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Abstract

Existing knowledge-grounded open-domain di-
alogue generation models often face the hallu-
cination problem, i.e. the dialogue generative
model will persist in an inappropriate knowl-
edge and generate responses that inconsistent
with the facts. We argue that this problem
mainly stems from the polarized optimization
objectives and weak knowledge generation abil-
ity. To mitigate the hallucination, we take in-
spiration from human communicating that peo-
ple will replay euphemistic responses for the
unclear or unrecognizable knowledge, and pro-
pose an Augmentative and Contrastive Knowl-
edge Dialogue Expansion Framework (ACK-
DEF). ACK-DEF constructs the augmentative
and contrastive knowledge dialogue samples,
which consist of the knowledge of different
degrees of errors and the response of manual
design, to expand the original training set and
smooth the polarized optimization objective
that enables models to generate ground-truth
with or without gold knowledge. Not only the
knowledge, ACK-DEF also provides the tactful
responses of manual design corresponding to
the incomplete correct knowledge. Experimen-
tal results on the Wikipedia of Wizard dataset
show that employing the ACK-DEF is effective
to alleviate the hallucination problem.

1 Introduction

Recently, Knowledge-Grounded Dialogue Gener-
ation draws dramatic attentions in artificial intelli-
gence community. Many efforts incorporate knowl-
edge information to improve the performance of
dialogue generation models (Zhou et al., 2018; Di-
nan et al., 2019; Gopalakrishnan et al., 2019; Kim
et al., 2020; Zhao et al., 2020a; Zheng et al., 2021;
Zhao et al., 2022a; Bao et al., 2022). However,
these methods always face the hallucination prob-
lem, that is, the dialogue generation model may
insist on an inappropriate knowledge and generate
responses that inconsistent with the facts (Rashkin
et al., 2021; Zhao et al., 2022a; Dziri et al., 2022).

We argue that the hallucination problem primar-
ily caused by two aspects: (1) The optimization ob-
jective is usually polarized by the gold knowledge-
dialogue samples and general dialogue samples
without knowledge in current knowledge-grounded
dialogue datasets (Zhou et al., 2018; Gopalakrish-
nan et al., 2019; Dinan et al., 2019; Wu et al.,
2019; Komeili et al., 2022). Few datasets consider
teaching models how to respond when dealing with
incomplete correct knowledge, which makes the
models tend to believe in the given knowledge,
regardless of whether the knowledge is appropri-
ate or not, resulting in hallucination problems. In
addition, the knowledge retrieval system tends to
extract irrelevant knowledge rather than relevant
knowledge when the database is large, aggravating
the hallucinations (Reimers and Gurevych, 2021;
Liu et al., 2022). (2) The generation of knowledge
may also face the hallucination problem and obtain
the inappropriate knowledge, leading the genera-
tion of hallucination responses (Kim et al., 2020;
Zhao et al., 2020a; Liu et al., 2022; Adolphs et al.,
2021; Bao et al., 2022).

To mitigate the hallucination problem, we pro-
pose an Augmentative and Contrastive Knowl-
edge Dialogue Expansion Framework (ACK-DEF),
which is inspirited by human communicating that
people will replay euphemistic response for the un-
recognizable knowledge. ACK-DEF is proposed
to smooth the polarized optimization objective by
augmenting training set with augmentative and con-
trastive knowledge-dialogue samples. Not only the
knowledge, we also designed the reply patterns for
the knowledge with different level of errors. For
this, we propose the augmentative knowledge dia-
logue expansion (AK), and contrastive knowledge
dialogue expansion (CK). AK is proposed to boost
the generalization ability of models on knowledge
with minor noise. On the contrary, inspired from
the contrastive learning paradigm (Cai et al., 2020;
Chen et al., 2020a,b; Sun et al., 2021, 2022), CK
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Figure 1: A diagram of our Augmentative Knowledge
dialogue expansion method. We replace different pro-
portion of words in the original knowledge with syn-
onyms to construct incomplete correct knowledge, and
design response for different knowledge. We also use
prompts to guide the dialogue generation process.

reconstructs incorrect knowledge and designs eu-
phemistic responses, which aims to push the model
learn the reply pattern of incorrect knowledge and
a better boundary between correct and incorrect
knowledge.

