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Abstract

In recent years, large language models (LLMs)
have achieved strong performance on bench-
mark tasks, especially in zero or few-shot set-
tings. However, these benchmarks often do not
adequately address the challenges posed in the
real-world, such as that of hierarchical classi-
fication. In order to address this challenge, we
propose refactoring conventional tasks on hi-
erarchical datasets into a more indicative long-
tail prediction task. We observe LLMs are
more prone to failure in these cases. To ad-
dress these limitations, we propose the use of
entailment-contradiction prediction in conjunc-
tion with LLMs, which allows for strong perfor-
mance in a strict zero-shot setting. Importantly,
our method does not require any parameter up-
dates, a resource-intensive process and achieves
strong performance across multiple datasets.

1 Introduction

Large language models (LLMs) with parameters
in the order of billions (Brown et al., 2020) have
gained significant attention in recent years due
to their strong performance on a wide range of
natural language processing tasks. These models
have achieved impressive results on benchmarks
(Chowdhery et al., 2022), particularly in zero or
few-shot settings, where they are able to generalize
to new tasks and languages with little to no training
data. There is, however a difficulty in tuning param-
eters of these large-scale models due to resource
limitations. Additionally, the focus on benchmarks
has led to the neglect of real-world challenges, such
as that of hierarchical classification. As a result, the
long-tail problem (Samuel et al., 2021) has been
overlooked. This occurs when a vast number of rare
classes occur in the presence of frequent classes for
many natural language problems.

∗This research was performed when the first author was
a research intern at Rakuten Institute of Technology (RIT),
Boston.

Figure 1: LLMs (L) without any constraints and Entail-
ment Predictors (E) without guided knowledge (Top)
show poor results independently. Our method (Bottom),
combines advantages of these two systems to improve
performance on strict zero-shot classification.

In many industrial real-world applications, a
strong performing method for hierarchical clas-
sification can be of direct utility. New product
categories are emerging in e-commerce platforms.
Existing categories, on the other hand, may not be
very intuitive for customers. For example, upon
browsing categories such as night creams, we may
be unable to find a product in a sibling-node cat-
egory of creams. This is further highlighted by
platforms in which a systematic structure is not
created for users; parent nodes may be in place of
child nodes, and vice versa (Asghar, 2016). Manu-
ally categorizing product categories can be a costly
redesigning endeavour. To tackle this problem,
we suggest refactoring traditional hierarchical flat-
labeled prediction tasks (Liu et al., 2021) to a more
indicative long-tail prediction task. This involves
structuring the classification task to closely reflect
the real-world long-tail distribution of classes. In
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doing so, we are enabled to leverage LLMs for
long-tail prediction tasks in a strict zero-shot clas-
sification setting. Through a series of experiments,
results in this work show that our proposed method
is able to significantly improve the performance
over the baseline in several datasets, and holds
promise for addressing the long-tail problem in
real-world applications. The contributions of this
work can be summarized as follows:

• We refactor real-world hierarchical taxonomy
datasets into long-tailed problems. In doing so,
we create a strong testbed to evaluate “strict zero-
shot classification" with LLMs.

• We explore utilizing LLMs to enhance the capa-
bilities of entailment-contradiction predictors for
long-tail classification. This results in strong ca-
pabilities of performing model inference without
resource-intensive parameter updates.

• We show through quantitative empirical evidence,
that our proposed method is able to overcome
limitations of stand-alone large language models.
Our method obtains strong performance on long-
tail classification tasks.

