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Abstract

Recent advances in NLP have led to a rise in
inter-disciplinary and application-oriented re-
search. While this demonstrates the growing
real-world impact of the field, research papers
frequently feature experiments that do not ac-
count for the complexities of realistic data and
environments. To explore the extent of this gap,
we investigate the relationship between the real-
world motivations described in NLP papers and
the models and evaluation which comprise the
proposed solution. We first survey papers from
the NLP Applications track from ACL 2020 and
EMNLP 2020, asking which papers have differ-
ences between their stated motivation and their
experimental setting, and if so, mention them.
We find that many papers fall short of consider-
ing real-world input and output conditions due
to adopting simplified modeling or evaluation
settings. As a case study, we then empirically
show that the performance of an educational
dialog understanding system deteriorates when
used in a realistic classroom environment.

1 Introduction

Modern NLP systems, powered by large language
models (LLMs), now have the ability to perform
well at foundational natural language understand-
ing and generation tasks (Wang et al., 2018; Brown
et al., 2020). Such systems have also increased
access and made inter-disciplinary contributions
possible across fields such as medicine, law, edu-
cation, and science. In NLP venues like ACL, the
growth in applied and inter-disciplinary work can
be witnessed in the NLP Applications track, which
received the second-highest number of submissions
at EMNLP 2022.

Recently published research from these tracks
includes work on complex and important tasks such
as synthesizing code for visualization (Chen et al.,
2021), classifying operational risk in finance (Zhou
et al., 2020), and verifiying scientific claims (Wad-
den et al., 2020). However, the inherent complex-

Figure 1: Summary of our survey strategy.

ities associated with real-world data distributions
and workflows can lead to the actual problem be-
ing simplified into an artificial setting that does
not realistically reflect the original motivation. For
instance, systems may make assumptions about
the input available (e.g., require providing pseu-
docode/docstrings for code generation), or only
evaluate on manually curated clean data as opposed
to noisier data such as automatic speech recogni-
tion (ASR) outputs.

Motivated by this observation and in line with
the ACL 2023 theme track, we set out to inves-
tigate the relationship between the motivation
described in the introductions and the actual
experiments in application-focused NLP papers.
We survey papers from the NLP applications tracks
of ACL 2020 and EMNLP 2020. Specifically, we
ask if there are gaps between motivation and ex-
perimentation, in the form of i) sub-tasks that are
required for the application, but haven’t been men-
tioned in the paper ii) data distributions that are
expected in real-world conditions, but haven’t been
included in the paper’s modeling or evaluation. We
find that authors do not always explicitly mention
assumptions they make, and often operate in con-
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Question Counts

Does the paper comprehensively describe the use case for a reader to understand? Yes: 15

Is the paper dealing with an entire task or a subtask only? Entire: 11; Subtask: 4

Does the paper mention the other missing subtasks explicitly? Yes: 1; No: 3

Is the downstream evaluation realistic? Yes: 7; No: 7; Unsure: 1

Table 1: Findings from the survey of NLP Application track papers.

strained scenarios highly different from their in-
tended motivation.

To empirically demonstrate the severity of this
problem, we then present a case study investigating
the performance of an educational dialog system,
when the inputs are changed from manually tran-
scribed data to transcripts from a state-of-the-art
ASR system. The purpose of the system is to clas-
sify utterances made by a student in a classroom
into talkmoves (Michaels and O’Connor, 2015;
O’Connor and Michaels, 2019) that reflect the com-
munication strategies they use, such as making a
claim, relating to another student. We find that
performance drops by 14.6 points (21.2%) when
evaluting on Google ASR instead of human tran-
scripts. However, ASR was not identified as a key
component of the evaluation pipeline by the origi-
nal work. We argue that as the field grows and NLP
models get better and better at simulated and con-
strained settings, it is important for us to explicitly
consider additional complexities of our systems in
practice. We then present suggestions for authors
and organizers of conferences, towards this end.

2 Survey

2.1 Method

For the survey of application-oriented research pa-
pers, we look at all papers from the NLP Applica-
tions track of two recent NLP conferences, ACL
2020 and EMNLP 2020, which have a total of
115 papers. These conferences, which were con-
ducted virtually, provide publicly available inter-
faces,1 that allow automatically filtering papers by
the track they were submitted to.

We then manually filter papers to identify those
that propose and work on new tasks. We choose
these since papers that tackle existing tasks, such
as fact checking, might be restricted to existing
benchmarks and datasets that are established in
a topic (Thorne et al., 2018). In contrast, papers

1https://virtual.2020.emnlp.org/index.html
https://virtual.2020.acl.org/index.html

that propose a new task, such as recommending
fonts suitable for written text (Shirani et al., 2020),
can integrate considerations about the environment
where the task will be used, into their problem
formulation and evaluation setup. We end up with
12 papers from EMNLP 2020, and 3 papers from
ACL 2020 that deal with new tasks.