Contributions: We propose an ACK-DEF to
construct new knowledge-dialogue samples that
consist of knowledge with different level of errors
and manual responses, to soften the training opti-
mization objectives of models, which will mitigate
the hallucination. Finally, we conduct extension
experiments to show the superior performance of
ACK-DEF on alleviating the hallucination.

2 Methodology

To mitigate the hallucination problem that caused
by the polarized optimization objectives in knowl-
edge grounded dialogue generation, we take in-
spiration from human communicating, and pro-
pose the Augmentative and Contrastive Knowl-
edge Dialogue Expansion Framework (ACK-DEF).
Our ACK-DEF aims to soften the polarized train-
ing optimization objectives of current knowledge-
grounded dialogue generation methods, and guide
the dialogue system reply patterns for the knowl-
edge with different level of errors. To achieve this
end, we design two effective expansion method,
which will be detailed in below.

2.1 Augmentative Knowledge Dialogue
We propose the Augmentative Knowledge (AK) dia-
logue expansion to boost the generalization ability
of the dialogue model on the knowledge with simi-
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Figure 2: A diagram of our Contrastive Knowledge
dialogue expansion method. We use the antonym to
reconstruct the knowledge information and design mul-
tiple responses for such knowledge. Since antonyms
transform the semantics of the original knowledge, the
noise knowledge often contains wrong facts. By this,
the model can learn a better boundary between correct
and incorrect knowledge, and a safety reply pattern for
incorrect knowledge.

lar semantics but different expressions, which can
prevent the model from being interfered by partial-
relevant knowledge retrieved by the retrieval sys-
tems (Lian et al., 2019; Zhao et al., 2020b; He-
dayatnia et al., 2020; Zheng et al., 2021; Shuster
et al., 2021; Komeili et al., 2022). As shown in Fig-
ure 1, we employ the synonym data augmentation
tool, which replaces words in the original knowl-
edge with synonyms, to reconstruct the knowledge
information (Miller, 1995). Considering that the
synonym may disrupt the original semantics of new
constructed knowledge, we constrain the replace
possibility within [0.1,0.2]. Hence, we can ob-
tain the approximate knowledge. Combining this
knowledge and the original dialogue, we obtain the
“ak-less sample”. In addition, we also replace 30%
to 50% words with their synonyms to construct
the less similar knowledge. Inspired from prompt
learning paradigm (Yao et al., 2022; Valvoda et al.,
2022; Zhao et al., 2022b), we manually produce
some Prefix-prompts and Post-prompts (see Ap-
pendix) to (1) make the new response more tactful
for the less similar knowledge; (2) regulate and
guide the dialogue generation process of the model.
We call the sample consist of less-similar knowl-
edge and designed response as “ak-more sample”.

2.2 Contrastive Knowledge Dialogue

We propose the Contrastive Knowledge (CK) di-
alogue expansion, inspired from the contrastive
learning paradigm (Chen et al., 2020b; Cai et al.,
2020), not only construct the incorrect knowledge
as negative samples for original knowledge, but
also build the euphemistic responses as positive
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samples for the original response with incorrect
knowledge.1 To help the model learn a boundary
between correct and incorrect knowledge, we em-
ploy the antonym to make up new incorrect knowl-
edge. For example, given the knowledge “nin-
tendo was founded on 23 september 1889 ...”, the
“founded” will be replaced with “abolish”, which
greatly changes the semantics but little changes the
expression. After that, we random choose an eu-
phemistic response to replace the original response
of the dialogue. Finally, The incorrect knowledge
and the replaced euphemistic response are com-
bined as the “ck-sample”.

3 Experiment and Results

3.1 Experiment Settings

3.1.1 Dataset

We use the Wikipedia of Wizard (WoW) data,
a well-established knowledge-grounded open-
domain dialogue dataset, for our experiment. We
pre-precess the WoW dataset and extract the single-
turn knowledge dialogue samples. To evaluate the
performance of our method in detail, we perform
four test sets: normal, ak-less, ak-more and ck.
The normal set is the original test set. And the
ak-less, ak-more and ck are the sets consist of
ak-less, ak-more and ck samples, respectively. We
also follow the settings of WoW data and divide
the test set into two groups (seen test and unseen
test): the topic of the knowledge in the unseen test
set is missing in the training set.

