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Abstract

We present the first unified study of the effi-
ciency of self-attention-based Transformer vari-
ants spanning text, speech and vision. We iden-
tify input length thresholds (tipping points) at
which efficient Transformer variants become
more efficient than vanilla models, using a va-
riety of efficiency metrics (latency, through-
put, and memory). To conduct this analysis for
speech, we introduce L-HuBERT, a novel local-
attention variant of a self-supervised speech
model. We observe that these thresholds
are (a) much higher than typical dataset se-
quence lengths and (b) dependent on the met-
ric and modality, showing that choosing the
right model depends on modality, task type
(long-form vs. typical context) and resource
constraints (time vs. memory). By visu-
alising the breakdown of the computational
costs for transformer components, we also
show that non-self-attention components ex-
hibit significant computational costs. We re-
lease our profiling toolkit at https://github.
com/ajd12342/profiling-transformers.

1 Introduction and Related Work

Transformers (Vaswani et al., 2017) are widely
adopted across NLP (Devlin et al., 2019; Brown
et al., 2020), Speech Processing (Mohamed et al.,
2022) and Computer Vision (Dosovitskiy et al.,
2021). Studies have shown that scaling mod-
els up improves performance (Chowdhery et al.,
2022), making efficiency an important research
topic. Many Transformer variants focus on im-
proving the efficiency of self-attention, motivated
by its asymptotic quadratic time/space complexity
with respect to the input sequence length.1 While
these Transformer variants are designed be asymp-
totically faster, in practice they may actually be
slower, especially given modest input lengths that
are typical of many tasks.

1We refer the readers to Tay et al. (2022) for a comprehen-
sive overview of efficient Transformers.

Our paper presents two main analyses. First, we
visualize the layerwise efficiency of such models to
locate bottlenecks and attempt to answer the ques-
tion “is self-attention the true bottleneck?” We find
that in the non-asymptotic case, non-self-attention
layers contribute significantly to the overall cost,
especially for speech architectures due to the input
waveform tokenizer in models like HuBERT (Hsu
et al., 2021). Second, when should we use self-
attention-based efficient Transformers? Comparing
efficient variants with vanilla models at different
input lengths, we find that this tipping point where
efficient variants outperform vanilla architectures is
much higher than typical input lengths of existing
benchmarks across all modalities, calling into ques-
tion the efficacy of using such efficient Transform-
ers and requiring new benchmarks. We introduce
a local-attention variant of a speech Transformer,
HuBERT, to conduct this analysis. Together, our
analyses suggest that current approaches that focus
on improving self-attention might not be the most
effective for improving efficiency.

2 Efficiency Metrics

Model efficiency is an umbrella term for a suite of
efficiency metrics, which do not always correlate
with, and sometimes contradict, each other (De-
hghani et al., 2022). Further, different metrics are
relevant to different end use-cases. To cover most
use-cases, we evaluate a set of four metrics; two
for computational time and two for memory usage:
Throughput: Number of examples processed per
sec, given inputs of a given sequence length, using
the maximum possible batch size for a given GPU.
Latency-Inference: Time (in ms) to run inference
for 1 unbatched input of a given sequence length.
Max-Memory: The allocated GPU memory (MiB)
for processing 1 input of a given sequence length.
Parameter Count: Number of model parameters.

We profile models in all modalities in training
mode and inference mode. For training, while
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Figure 1: Transformer layer types profiled in our layer-
wise efficiency profiling experiments.

Transformer architectures often use prediction
heads with a larger output space (e.g., for text gen-
eration), we choose a lightweight binary classifica-
tion head for profiling.

Layerwise Efficiency Metrics We also profile
some metrics and models in a layerwise fashion
to locate their efficiency bottlenecks. Our goal is
twofold: a) provide an empirical approach to effi-
cient model design, as an alternative to theoretical
analyses or mental models (e.g. self-attention is
O(n2)) and b) empirically answer the question "to
what degree is self-attention the bottleneck?"

We identify important layer types (Self-
Attention, Feedforward, etc.) and profile the
Latency-Inference and Parameter Count metrics
per-layer-type to obtain a fine-grained understand-
ing of which layer types and indices (layer 0 vs 11)
contribute the most to model efficiency costs. We
use param counts as a proxy for memory (profiling
real layerwise memory usage is non-trivial due to
Pytorch memory allocation intricacies). We pro-
file the layers depicted in Figure 1; more details in
Appendix E.