We then answer four questions about each paper:

1. Does the paper comprehensively describe the
use case for a reader to understand? This
question helps us establish that the motiva-
tions of the authors are clear to us before pro-
ceeding with the survey. We discard papers if
the answer is no here.

2. Is the paper dealing with an entire task or a
sub-task only? An example of the sub-task
only would be if the desired application was
assisting students with writing by providing
feedback, but the actual task worked on was
detecting errors in writing, with the task of for-
mulating feedback being a sub-task for future
work.

3. Does the paper mention the other missing sub-
tasks explicitly? We investigate if the authors
either mention existing systems that work on
the other sub-tasks, or explicitly describe the
remaining steps as future work. This is only
collected when the answer to Q2 is “sub-task
only”.

4. Is the downstream evaluation realistic? An
example of the answer being No, is if the ex-
pected use-case requires classifying spoken
dialog in real-time, but the paper only evalu-
ates on manually transcribed data.

The survey is conducted by three authors of this
paper, who have all been working on NLP for 3+
years. In cases where agreement is not perfect, we
report the majority answer. While all four questions
take either yes or no for an answer, we optionally
collect reasons for answering no on Questions 1
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and 4. We only accept unsure as an answer when
no decision can be made.

2.2 Findings

The results of the survey are presented in Table 1.
In response to the second question, we find that 4
out of 15 papers work on sub-tasks of the overall
system; however, only one of these papers explic-
itly mentions the other sub-tasks as components of
the pipeline. Overlooked are tasks such as machine
translation, performing grammatical error correc-
tion, and performing document retrieval prior to
classification. In response to the fourth question,
we find that 7 out of 15 papers do not include evalu-
ations that are realistic for the setting in which they
might be deployed. Some comments provided by
the annotators as evidence include “evaluating only
on transcribed dialog and not on ASR”, “evaluating
only on data translated from the original language”,
“not incorporating retrieval performance into eval-
uation pipeline” and “not checking the validity of
integrated evidence.” One of the responses to the
last question is unsure, provided by two of the anno-
tators, while the third annotator answered yes. One
annotator’s rationale for being unable to decide is
that the output space modeled in the paper does
not adequately reflect that seen by a user, while
the second annotator claims that the task is highly
subjective.

We compute inter-rater agreement using Krip-
pendorff’s α, used when there are more than two
annotators (Artstein and Poesio, 2008). On Ques-
tions 2,3 and 4, the α values are 0.39, 0.44, and
0.44. While the relatively low values reflect the
subjective nature of assessing application-oriented
work qualitatively, our three-way annotation pro-
cess and majority voting reduces the effect of an
overly strict or lenient annotator. Overall, our find-
ings indicate that application-oriented papers dis-
play some gaps that need to be addressed before the
intended application is viable. While this gap of-
ten occurs in the evaluation pipeline, we highlight
the importance of adequately describing all com-
ponents or sub-tasks essential for an application in
practice.

3 Case Study

In this section, we present a case study of an appli-
cation from the domain of education. The task
involves classifying student utterances into talk
moves (Michaels and O’Connor, 2015), which are

strategies provided by the Academically Produc-
tive Talk framework (Michaels et al., 2008), that
students and teachers use for maintaining produc-
tive and respective discourse in a classroom. We
empirically analyze the impact of evaluating this
task only on a constrained, artificial environment,
as opposed to a more realistic setting.

3.1 Dataset and Models

Dataset The data consists of conversations
among middle school students performing collab-
orative work in science classrooms, documented
in more detail in Southwell et al. (2022). Groups
of 2-4 consenting students are seated at each table,
and audio is collected through table-top Yeti Blue
microphones. In total, 31 five-minute dialogue ses-
sions are chosen for the talk moves analysis. Like
most papers in our survey, we build a high-quality
dataset for our application: samples were filtered
and transcribed manually ("human" transcript) by a
team of three annotators, resulting in 2003 student
utterances. There are five student talk moves un-
der the APT scheme, including Relating to another
student, Asking for more info, Making a Claim,
Providing evidence or reasoning, and None. We
additionally include the label Not enough context
when the annotators cannot make a decision. Exam-
ples of all labels can be found in Appendix A. Due
to label imbalance, we cluster the labels into 3 cate-
gories (NONE, LEARNING COMMUNITY (LC) and
OTHER) . Our clustering follows the higher-level
grouping of talk moves into Learning Community,
Content Knowledge, and Rigorous Thinking as de-
fined in (Resnick et al., 2018). The dataset is then
divided by session into training/dev/test splits for
our model.