3.1.2 Baseline

We employ the released PLATO-v1 (Bao et al.,
2020) model, a pre-trained dialogue generation
model based on UniLM, for our experiment.

Fine-tuning We directly finetune a model on the
original WoW training set. By this, the model can
only see gold knowledge dialogue samples and gen-
eral dialogue samples without knowledge. Hence,
we call the fine-tuned model PLATO+GOLD.

Fine-tuning with ACK-DEF We finetune the
model with the original set and the expansion sam-
ples that obtained through ACK-DEF. Thence, we
call it PLATO+ACK-DEF.

1We manually construct some responses, please see Ap-
pendix for the detail.

3.1.3 AutoEvaluation Metrics
Dialogue Metrics Our primary metrics of inter-
est are Distinct-n (Li et al., 2016), Response Length
(Len.) (Csaky et al., 2019), BLEU (Papineni et al.,
2002), Embedding-based (Greedy (GRE), Average
(AVG), Extrema (EXT)) (Liu et al., 2016), and Co-
herence (COH) (Xu et al., 2018). Distinct-n evalu-
ates the diversity of generated responses, which is
calculated through the ratio of distinct n-grams and
all generated n-grams. Len. is the average number
of words of all generated responses. BLEU vali-
dates the degree of the word-overlap between the
generated response and the ground-truth, which de-
notes the consistence between generated response
and ground-truth. Embedding-based metrics (GRE,
AVG and EXT) are introduced to evaluate the se-
mantic relationship of generated responses and
ground-truth responses, illustrating the consistence
in semantic level. COH. mainly assesses the rele-
vance between contexts and generated responses.

Knowledge Metrics We follow the PLATO(Bao
et al., 2020) and use the knowledge precision, recall
and f1 scores. These metrics are used to calculate
the ratio of tokens that exist in common in ground-
truth knowledge and generated responses to tokens
in generated responses. “Recall” is the average
ratio of the number of overlapping tokens in re-
sponse and knowledge to the number of tokens in
knowledge. And “Precision” is the average ratio
of the number of overlapping tokens to the num-
ber of tokens in response. In other words, “Recall”
indicates how much knowledge information is con-
tained in the response, while “Precision” indicates
the proportion of knowledge information in the re-
sponse. Even we involve the negative and incorrect
knowledge in response generation, we still use the
ground-truth knowledge to calculate the metrics in
Table 3,4.

3.2 Dialogue Performance Analysis

Table 1 and Table 2 report the automatic results
on four test sets and four unseen test sets, respec-
tively. In these Tables, it can be observed that
(1) the PLATO+ACK-DEF has a competitive per-
formance with PLATO+GOLD on the normal set,
which means that the PLATO+ACK-DEF can rec-
ognize the golden knowledge and produce appro-
priate responses. (2) the PLATO+GOLD perform
worse than PLATO+ACK-DEF on ak-less, which
means that the robustness of the dialogue model
only trained with golden knowledge is very weak.
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test set Distinct-1/2/3 Len. BLEU-1/2/3/4 GRE AVG EXT COH

normal
0.1068 0.4533 13.69 0.4280 0.2965 0.2110 0.1529 0.7392 0.8689 0.6361 0.7808
0.0902 0.3984 16.20 0.4428 0.3017 0.2109 0.1499 0.7366 0.8683 0.6330 0.7878

ak-less
0.1194 0.5024 13.50 0.3861 0.2574 0.1745 0.1192 0.7160 0.8607 0.6148 0.7755
0.0823 0.3532 18.78 0.4502 0.2982 0.2015 0.1380 0.7307 0.8696 0.6293 0.7948

ak-more
0.1234 0.5174 12.81 0.1675 0.1062 0.0680 0.0435 0.6908 0.8551 0.5994 0.7706
0.0675 0.2946 21.83 0.4358 0.3001 0.2123 0.1542 0.7745 0.9151 0.7093 0.8098

ck
0.1109 0.4779 13.23 0.2965 0.1779 0.1080 0.0657 0.5838 0.7622 0.5373 0.7712
0.0652 0.2029 13.36 0.4230 0.2705 0.1809 0.1266 0.6572 0.8306 0.6162 0.8049

Table 1: The automatic results of PLATO+GOLD (up) and PLATO+ACK-DEF (down) on four test seen sets.