3 Local-Attention Speech Model

Efficient transformers (Xiong et al., 2021; Ma
et al., 2021) have not received as much attention in
Speech as they have in NLP and CV, perhaps due
to two reasons. First, there is a relative lack of long-
context speech benchmarks as compared to those in
NLP (LRA (Tay et al., 2021) and QuALITY (Pang
et al., 2022)). Second, when performing speech

Model WER ↓ WER (w/ FT) ↓
HuBERT Base 7.09 3.4

L-HuBERT (32 | 100) 21.06 | 14.48 8.52 | 7.39

Table 1: WERs on the SUPERB ASR task.

tasks like automatic speech recognition (ASR), it is
typical to segment a long speech signal into small
individual utterances and perform ASR indepen-
dently on each. For example, most Librispeech
examples are less than 5 seconds. Many popular
speech models like HuBERT (Hsu et al., 2021)
tokenize the waveform at 50 tokens per second,
implying that a typical utterance has only several
hundred tokens; far below the number of tokens
in long-context NLP tasks. Nevertheless, textless
speech models (Lakhotia et al., 2021) are becom-
ing more feasible, motivating the modelling of long
speech utterances.

Local HuBERT Model To investigate the effi-
ciency of the self-attention layer in speech mod-
els, we introduce the Local HuBERT model which
replaces HuBERT’s self-attention with the Long-
former (Beltagy et al., 2020) sliding-window self-
attention. In this attention mechanism, every token
attends to tokens within a local window context,
rather than the full token sequence. Our model
is similar to the temporally windowed-attention
Transformer acoustic model proposed by Alastruey
et al. (2021) for speech translation; our approach
differs by using the self-supervised HuBERT model
as our basis, and we evaluate on ASR. Choosing
the appropriate window size for the local attention
context is key; we explore 32 and 100 token con-
texts, corresponding to 640 ms and 2 s, inspired
by phone recognition models that typically incor-
porate similar context sizes (Peddinti et al., 2015;
feng Yeh et al., 2019).

ASR Results We initialize the L-HuBERT model
with pretrained HuBERT Base weights (pretrained
with full self-attention), and then replace self-
attention with sliding-window self-attention; due
to limited compute, we did not pretrain L-HuBERT
from scratch using sliding-window attention. We
then evaluate L-HuBERT on Librispeech (Panay-
otov et al., 2015) ASR via the SUPERB (Yang et al.,
2021) benchmark under two settings; a) Freeze:
freezing the model and only training projection
weights and b) Finetune: fully finetune the model.
We use the default S3PRL2 hyperparams; but we

2https://github.com/s3prl/s3prl
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Model Emb Pos SA Interm Output Others

BERT 23.8M - 29M 28.3M 28.3M 0.6M
HuBERT 4.2M 5.1M 29M 28.3M 28.3M 0.2M
ViT 0.6M - 29M 28.3M 28.3M 0.6M

Table 2: Layer-wise parameter counts. Emb: Input
Embedding, Pos: Positional Emb. SA: Self-Attention,
Interm: Intermediate.

train for 200k steps for Freeze and 104k steps for
Finetune. Both models converge by 104k steps; we
train Freeze for longer to eke out as much perfor-
mance as possible, while we stop training Finetune
due to limited compute.

We report Word Error Rate (WER) on Lib-
rispeech test-clean in Table 1; lower is better. In
the frozen setting (middle column), we see a large
WER increase over HuBERT; we hypothesize that
this is due to the attention layer mismatch since
we initialize L-HuBERT with HuBERT weights
that were pretrained with full self attention, rather
than pretraining L-HuBERT from scratch. How-
ever, in the finetuning setting, the gap between
HuBERT Base and L-HuBERT narrows consider-
ably and using a larger window size achieves better
performance. As our L-HuBERT model is a reason-
able architecture capable of moderate ASR perfor-
mance, we can continue to study its computational
efficiency (we profile the window-100 variant).

4 Methods and Implementation

We analyze the Base versions of the BERT (De-
vlin et al., 2019), Longformer (Beltagy et al., 2020)
and Nyströmformer (Xiong et al., 2021) models
for text; the HuBERT (Hsu et al., 2021) and L-
HuBERT (Section 3) models for speech; and Vision
Transformer (Dosovitskiy et al., 2021) and Swin
Transformer (Liu et al., 2021) models for vision;
BERT, HuBERT and ViT are standard Transformer
encoder architectures. Longformer, L-HuBERT
and Swin use fixed-pattern self-attention while Nys-
trömformer uses approximate self-attention.