Model Following the state-of-the-art model for
classifying teacher talk moves (Suresh et al., 2022),
we build our student talk moves model by finetun-
ing the RoBERTa-base (Liu et al., 2019) model
for sequence classification. We use the previous
N = 6 utterances as the context when predicting
the talkmove label for the current utterance, after
experimenting with multiple context windows (N)
on our development set. As a baseline, we develop
a random classifier using the scikit-learn Dummy-
Classifier (Pedregosa et al., 2011), that ignores in-
put features and uses training label distributions
to make a decision. Our models are trained and
validated on cleaned human transcriptions. While
we do not experiment with training on the ASR
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Human Googlefilter Whisperfilter
train dev train dev train dev

Non-Empty 991 371 646 223 869 338

NONE 299 109 153 62 252 96
LC 515 194 361 108 450 176
OTHER 177 73 132 53 167 66

Table 2: Data distribution on our student talkmove
datasets, comparing human with two ASR transcripts
from Google and Whisper.

transcripts for the current case study, results for
this setting can be found in Cao et al. (2023).

3.2 Distribution Shift: Human vs. ASR

However, when deploying our models in the class-
room, we do not have access to clean human tran-
scripts, and instead need to work with the outputs of
ASR systems. To compare the differences between
both, we look at two state-of-the-art ASR systems:
Google (Google, 2023) and OpenAI Whisper (Rad-
ford et al., 2022).2 Table 2 shows the distribution
shift between human and ASR transcripts. Because
of the noisy small-group classroom setting, some
student utterances are difficult to recognize, result-
ing in imperfect ASR transcriptions with incom-
plete or empty utterances. This causes the input
distributions to vary between human and ASR tran-
scripts. Additionally, when the empty utterances
are filtered out, the label distribution also shifts
across human and different ASRs. To provide as
fair a comparison as possible with the original hu-
man transcripts, we create two versions of the ASR
data. The first version, denoted using the subscript
‘filter’ is filtered such that empty utterances are re-
moved, which results in its size varying from the
human transcripts. The second version, denoted
by the subscript ‘all’, retains all ASR utterances
where the corresponding human transcription is
not empty, thus resulting in the same number of
utterances as the original human transcripts.

3.3 Results

To show the performance gap caused by the above
distribution shift, we evaluate our model on both
human transcriptions and transcriptions from the
two ASR systems. For each ASR transcript, we
report both performances on their filtered ver-
sion (Googlefilter, Whisperfilter) and the all ver-

2We select Google as it has been shown to work as well
for children as adults (Rodrigues et al., 2019) and outperform
similar services (Filippidou and Moussiades, 2020).

Testing macro F1 NONE LC OTHER

Random Baselines

Human 0.316 0.393 0.353 0.201
Googlefilter 0.321 0.379 0.352 0.230
Whisperfilter 0.317 0.392 0.357 0.202
Googleall 0.306 0.385 0.344 0.190
Whisperall 0.312 0.390 0.354 0.193

Training on Human

Human 0.689 0.701 0.783 0.581
Googlefilter 0.591 0.555 0.635 0.581
Whisperfilter 0.614 0.625 0.601 0.617
Googleall 0.543 0.59 0.572 0.467
Whisperall 0.599 0.641 0.558 0.599

Table 3: Results on student talk move classification.

sion (Googleall, Whisperall). We report macro F1
as well as class-wise F1 for all models, as shown
in Table 3. The top rows show performance of
the random baseline. Because of the shift in la-
bel distributions, as described in Section 3.2, even
the input-agnostic random baselines vary for the
different versions. Looking at the model perfor-
mances, we see that overall macro F1 drops by 8.91
points for Whisperall (a 12% drop) and 14.6 points
(a 21% drop) for Googleall when comparing across
transcripts that have the same length.

When considering real-world deployment, the
potential for such a dramatic drop in performance
should be taken into account by both the designer
(including researchers) and the user (such as teach-
ers). However, for similar applications based on
classroom discourse analysis, such as classifying
teacher talk moves (Suresh et al., 2022), predict-
ing appropriate next teacher talk moves (Ganesh
et al., 2021) or measuring teacher uptake of student
ideas (Demszky et al., 2021), comparisons to ASR
transcriptions to illustrate real-world performance
are rarely made, and, in many cases, ASR as a
component is never mentioned.