2 Background and Related Work

Strict Zero-Shot Classification
Previous works (Liu et al., 2021; Yin et al., 2019)
have explored zero-shot classification extensively
under two settings—(i) zero-shot, where testing
labels are unseen, i.e. no overlap with the training
labels, and (ii) generalized zero-shot, testing labels
are partially unseen. In both cases, the model is
trained on data from the same distribution as the
test data. In our proposed strict zero-shot setting,
the model is only trained to learn the entailment
relationship from natural language inference (NLI)
corpora (Williams et al., 2018). The training data
for this model has no overlap with the distribution
or semantics of the inference set. Additionally,
previous works utilizing NLI have either not
examined the utility of LLMs (Ye et al., 2020; Gera
et al., 2022), or transfer the capabilities of LLMs
to smaller models but have failed to use them in
a strict zero-shot setting for long-tail problems,
only demonstrating their utility for benchmark
tasks (Tam et al., 2021; Schick and Schütze, 2021).
Works exploring LLMs have also limited their
study to only using them independently without
exploring entailment-contradiction prediction (Wei

Figure 2: Previous flat label prediction and graph rep-
resentation tasks (Top) do not make use of natural en-
tailment relations. Our method for Label Prediction of
red leaf nodes (Bottom) enables inference in a strict
zero-shot setting.

et al., 2022; Brown et al., 2020).

Long Tail Problem
Samuel et al. (2021); Zhang et al. (2022) highlight
the significance of addressing the long-tail task.
Existing literature in natural language processing
has focused on scenarios involving limited data
availability, such as few-shot or low-resource
settings. It has failed to adequately address the
unique challenges presented by long-tail problems.
These problems arise when a small number of
classes possess a large number of samples, while a
large number of classes contain very few samples.
Previous works have not delved into the specific
use of LLMs or entailment predictors.

Hierarchical Classification
Many real-world problems contain taxonomy data
structured in a hierarchical setting. Shown in Fig-
ure 2, most previous works make use of this data as
a flat-label task (Kowsari et al., 2017; Zhou et al.,
2020). It is however, non-trivial to create clean
training data for taxonomies, which these methods
rely on. This setting also combines parent and child
nodes into a multi-label task, thereby increasing
the complexity of the problem as siblings amongst
leaf nodes are more diverse than parent nodes. Ad-
ditionally, previous works do not make use of the
natural entailment relations in hierarchies. Other
works extenuate this problem by opting to utilize
flat labels to produce graph representations (Wang
et al., 2022a,b; Jiang et al., 2022; Chen et al., 2021).
For this reason, the graph representations may have
limited value independently, although representa-
tions may be used to assist text classification by
providing an organized label space. These works
only introduce hierarchies to bring order to the
label space, but overlook the original task of hi-
erarchical taxonomy classification (Kowsari et al.,
2017). For all previous works, difficult to obtain
fine-tuning data is required to produce strong sig-
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Figure 3: Web of Science (WOS) and Amazon Beauty datasets, refactored to a long-tail distribution. Maximum tree
depth is shown for Amazon Beauty, which varies from 3-5. Leaf nodes are used in our method regardless of depth.

nals. In our work, we refactor this data into a
leaf-node label prediction task with the help of
entailment-contradiction relations and LLMs. In
doing so, we enable hierarchical taxonomy predic-
tion independent of utilizing training data for the
downstream task.

3 Methodology

In this paper, we investigate the limitations of
LLMs in three overlooked settings, when—(i) the
model is not provided with sufficient examples due
to the input text length, (ii) the label space includes
tokens largely unobserved in the model’s pretrained
vocabulary, and (iii) there are a large number of dis-
tractors in the label space (Kojima et al., 2022; Min
et al., 2022; Razeghi et al., 2022). These scenar-
ios are common in real-world tasks, but are often
overlooked in the development and evaluation of
LLMs. To address these challenges, we propose
the use of entailment-contradiction prediction (Yin
et al., 2019), the task of determining whether a
premise logically entails or contradicts a hypothe-
sis. Through our method, we are able to leverage
strong reasoning from Yin et al. (2019) with the
retrieval abilities of LLMs (Wang et al., 2020) to
improve overall performance in a strict zero-shot
setting, where the model must classify samples
from a new task without any fine-tuning or addi-
tional examples used for training from the same
distribution as the inference dataset. Importantly,
our proposed combined method does not require
parameter updates to the LLM, a resource-intensive
process that is not always feasible with increasingly
large model size (Chowdhery et al., 2022).