4.1 Sequence Length Ranges

We profile our models on a wide range of input se-
quence lengths to cover both avg. sequence lengths
of commonly used contemporary datasets (Table 3)
and typical sequence lengths of long-context tasks.
Details about how we compute sequence lengths in
Table 3 can be found in Appendix B. Most image
datasets use images resized to 224 or 512 pixels.
Below, range(a, b, c) means a range from a to b

in steps of c. Since there is no difference between
synthetic and real inputs from a computational com-
plexity standpoint, we use synthetic inputs to more
easily control for their sequence lengths.
Text Modality The input is ‘This is a sentence.’
repeated n times, n ∈ range(10, 560, 10) i.e.
range(62, 3362, 60) tokens for all tokenizers.
Speech Modality The inputs have durations in
range(1, 50, 0.5) sec i.e. range(50, 2500, 25) to-
kens for all featurizers (CNNs with 20 ms framer-
ate). Our sampling strategy is in Appendix A.
Image Modality We use square inputs of dimen-
sion in range(32, 1024, 32) pixels by rescaling a
fixed image. The # tokens depend on featurizer
patch size, which is different for different models.

4.2 Implementational Details

We profile time-based metrics (latency/throughput)
using Pytorch CUDA Events3 by executing 20
iterations sequentially. The first few iterations
serve as GPU warm-start; thus, we report the av-
erage of the last 10. We record Max-Memory
with torch.cuda.max_memory_allocated() and
param counts with torchinfo (Yep, 2020).

To profile throughput, we approximate the max
batch size that fits on a single GPU using a linear
estimator; more details in Appendix C. Finally, we
profile the layerwise Latency-Inference metric us-
ing torchprof (Wong, 2020). We attach profiling
hooks to modules of interest (e.g. Self-Attention,
Embedding), giving us execution times of their
forward() functions (other modules/functions are
not profiled). We use the Huggingface (Wolf et al.,
2020) implementations of text and image models
and fairseq (Ott et al., 2019) implementations for
speech models; more details in Appendix D.

5 Profiling Results

5.1 Layerwise Profiling Results

Figure 2 shows the layerwise Latency-Inference for
all 3 vanilla architectures in each modality. Figures
for efficient models are in Appendix F. Color dark-
ness represents the layer index (layer 0 is darkest).
Table 2 shows the layerwise param count.

Asymptotically, self-attention dominates the
computation. However, since the average seq
length for most text and speech tasks is less than
1000 tokens and most image datasets are used at

3https://pytorch.org/docs/stable/generated/
torch.cuda.Event.html
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Text Speech

Dataset SST MNLI SQ ON CNN HPQA TQA TEDL LJS VoxC Libri S-SQuAD Spotify
# of tokens 23 36 177 506 863 1, 316 6, 589 301 328 390 615 3080 101400

Table 3: Average token sequence lengths. Left to right: Stanford Sentiment Treebank, MultiNLI, SQuAD2.0,
OntoNotes, CNN-DailyMail, HotpotQA, TriviaQA, TEDLIUM, LJSpeech, VoxCeleb Speaker Recognition, Lib-
rispeech, Spoken SQuAD, Spotify Podcasts.

Input Embedding Positional Embedding Self-Attention Intermediate Output Other
Text (BERT) Speech (HuBERT) Vision (ViT)
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Figure 2: Layerwise latency of different vanilla Transformer architectures in inference mode.
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Figure 3: Overall Inference-time Profiling Results. Text and speech models in first row, vision models in second.

a max dimension of 512, at these points, non-self-
attention components take up 35%, 58.8% and
43.75% latency for NLP, speech and images. Ad-
ditionally, parameter counts of SA are also compa-
rable to Interm/Output layers. This shows that it is
also important to direct efficiency efforts for other
model components.

While the latency associated with embedding
layers is minimal for BERT, they are sizable for
HuBERT. HuBERT uses a CNN feature extractor
with different strides and kernel sizes and consumes
more time in the earlier CNN layers as opposed to
later ones, as is visible in Figure 2, which shows

darker shades i.e. earlier layers dominating the
computation. Optimal efficiency strategies can thus
differ across modalities, e.g. Wu et al. (2022) slims
down this CNN feature extractor embedding layer.
On the other hand, embedding layers take up a lot
of parameters in BERT; thus, it may be helpful to
shrink the BERT embedding layer for memory pur-
poses (as opposed to latency for HuBERT). Finally,
analyzing Transformer variants (Appendix F), we
see that self-attention in Longformer, Swin and L-
HuBERT encouragingly scales latency linearly, but
with large overhead for smaller inputs.
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Figure 4: Overall Training-time Profiling Results. Text and speech models in first row, vision models in second.