4 Discussion

Through the above survey and case study, we quali-
tatively and quantitatively examine the gap between
task-focused solutions in NLP research, and realis-
tic use cases. We first acknowledge that there has
existed a long-standing tradition in NLP to contex-
tualize current research efforts through potential
future applications. Looking at task-oriented dialog
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systems for example, early work such as Deutsch
(1975) was motivated by the need to design compu-
tational assistants to support humans in mechanical
tasks, and discussed the construction of essential
components such as discourse processors, despite
missing key upstream and downstream components
such as ASR or dialog generation. Investigating
sub-problems and their respective solutions in envi-
ronments that are distinct from real-word settings
has largely been unavoidable and sometimes even
desirable. However, we argue that with the growth
of the field and with the progress enabled by LLMs
and related advances, we now have the opportunity
to examine how closely our experimental setups
can reflect our long term goals. Additionally, for
papers that are explicitly in the Applications track,
which present new applications intended to satisfy
a real-world user need, we believe it is even more
important to consider the bigger picture, and accu-
rately describe necessary next steps for making the
application a reality.

To bridge this gap, we propose a few initial rec-
ommendations: i) we suggest including a question
on the Responsible NLP Checklist3 pertinent to
application-oriented papers, asking if the experi-
mental setup has taken into account the real-world
conditions of the application, ii) we recommend
that authors describe any potential gaps between
their motivation and proposed solution, and if so,
state what is lost in the gap (such as ASR), and
iii) we call for work to investigate ways to explic-
itly account for the gap, such as simulating noisy
input data in cases where accessing the true distri-
butions is not possible. We invite discussion from
the research community on other ways forward.

5 Related Work

Our paper adds to a body of work on meta-analysis
of NLP papers and the state of NLP research, par-
ticularly from the recently introduced theme tracks
at *ACL conferences (Bianchi and Hovy, 2021;
Bowman, 2022; Kann et al., 2022). Similarly to
us in that the authors examine evaluation practices,
Bowman and Dahl (2021) points out problems with
benchmarking, while Rodriguez et al. (2021) pro-
poses ways to improve leaderboards in order to
truly track progress. Other papers that critically ex-
amine evaluation and leaderboards include Ribeiro
et al. (2020); Dodge et al. (2019) and Ethayarajh

3https://aclrollingreview.org/
responsibleNLPresearch/

and Jurafsky (2020). In contrast, we focus on dis-
crepancies between proposed experimental settings
and the stated motivation of research endeavours.

In addition, Bowman (2022) discusses that, sim-
ilar to problematic hype, underclaiming when talk-
ing about NLP models comes with risks, and
Bianchi and Hovy (2021) highlights multiple con-
cerning trends in NLP research. More broadly, Lip-
ton and Steinhardt (2019) discuss concerns with
ML scholarship, and Church (2020) draws atten-
tion to downward trends in reviewing quality and
how these can potentially be mitigated.

6 Conclusions

We investigate the “gap” between the motivations
of application-focused NLP papers and their actual
experimental setting. Through a survey of NLP
Applications papers from two NLP conferences,
we find that i) necessary components for the appli-
cation get overlooked when papers focus on sub-
tasks and ii) realistic input sources such as ASR
are not being considered in downstream evalua-
tions. We further highlight the severity of the latter
issue through a case study on a dialog understand-
ing system intended for classrooms, showing the
drop in performance when ASR input, expected in
the real-world, is used. While we outline potential
strategies to address this issue, we hope our work
will spur further discussion about future steps.

Limitations

One of the limitations of our survey is that it covers
a limited sample space of 15 papers from EMNLP
2020 and ACL 2020. While a larger sample would
be helpful in gathering more evidence, access to
specific tracks is limited at NLP conferences, un-
less hosted online via a virtual or hybrid system.
With respect to our case study, we evaluate on the
ASR utterances, but with labels corresponding to
the original manual transcriptions. For a perfect
comparison, the ASR utterances would need to be
re-annotated as the talk move could change based
on the severity of transcription errors.
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A Talk Move and Label Clustering

Table 4 shows the original student talk moves in
our dataset. We merged the two labels related to
learning community as a single label LC, and then
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Label TalkMove Counts Example

NONE None 299 ‘OK”,‘Alright”,‘Let’s do
the next step.”

LC

Relating to
another
student

512
‘My bad”, ‘Press the
button”,‘You need to

code that”
Asking for
more info 3 ‘I don’t understand

number four.”

OTHER

Making a
claim 41

‘We should place the
wire on P2.”,‘We could
do a winky face next.”

Providing
evidence or
reasoning

1
‘Because that’s how

loud our class usually
is.”

Not Enough
Context 139 ‘Here”,‘Do you mean

[inaudible]”

Table 4: Student Talk Moves included in our talkmove
dataset.

merged two rare labels “Making a claim”, and “Pro-
viding evidence and reasoning‘ with “Not Enough
Context”, and form a new label OTHER
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