test set Distinct-1/2 Len. BLUE-1/2/3/4 GRE AVG EXT COH

normal 0.0503 0.2422 12.43 0.3516 0.2331 0.1582 0.1090 0.6988 0.8568 0.6306 0.8094
0.0467 0.2311 13.14 0.3463 0.2281 0.1536 0.1049 0.6968 0.8541 0.6338 0.8105

ak-less 0.0966 0.3917 13.39 0.3871 0.2565 0.1724 0.1164 0.7143 0.8600 0.6122 0.7836
0.0623 0.2664 19.18 0.4443 0.2907 0.1936 0.1301 0.7232 0.8663 0.6194 0.8026

ak-more 0.1064 0.4440 12.71 0.1652 0.1046 0.0668 0.0426 0.6888 0.8538 0.5980 0.7797
0.0561 0.2400 21.82 0.4331 0.2968 0.2091 0.1511 0.7697 0.9114 0.7037 0.8197

ck 0.0813 0.3324 13.24 0.3011 0.1809 0.1100 0.0669 0.5854 0.7676 0.5479 0.7794
0.0465 0.1490 13.52 0.4329 0.2775 0.1861 0.1307 0.6612 0.8334 0.6215 0.8145

Table 2: The automatic results of PLATO+GOLD (up) and PLATO+ACK-DEF (down) on four test sets with unseen
knowledge.

test set Recall Precision F1 avg. Dec.

normal 0.3607 0.7009 0.4546 –
ak-less 0.2883 0.5585 0.3618 ∇ 0.1026
ak-more 0.1752 0.3632 0.2228 ∇ 0.2517
ck 0.3193 0.6133 0.4003 ∇ 0.0611

normal 0.3695 0.6538 0.4520 –
ak-less 0.3251 0.5636 0.3927 ∇ 0.0647
ak-more 0.2335 0.3983 0.2775 ∇ 0.1887
ck 0.1065 0.2041 0.1337 ∇ 0.3437

Table 3: The knowledge correlation results of
PLATO+GOLD (up) and PLATO+ACK-DEF (down)
on four test sets with seen knowledge.

test set Recall Precision F1 avg. Dec.

normal 0.3732 0.7442 0.4736 –
ak-less 0.2728 0.5475 0.3452 ∇ 0.1418
ak-more 0.1665 0.3627 0.2152 ∇ 0.2822
ck 0.3028 0.6068 0.3830 ∇ 0.0995

normal 0.3655 0.6882 0.4535 –
ak-less 0.2938 0.5348 0.3579 ∇ 0.1069
ak-more 0.2046 0.3714 0.2481 ∇ 0.2277
ck 0.0870 0.1847 0.1116 ∇ 0.3747

Table 4: The knowledge correlation results of
PLATO+GOLD (up) and PLATO+ACK-DEF (down)
on four test sets with unseen knowledge.

Even if the knowledge information only changes
by 10% to 20%, the performance of the model will

significantly decline, especially consistency met-
rics (i.e. BLEU, GRE, AVG and EXT). (3) the
PLATO+GOLD achieve better Distinct scores but
weaker BLEU and embedding-based scores, which
means that the PLATO+GOLD is easy to generate
responses that are very different from ground-truth
responses, that is, the hallucinations.

3.3 Knowledge Correlation Analysis

Table 3 and Table 4 report the knowledge correla-
tion result of PLATO+GOLD and PLATO+ACK-
DEF on four test sets and four test unseen sets,
respectively. From these table, we can observe
that the performance of PLATO+GOLD is reduced
when the given knowledge changed, which illus-
trates the danger that the model generate responses
based on incorrect knowledge. In addition to the
above findings, we also observed that the recall, pre-
cision and f1 scores of PLATO+ACK-DEF are bet-
ter than PLATO+GOLD on ak-less and ak-more
sets, which demonstrates that using ACK-DEF ef-
fectively enhance the model’s capability for the
similar knowledge information. Moreover, the re-
sult of PLATO+ACK-DEF on the ck set is signif-
icantly reduced, which shows that the model dis-
tinguishes the wrong knowledge constructed with
antonyms and gives an appropriate response with-
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test set w. GOLD (%) w. ACK-DEF (%) kappa

normal 13.00 14.00 0.481
ak-less 23.67 17.33 0.513
ak-more 33.67 24.33 0.479
ck 21.67 5.67 0.597

total 23.00 15.33 0.552

Table 5: The human evaluation results.

out knowledge (see Table 1 and Table 2 for the
effect). These results are inline with our exception
that incorporating noised knowledge dialogue sam-
ples in training stages can smooth the polarized
optimization objective, and mitigate the hallucina-
tion problem.