5.2 Overall Profiling Results

Our profiling results are in Figures 3 and 4. Infer-
ence Throughput is in the Appendix at Figure 6,
exhibiting similar trends as training Throughput.

Tipping Point Analysis We see that most vari-
ants are slower and more memory hungry than
vanilla models for input lengths of typical-context
tasks. We define the tipping point for each modal-
ity: the input length at which the variant becomes
more efficient than the vanilla model. For text and
speech, it is 1750 − 2000 tokens for inference la-
tency and max-memory, greater than typical input
lengths (Table 3). However, while the tipping point
for training max-memory is ≈ 1500 tokens for text
(still a large number), it is ≈ 0 − 250 for speech,
an encouraging result. For images, it is 500− 700
pixels for all metrics apart from throughput. This
is less reasonable for 224 pixel datasets but good
for high resolution image datasets (512/1024). All
variants are either worse or comparable than vanilla
models across modalities for throughput.

We hypothesize that some efficient models suffer
from additional overheads; while vanilla attention
benefits from highly optimized matrix multiplica-
tion, windowed attention requires complex reshap-
ing and preprocessing.

Choosing the Right Model Depends on Resource
Constraints Our results show that the choice of
the right model depends on resource constraints.
Suppose that one is training models under a time
constraint; then, throughput is the bottleneck and

efficient models would not be a good fit. On the
other hand, efficient models are useful for long
context memory-constrained inference.

Local Attention and Excessive Padding The
Longformer pads input lengths to be a multiple of
512 and Swin requires input dimension to be a mul-
tiple of 224. This slows shorter inputs down and
results in extremely low performance (measured by
all 3 metrics) as compared to vanilla models.

Comparing Parameter Counts The Long-
former uses more parameters compared to vanilla
BERT (148M vs. 109M) because it uses two sets of
Q,K,V projection matrices for its global and local
attention operations; sharing these may decrease
its memory usage. For other modalities, efficient
models do not incur more parameters.

6 Conclusion

We present an empirical efficiency analysis of
vanilla Transformers and their self-attention-based
efficient variants across modalities, metrics and in-
put context sizes. We find substantial differences
across modalities and metrics when analyzing the
tipping point for efficient variants. Finally, the
layerwise analysis finds that self-attention is not
the only bottleneck. We recommend that all effi-
cient model papers should report such cross-modal,
layerwise profiling results on multiple efficiency
metrics covering a variety of use-cases to provide
a full picture of the benefits of the model.
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Limitations

We focus primarily on comparing model efficien-
cies using a variety of efficiency metrics and do not
consider model performance; one can perform a
more elaborate analysis of performance-efficiency
tradeoffs, which we did not do here.

We only profile a total of seven models across
three modalities while there are more efficient vari-
ants and vanilla Transformers proposed in the liter-
ature. While we choose our models to be as repre-
sentative of each modality and efficiency technique
as possible, we cannot extrapolate results to other
model variants and other modalities. In particular,
modalities like video and genomics and efficiency
approaches like quantization would be interesting
to profile, which we did not do.
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A Sampling Speech Utterances for
Profiling

To obtain speech inputs of length i seconds to
i + 0.5 seconds for all i less than 12 seconds, we
sample 5 speech utterances from the training set
of the Librispeech dataset (Panayotov et al., 2015)
whose lengths fall within this range and compute
aggregate metrics over these 5 utterances. Since
the Librispeech dataset does not contain extremely
long speech utterances, for i of length greater than
12 seconds, we adopt a different approach to gen-
erate inputs. To generate such an input utterance
of length between i and i + 0.5 seconds, we first
sample 5 speech utterances from the Librispeech
training set of input length ranging from i

5 to i+0.5
5

and concatenate them to obtain utterances of length
ranging from i to i + 0.5 as desired. We do this
5 times to get 5 different utterances and compute
aggregate metrics over these 5 utterances.