Our simple framework is shown in Figure 1.
Considering the label space, C = {C1, C2, ...Cn}
as the set of classes for any given dataset, and a
text input, X , we can utilize the entailment pre-
dictor, E to make a contradiction, or entailment
prediction on each label. This is done by using
X as the premise, and "This text is related to Ci."

∀Ci ∈ C as the hypothesis (Yin et al., 2019). In
our work, the premise may be modified to include
the prompt template. The prediction, E(X) lacks
any external knowledge and is restricted to the la-
bel space, which may result in poor performance.
E(X) can however, provide us with an implicit
classification of the contradiction relation for sib-
ling nodes. In our work, we use E(X) as an initial-
izer for LLMs. We also regard it as a baseline as it
shows strong performance independently. A LLM,
L on the other hand, operates in an open space,
with aforementioned shortcomings for classifica-
tion tasks. For our purposes, we can regard this as a
noisy knowledge graph (Wang et al., 2020), which
may be utilized to predict ancestors or descendants
of the target class. We consider the prediction made
by the LLM as L(X). It is important to note that
L(X) may or may not belong to C. We try several
prompts for this purpose, shown in Appendix A.

By combining these two components, we can cre-
ate a template which utilizes the entailment relation
explicitly, and the contradiction relation implicitly
by constructing L(E(X)) to deseminate combined
information into an entailment predictor for clas-
sification. The template we use is task-dependent,
and is generally robust given an understanding of
the domain. On Web of Sciences we use: "Here is
some text that entails E(X): X . What area is this
text related to?". For Amazon Beauty, we use "Here
is a review that entails E(X): X . What product
category is this review related to?". In this setting,
our method still meets a barrier due to limitations
of LLMs. By constructing a composite function,
E(L(E(X)), we are able to leverage our LLM in
producing tokens which may steer the entailment
predictor to correct its prediction. The template
used for this composite function is "Here is some
text that entails L(E(X)): X ." across all datasets.

General Form: Although our results are reported
combining the advantages of L, and E to produce
upto the composite function E(L(E(X)), this can
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Model WOS
(Tree Depth = 2)

Amzn Beauty
(Tree Depth = 2)

Amzn Beauty
(Tree Depth = 3, 4, 5)

Acc. Mac.F1 Acc. Mac.F1 Acc. Mac.F1
T0pp 10.47 11.04 7.35 6.01 12.04 4.87

BART-MNLI (Baseline) 61.09 68.93 60.80 51.15 41.68 49.35

T0pp + BART-MNLI 20.64 24.01 37.24 24.38 23.47 18.01
BART-MNLI + T0pp 60.40 68.92 58.79 51.94 43.98 46.06

BART-MNLI + T0pp (Primed) 60.16 68.81 59.79 54.04 39.10 46.50
BART-MNLI + T0pp (Primed+) 61.78 69.48 64.25 52.84 40.79 49.96

Table 1: Baseline models (Top) underperform our method (Bottom) across all datasets for average scores of Top-1,
Top-3, and Top-5 accuracy and Macro F1. Our primed and primed+ models explicitly utilize the entailment relation,
with one and five predictions of L(E(X)) respectively. All models used are available on Huggingface..

Figure 4: Results for Top-5 predictions on WOS dataset.
BART-MNLI + T0pp (Primed+) (ours) converges with
performance of the BART-MNLI (baseline) at Top-4.

be extended as it holds the property of being an iter-
ative composition function to E(L(E(L...E(X)))).
Our observations show this setting having compa-
rable, or marginal improvements with our dataset.
However, this may prove to be beneficial in other
tasks. We will investigate, and urge other re-
searchers to explore this direction in future work.