According to the results of test seen sets and
unseen sets), we can notice that the PLATO+ACK-
DEF achieves a good performance on ground-
truth seen knowledge and a weak performance on
ground-truth unseen knowledge. This illustrates
that the PLATO+ACK-DEF may doubt the authen-
ticity of unseen given knowledge (even if the knowl-
edge is the ground-truth), and will not fully use
it to generate responses. This may alleviate the
hallucination, and we believe it is caused by (1)
the Augmentative knowledge dialogue introduce
similar knowledge to improve the generalization
of the model; (2) the Contrastive knowledge dia-
logue introduce knowledge independent responses,
which tell the model to generate responses without
knowledge; (3) the ACK-DEF smooths the polar-
ized optimization, which ensure the model not to
directly use the given knowledge.

3.4 Human Evaluation
To further evaluation the ability of our ACK-DEF
on reducing the hallucination problem, we ran-
domly select 400 samples form four test sets, and
hire three annotators to do human evaluations by as-
sessing whether the responses generated by PLATO
+GOLD and +ACK-DEL have hallucinations. Ta-
ble 5 reports the results of human evaluation, from
which we can notice that the PLATO+ACK-DEF
generate less hallucinations than PLATO+GOLD.
This shows the effectiveness of our ACK-DEF.

3.5 Case Study
Table 6 shows a generated case of PLATO+GOLD
(GOLD) and PLATO+ACK-DEF (ACK-DEF)
based on different knowledge information. We can
observed that the GOLD is convinced of the given
knowledge, regardless of whether the knowledge

Query They really are super cool looking dogs
they are so amazing

Normal
Knowledge

golden retriever are well suited to res-
idency in suburban or country environ-
ments.

GOLD I love golden retrievers! They are well
suited to residency in suburban or country.

ACK-DEF They are! They are well suited to suburban
or country environments.

AK-Less
Knowledge

golden retriever are good suited to resi-
dency in suburban operating elbow room
land environments.

GOLD Golden retriever are great suited to resi-
dency in suburban operating elbow

ACK-DEF Golden retriever are great suited to subur-
ban environments.

AK-More
Knowledge

gild retriever make up considerably suit
to residency in suburban surgery common-
wealth environments.

GOLD gild retrievers make up considerably suit
to residency in suburban areas.

ACK-DEF Not very clear, maybe they are! They can
be found in suburban areas. If it is wrong,
please tell me.

CK Knowl-
edge

golden retriever unequal disadvanta-
geously suited to residency in suburban or
country environments.

GOLD They sure are! I have a golden retriever
who is unequally suited to residency in sub-
urban environments.

ACK-DEF That sounds pretty good.

Table 6: A case of PLATO +GOLD and +ACK-DEF.

is appropriate or not, and more easily to copy the
knowledge information into responses. Even the
GOLD has seen the knowledge topic, it could not
remember the knowledge in their parameters. On
the contrary, the ACK-DEF has good resistance to
incomplete correct knowledge.

4 Conclusion

This paper focuses on the hallucinations caused
by polarized optimization objective in knowledge-
grounded dialogue generation (KGDG), and pro-
poses an augmentative and contrastive knowledge
dialogue expansion framework (ACK-DEF) to mit-
igate it. The optimization objective of KGDG is to
train the model could generate proper response with
or without knowledge, which inevitably weaken
the model’s ability on unrecognized knowledge
and lead hallucinations. Therefore, ACK-DEF con-
structs multiple level knowledge-dialogue samples
to soften the optimization objective of KGDG. Ex-
tension experimental results show the superior per-
formance of using our methods on dialogue metrics
and knowledge correlations.
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Limitations

Our limitations are as follow:

• Data Scale: This paper only employ the
Wikipedia of Wizard dataset, a small scale
and well-established knowledge conversation
dataset, and lack of the validation on large-
scale dataset.

