of sonnets within preset poetic constraints, while using a relatively modest neural backbone. Human evaluation confirms that our approach produces Shakespearean sonnets that resemble human-authored sonnets, and which adhere to the genre’s defined constraints and contain lyrical language and literary devices.</abstract>
<identifier type="citekey">agnew-etal-2023-mechanical</identifier>
<identifier type="doi">10.18653/v1/2023.acl-short.140</identifier>
<location>
<url>https://aclanthology.org/2023.acl-short.140</url>
</location>
<part>
<date>2023-07</date>
<extent unit="page">
<start>1627</start>
<end>1638</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T The Mechanical Bard: An Interpretable Machine Learning Approach to Shakespearean Sonnet Generation
%A Agnew, Edwin
%A Qiu, Michelle
%A Zhu, Lily
%A Wiseman, Sam
%A Rudin, Cynthia
%Y Rogers, Anna
%Y Boyd-Graber, Jordan
%Y Okazaki, Naoaki
%S Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)
%D 2023
%8 July
%I Association for Computational Linguistics
%C Toronto, Canada
%F agnew-etal-2023-mechanical
%X We consider the automated generation of sonnets, a poetic form constrained according to meter, rhyme scheme, and length. Sonnets generally also use rhetorical figures, expressive language, and a consistent theme or narrative. Our constrained decoding approach allows for the generation of sonnets within preset poetic constraints, while using a relatively modest neural backbone. Human evaluation confirms that our approach produces Shakespearean sonnets that resemble human-authored sonnets, and which adhere to the genre’s defined constraints and contain lyrical language and literary devices.
%R 10.18653/v1/2023.acl-short.140
%U https://aclanthology.org/2023.acl-short.140
%U https://doi.org/10.18653/v1/2023.acl-short.140
%P 1627-1638
Markdown (Informal)
[The Mechanical Bard: An Interpretable Machine Learning Approach to Shakespearean Sonnet Generation](https://aclanthology.org/2023.acl-short.140) (Agnew et al., ACL 2023)
ACL