4 Experiments and Results

4.1 Dataset and Experimental Settings
We refactor the widely used Web of Sciences
(WOS) with Kowsari et al. (2017), and Amazon
Beauty (McAuley et al., 2015) datasets to follow a
class-wise long-tail distribution as shown in Figure
3. Additionally, we create two variations of the
Amazon Beauty dataset, first in which it contains
the same tree depth as WOS, both containing 3000
samples, and second in which all classes are in-
cluded for their maximum tree depth, containing
5000 samples. We select these datasets as they
challenge the shortcomings of LLMs. The input
text of providing multiple abstracts in the WOS
dataset surpasses the maximum input token length
of most transformer-based models. This makes it

difficult for models to learn the input distribution,
a requirement for showing strong in-context per-
formance (Min et al., 2022). Next, many tokens
in the label space of both the WOS and Amazon
Beauty datasets rarely occur in pretraining corpora,
details of which are provided in the Appendix B.
Additionally, both datasets contain a large number
of distractors, or incorrect classes in the label space.
Further details are provided in Appendix C.

All experiments are performed on a single
NIVIDA Titan RTX GPU. We use BART-Large-
MNLI with 407M parameters as our baseline. We
use this model as it outperforms other architectures
trained on MNLI for zero-shot classification. For
our LLM, we opt to use T0pp (Sanh et al., 2022)
with 11B parameters1, as previous works show that
it matches or exceeds performance of other LLMs
such as GPT-3 (Brown et al., 2020) on benchmarks.

4.2 Results and Discussion

Results of our method are shown in Table 1. LLMs,
due to their limitations, perform poorly as a stan-
dalone model for long-tail classification. These re-
sults can be improved by priming the model with an
entailment predictor through the usage of a prompt.
The baseline shows strong performance indepen-
dent of the LLM, as it operates on a closed label
space. The capabilities of the baseline can be en-
hanced by further explicitly priming it with a en-
tailment relation through a LLM. Rows in which
T0pp is initialized, or primed with E are indicated
with Primed. Priming the model showcases im-
provements across all datasets for macro F1. For
accuracy, priming the model shows benefit in two
out of three datasets. In Figure 4, we show the
results of Top-5 predictions for the WOS dataset.

1We observe a significant drop in performance when we
utilize the 3B parameter variant of this model as L.
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All results are aggregated in Table 1. It is impor-
tant to highlight that prompt variation led to stable
results for our LLM. The variance upon utilizing
BART-MNLI is negligible across prompts. The
best results are observed upto Top-4 predictions on
both accuracy and macro F1 for our method, when
the entailment prompt is enhanced with a greater
number of tokens corresponding to the output of
L(E(X)). The variation between our method and
the baseline is much greater for Top-1 predictions,
but Top-5 prediction variance is negligible. De-
tailed results for both depth settings of Amazon
Beauty are shown in Appendix C.

5 Conclusion

In this work, we utilize an LLM in the form of a
noisy knowledge graph to enhance the capabilties
of an entailment predictor. In doing so, we achieve
strong performance in a strict zero-shot setting on
several hierarchical prediction tasks. We also show
the necessity of refactoring existing hierarchical
tasks into long-tail problems that may be more rep-
resentative of the underlying task itself. The utility
in practical industry settings is also highlighted
through this setting.

Limitations

In this work, we implicitly utilize the contradiction
relation. The authors recognize explicitly including
it in a prompt template leads to worse performance
due to the injection of noise. Controlled template
generation based on a model confidence is unex-
plored in this work and appears to be a promising
direction. Additionally, we recognize the emer-
gence of parameter-efficient methods for training
models which are unexplored in this work, which
may have utility. These methods are complimen-
tary and may benefit the performance of models
as they can be used in conjunction with training
paradigms such as contrastive learning to support
better representations through explicit utilization
of the contradiction relation. In this work, we limit
our study to draw attention to the importance of
strict zero-shot classification settings with the emer-
gence of LLMs.

Our study can be easily extended to recursively
operate on large language models, and entailment
predictors. As we observe limited performance
benefits in doing so, we conduct our study to show
improvements after one complete cycle, given by
E(L(E(X)) in Section 3.