• Backbones: This paper lacks the evaluat-
ing of other knowledge dialogue model on
the proposed method. Actually, we have
two reasons to employ the PLATO. First, the
PLATO can better handle the one-to-many
phenomenon, which is suitable for learning
our expansion samples. Second, the PLATO
is a pre-trained dialogue model, and its perfor-
mance on knowledge dialogue generation task
has been proved. We will evaluating the per-
formance of other knowledge dialogue model
on our method for our future work.

• Knowledge Expansion Methods: This pa-
per only use the synonym and antonym to
construct the noised knowledge, which lacks
of the comparison of using other data aug-
ment method. Indeed, we use two token-
level data augmentation methods (synonym
and antonym augmentation) to prove our state-
ments on hallucination problem in knowledge-
dialogue generation task. Based on this study,
we believe that incorporating other data aug-
mentation methods will also mitigate the hal-
lucinations.

• Manual Prompts and Responses: This
paper designed five prefix prompts, four
post-prompts and nineteen euphemistic re-
sponses. For AK-More method, we simply
randomly choose one prefix-prompt and one
post-prompt and concatenate them with the
ground-truth response. This leads to some
irregular responses. As for CK method, we
randomly select one euphemistic response for
the incorrect knowledge. However, we found
that the response may not coherent with the
query. We will design more smooth expansion
ways to construct more human-like training
samples for our future work.
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Prefix Prompts

I was thinking that per-
haps
I am not sure, maybe that
Not very clear, maybe
Not very clear, perhaps
I was thinking that maybe

Post Prompts

Maybe i am wrong.
If I am wrong, please correct
me.
If I am wrong, please for-
give me.
If it is wrong, please tell me.

Table 7: The designed prefix and post prompts.

Euphemistic Responses

Interesting, do you know that?
That sounds pretty good. Are there any way to visit?
Oh, I had not heard.
Hmm, I have never heard of that. What is that one about?
I have never heard. Can you tell me more about it?
Oh, wow, that is remarkable.
I have never played those, are they fun?
Can I ask you about it?
Please tell me more about that.
Can you tell me more about that?
I have never had that. Anything else you can tell me?
That’s really interesting! But I have never heard of that.
I literally know nothing about that!
I have no idea about that.
I have not heard that one. I will have to check it out.
Huh, maybe I will need to check that out then.
Oh, I misunderstood then.
Oh, i do not know about that.
Wow, that’s a lot! I haven’t heard of those.

Table 8: The designed euphemistic responses.

A Prefix and Post Prompts

We manually design five prefix prompts and four
post prompts, which are shown in Table 7. We
discuss below about the prefixes and posts.

We designed the prefixes and posts based on the
WoW dataset and our daily conversation habits. In
WoW dataset, one role is “0_Wizard”, and the other

is “1_Apprentice”. We noticed that the 1_Appren-
tice will give the sentences such as “correct my
if I am wrong . . . ”, which is also easy to appear
in our daily conversation. Taking inspiration of
this, we manually designed the prefixes and posts.
Moreover, since the PLATO is pre-trained on con-
versation datasets, these prefixes may introduce the
pre-knowledge that the model learned during the
pre-training process.

In fact, we declare the weakness of our man-
ual prefixes and posts, i.e. direct connections of
prefixes, responses, and posts do not fit all con-
texts. Therefore, we are exploring a new way of
constructing replies, such as passing the design
prefix, response, post, and context into the large-
language-model to rewrite the appropriate response.
We believe that better prefixes and posts will lead to
more benefits in solving the hallucination problem.

B Euphemistic Responses

We manually design nineteen euphemistic re-
sponses, which are shown in Table 8.

C Dissuasion about the boundary
between ak-less and ak-more

Below we provide an example in our dataset:

• Ground-truth Knowledge: laziness | tesis ("
thesis ") is a 1996 spanish thriller film.

• AK-Less Knowledge: acedia | tesis ("thesis")
is a 1996 spanish thriller film.

• AK_More Knowledge: laziness | tesis ("the-
sis") personate a 1996 spanish thriller picture
show.

It can be noted that the more synonyms are intro-
duced into a sentence, the semantics of the sentence
will become more and more different from the orig-
inal semantics. Therefore, we suppose that replac-
ing at least 30% of words at once will make a big
difference in sentence semantics. Then, we decided
the boundary between ak-less and ak-more.
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