B Computing Token Lengths for NLP
and Speech Datasets

We compute average sequence token lengths for
7 NLP datasets and 6 speech datasets. For all
speech datasets, we compute mean utterance dura-
tions and multiply durations by 50 to obtain number
of tokens (model framerates are 20 ms i.e. ×50).
For TEDLIUM (Hernandez et al.), LJSpeech (Ito
and Johnson, 2017), VoxCeleb Speaker Recog-
nition Dataset (Nagrani et al., 2017) and Lib-
rispeech (Panayotov et al., 2015), we compute
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mean validation-set utterance durations; for Spo-
ken SQuAD (Li et al., 2018), we report mean
validation-set paragraph duration and for the Spo-
tify English Podcasts dataset (Clifton et al., 2020),
we report mean podcast duration directly obtained
from Clifton et al. (2020).
SST (Socher et al., 2013). We use test-set sen-
tences. We use the HuggingFace BERTTokenizer.
MNLI (Williams et al., 2018). We use
validation-matched-set examples by concatenating
the premise and the hypothesis. We use the Hug-
gingFace BERTTokenizer.
SQuAD2.0 (Rajpurkar et al., 2018). We use
validation-set examples by concatenating the con-
text and the question. We use the HuggingFace
BERTTokenizer.
OntoNotes (Pradhan and Xue, 2009). We obtain
this number from the Longformer (Beltagy et al.,
2020) paper.
CNN-Dailymail (Hermann et al., 2015). We use
the 3.0.0 version of the dataset and use test-set
articles. We use the HuggingFace BERTTokenizer.
HotpotQA (Yang et al., 2018). We obtain this
number from the Longformer (Beltagy et al., 2020)
paper.
TriviaQA (Joshi et al., 2017). We obtain this num-
ber from the Longformer (Beltagy et al., 2020)
paper.

C Implementing Throughput Profiling

To profile Throughput, we need to compute the
max batch size that can fit on a single GPU. We ap-
proximately predict this using a linear estimator as
follows. We first record the memory B reserved on
the GPU after just loading the model. Next, we in-
dependently run batches of sizes 1 and 2 and record
memory usages M1 and M2. We use an NVIDIA
Quadro RTX 8000 GPU with a maximum memory
of 45000 MiB. Thus, assuming a linear relationship
between batch size and memory consumption, we
predict a maximum batch size of bsz = 45000−B

M2−M1
.

In practice, this is an overestimate; we keep de-
creasing the batch size by a factor of 0.9 until no
OOM errors occur and this is our final estimate.

D Implementational Details for Models

We use the following HuggingFace config-
urations: bert-base-uncased for BERT,
allenai/longformer-base-4096 for Long-
former, uw-madison/nystromformer-4096
for Nyströmformer,

google/vit-base-patch16-224 for ViT and
microsoft/swin-base-patch4-window7-224
for Swin. The BERT model natively supports
a maximum of 512 tokens as input because
it has 512 positional embeddings; we modify
the positional embedding computation to allow
an arbitrarily long input to be provided. The
Longformer internally pads all input lengths to
a multiple of 512. For Swin, we pad images to
have an input dimension that is a multiple of 224;
this is necessary due to the windowed attention
mechanism in Swin. In fact, the Swin model
natively supports only a 224 × 224 resolution;
we make a small modification in order to support
resolutions that are multiples of 224. We use
the HuBERT Base model for both HuBERT and
L-HuBERT.

E Transformer Layer Types

Input Embedding Layer. ( /red) Maps the input
sequence into fixed-dimensional embeddings. This
is a linear layer for text and a CNN featurizer for
image/speech.
Positional Embedding Layer. ( /fuchsia) For
text and image models this is part of the input em-
bedding layer. For speech models, this is a very
wide convolution layer.
Self Attention Layer.( /blue) The multi-head self
attention block, which computes self-attention out-
puts and maps the result to the model dimension.
Intermediate Layer.( /yellow) Linear layer of the
feedforward block that maps the output from the
Self Attention block into the ‘feedforward dimen-
sion’ (typically 4x the model dimension).
Output Layer.( /green) Second linear layer of the
feedforward block, which maps the output from
Intermediate layer back to the model dimension.
Other Layers.( /black) Other modules (activa-
tions, layer normalizations, other linear layers, etc.)
not covered by the above components.

F Additional Profiling Analyses

We report layerwise profiling runs for efficient self-
attention variants and inference-time throughput
profiling runs for all variants in this section at Fig-
ures 5 and 6.
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Figure 5: Layerwise latency of different Transformer variants in inference mode.
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Figure 6: Throughput Profiling Results in inference mode.
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