Ethics Statement

In this work, we propose a framework which allows
for the usage of entailment-contradiction predictors
in conjunction with large language models. In do-
ing so, this framework operates in a stict zero-shot
setting. While it is possible to tune prompts to
select optimal variants through hard/soft prompt
tuning strategies, this would require additional com-
putational resources for LLMs with billions of
parameters. Our study investigates the usage of
LLMs given an understanding of the domain they
tend to be used for (e.g., given an understanding
of Amazon Beauty containing reviews, a prompt is
constructed). Further explanation of prompt tem-
plates is contained in Appendix A. Due to the lack
of tuning parameters in this work, large language
models are largely dependent on pre-training data.
Although this can be controlled to some degree by
introducing an entailment predictor with a fixed la-
bel space, the underlying model does not explicitly
contain supervision signals without further training.
The framework proposed for inference in this work
must hence be used cautiously for sensitive areas
and topics.
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A Prompt Templates

In our work, we try various prompts for WOS and
Amazon Beauty to initialize the LLM, and for the
entailment predictor. These prompts are shown in
Table 2. Initializing prompts for L may show some
variance in performance when utilized indepen-
dently. The prompts used for obtaining L(E(X))
are generally robust with an understanding of the
domain, and show a marginal impact on outcome,

upon variation. Prompts used for E(L(E(X)))
have an insignificant impact on the outcome.

B Statistics

We provide some details of the distribution for Web
of Science dataset are provided with the head, and
tail of the distribution class names with their respec-
tive value count in Table 3. We also provide the de-
tails of class-wise distribution for Amazon Beauty
(Depth=2), and Amazon Beauty (Depth=3,4,5)
datasets in Table 4, and Table 5 respectively. To-
wards the tail-end of the distribution, we observe
several tokens which may infrequently appear in
most pretraining corpora, such as "Polycythemia
Vera" for the WOS dataset. Updating parameters of
a model on data which is heavily skewed towards
the tail distribution in the presence of frequently
occuring labels can be problematic for language
models. Our proposed method in this work is one
solution towards this challenging task.

C Detailed Results

We provide some details of results for Top-1, Top-3,
and Top-5 accuracies and macro F1 scores in this
section. The Web of Sciences dataset results are
shown in Table 6. We observe that the accuracy is
significantly higher by all of our methods over the
baseline, BART-MNLI. The same trends are seen
for Macro F1 scores. In predicting Top-3 labels,
only our method of Primed+ shows improvement
over the baseline. For macro F1, our method in
the Top-3 category shows slight improvement over
the baseline. For Top-5 predictions on the WOS
dataset, our method shows performance marginally
below the baseline. Results for Amazon Beauty
(Depth=2) are shown in Table 7. There is a large
improvement in accuracy using our method on this
dataset for Top-1, 3, and 5. For Macro F1, there our
method performs marginally worse than the base-
line for Top-1 predictions. Our method strongly
outperforms the baseline by a large margin for Top-
3 and Top-3 prediction on Macro F1. The results
for Amazon Beauty (Depth=3,4,5) are shown in Ta-
ble 8. Our method improves upon the baseline for
both, accuracy and macro F1 for Top-1 predictions.
For Top-3, our method has a significant improve-
ment over accuracy, with comparable performance
on Macro F1. Our method has a large improvement
on Top-5 scores for accuracy, and improves upon
the Macro F1 score for Macro F1.

With our dataset settings, we observe the per-
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Dataset Prompt

WOS What field is this passage related to? + X
What area is this text related to? + X
X + What area is this text related to?
What area is this text related to? + X

Amazon Beauty Here is a review: + X + What product category is this review related to?
X + What product category is this text related to?

Table 2: Example prompts used to initialize the LLM, L.

formance of using int-8 quantization is robust and
matches that of bf-16/fp-32 for inference. These
settings also provide us with stable results across
prompts.

Previous works have performed parameter-
updates (Gera et al., 2022; Holtzman et al., 2021)
to models to tackle the challenge of many distrac-
tors in the label space. This may be practically
infeasible due to the requirements of compute in
the case of LLMs.

Diversity between category labels is an impor-
tant factor we observe which attributes to the im-
provement in performance. Tables 3, 4, 5 contain
statistics for labels used. We observed a significant
drop in Macro F1 shown in Table 1 for the Amazon
Beauty Dataset (Tree Depth=2) in contrast to WOS
for the same models due to the lack of diversity
in several class names (e.g. “Bath” and “Bathing
Accessories”). Similar trends were observed in
Amazon Beauty (Tree Depth=3,4,5) for “Eau de
Toilette” and “Eau de Parfum”, both of which are
perfumes.

Class Name Value Count
Polymerase chain reaction 95

Northern blotting 88
Molecular biology 66

Human Metabolism 65
Genetics 62

Stealth Technology 2
Voltage law 1

Healthy Sleep 1
Kidney Health 1

Polycythemia Vera 1

Table 3: Class names and corresponding value counts
for head and tail elements from for WOS dataset.

Class Name Value Count
Face 1230
Body 344

Styling Products 298
Women’s 289

Styling Tools 187
Bags & Cases 5

Hair Loss Products 5
Bath 3

Bathing Accessories 2
Makeup Remover 1

Table 4: Class names and corresponding value counts
for head and tail elements from Amazon Beauty
(Depth=2) dataset.

Class Name Value Count
Lotions 1188

Eau de Toilette 553
Nail Polish 405

Eau de Parfum 363
Soaps 231

Shower Caps 1
Paraffin Baths 1

Hairpieces 1
Tote Bags 1

Curlers 1

Table 5: Class names and corresponding value counts
for head and tail elements from Amazon Beauty
(Depth=3,4,5) dataset.
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Model Top-1 Top-3 Top-5
Acc. Mac. F1 Acc. Mac. F1 Acc. Mac. F1

T0pp 5.46 5.66 11.26 12.25 14.70 15.23
BART-MNLI 48.10 51.49 64.73 75.77 70.46 79.69

T0pp + BART-MNLI 12.10 13.75 22.3 26.44 27.53 31.84
BART-MNLI + T0pp 48.16 52.16 63.80 75.40 69.26 79.20

BART-MNLI + T0pp (Primed) 48.69 52.78 63.60 75.29 68.20 78.37
BART-MNLI + T0pp (Primed+) 49.73 53.15 65.23 75.96 70.39 79.34

Table 6: Accuracy and Macro F1 results for Top-1, Top-3, and Top-5 predictions for the Web of Sciences dataset.

Model Top-1 Top-3 Top-5
Acc. Mac. F1 Acc. Mac. F1 Acc. Mac. F1

T0pp 3.99 2.58 7.48 7.08 10.57 8.37
BART-MNLI 34.40 25.10 68.54 60.15 79.45 68.21

T0pp + BART-MNLI 19.87 8.95 39.94 26.30 51.93 37.89
BART-MNLI + T0pp 33.36 24.84 61.12 58.63 81.90 72.34

BART-MNLI + T0pp (Primed) 41.22 24.30 61.46 60.22 76.70 77.59
BART-MNLI + T0pp (Primed+) 32.32 19.91 75.19 63.74 85.26 74.87

Table 7: Accuracy and Macro F1 results for Top-1, Top-3, and Top-5 predictions for the Amazon Beauty dataset
(depth = 2).

Model Top-1 Top-3 Top-5
Acc. Mac. F1 Acc. Mac. F1 Acc. Mac. F1

T0pp 5.22 2.32 13.80 5.54 17.12 6.76
BART-MNLI 32.58 28.05 43.73 56.18 48.75 63.83

T0pp + BART-MNLI 12.49 6.99 26.26 20.64 31.67 26.41
BART-MNLI + T0pp 33.89 23.15 47.06 53.02 51.01 62.02

BART-MNLI + T0pp (Primed) 28.18 20.22 41.89 55.15 47.24 64.14
BART-MNLI + T0pp (Primed+) 23.92 29.70 46.43 56.07 52.02 64.11

Table 8: Accuracy and Macro F1 results for Top-1, Top-3, and Top-5 predictions for the Amazon Beauty dataset
(depth = 3,4,5).
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