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Abstract

Given its effectiveness on knowledge-intensive
natural language processing tasks, dense re-
trieval models have become increasingly pop-
ular. Specifically, the de-facto architecture for
open-domain question answering uses two iso-
morphic encoders that are initialized from the
same pretrained model but separately param-
eterized for questions and passages. This bi-
encoder architecture is parameter-inefficient in
that there is no parameter sharing between en-
coders. Further, recent studies show that such
dense retrievers underperform BM25 in var-
ious settings. We thus propose a new archi-
tecture, Task-Aware Specialization for dEnse
Retrieval (TASER), which enables parameter
sharing by interleaving shared and specialized
blocks in a single encoder. Our experiments
on five question answering datasets show that
TASER can achieve superior accuracy, surpass-
ing BM25, while using about 60% of the pa-
rameters as bi-encoder dense retrievers. In
out-of-domain evaluations, TASER is also em-
pirically more robust than bi-encoder dense
retrievers. Our code is available at https:
//github.com/microsoft/taser.

1 Introduction

Empowered by learnable neural representations
built upon pretrained language models, the dense
retrieval framework has become increasingly pop-
ular for fetching external knowledge in various
natural language processing tasks (Lee et al., 2019;
Guu et al., 2020; Lewis et al., 2020). For open-
domain question answering (ODQA), the de-facto
dense retriever is the bi-encoder architecture (Lee
et al., 2019; Karpukhin et al., 2020), consisting of a
question encoder and a passage encoder. Typically,
the two encoders are isomorphic but separately pa-
rameterized, as they are initialized from the same
pretrained model and then fine-tuned on the task.

Despite of its popularity, this bi-encoder archi-
tecture with fully decoupled parameterization has

some open issues. First, from the efficiency per-
spective, the bi-encoder parameterization appar-
ently results in scaling bottleneck for both training
and inference. Second, empirical results from re-
cent studies show that such bi-encoder dense re-
trievers underperform its sparse counterpart BM25
(Robertson and Walker, 1994) in various settings.
For example, both Lee et al. (2019) and Karpukhin
et al. (2020) suggest the inferior performance on
SQuAD (Rajpurkar et al., 2016) is partially due
to the high lexical overlap between questions and
passages, which gives BM25 a clear advantage.
Sciavolino et al. (2021) also find that bi-encoder
dense retrievers are more sensitive to distribution
shift than BM25, resulting in poor generalization
on questions with rare entities.

In this paper, we develop Task-Aware Special-
ization for dEnse Retrieval, TASER, as a more
parameter-efficient and robust architecture. Instead
of using two isomorphic and fully decoupled Trans-
former (Vaswani et al., 2017) encoders, TASER
interleaves shared encoder blocks with specialized
ones in a single encoder, motivated by recent suc-
cess in using Mixture-of-Experts (MoE) to scale
up Transformer (Fedus et al., 2021). For the shared
encoder block, the entire network is used to encode
both questions and passages. For the specialized
encoder block, some sub-networks are task-specific
and activated only for certain encoding tasks. To
choose among task-specific sub-networks, TASER
uses an input-dependent routing mechanism, i.e.,
questions and passages are passed through separate
dedicated sub-networks.

We carry out both in-domain and out-of-domain
evaluation for TASER. For the in-domain evalu-
ation, we use five popular ODQA datasets. Our
best model outperforms BM25 and existing bi-
encoder dense retrievers, while using much less
parameters. It is worth noting that TASER can ef-
fectively close the performance gap on SQuAD
between dense retrievers and BM25. One interest-
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ing finding from our experiments is that exclud-
ing SQuAD from the multi-set training is unneces-
sary, which was a suggestion made by Karpukhin
et al. (2020) and adopted by most follow-up work.
Our out-of-domain evaluation experiments use En-
tityQuestions (Sciavolino et al., 2021) and BEIR
(Thakur et al., 2021). Consistent improvements
over the doubly parameterized bi-encoder dense
retriever are observed in these zero-shot evalua-
tions as well. Our code is available at https:

//github.com/microsoft/taser.

2 Background

In this section, we provide necessary background
about the bi-encoder architecture for dense passage
retrieval which is widely used in ODQA (Lee et al.,
2019; Karpukhin et al., 2020) and is the primary
baseline model in our experiments.

The bi-encoder architecture consists of a ques-
tion encoder and a passage encoder, both of which
are usually Transformer encoders (Vaswani et al.,
2017). A Transformer encoder is built up with a
stack of Transformer blocks. Each block consists
of a multi-head self-attention (MHA) sub-layer
and a feed-forward network (FFN) sub-layer, with
residual connections (He et al., 2016) and layer-
normalization (Ba et al., 2016) applied to both sub-
layers. Given an input vector h ∈ Rd, the FFN
sub-layer produces an output vector as following

FFN(h) = W2max{0,W1h+ b1}+ b2, (1)

where W1 ∈ Rm×d,W2 ∈ Rd×m,b1 ∈ Rm, and
b2 ∈ Rd are learnable parameters. For a sequence
of N tokens, each Transformer block produces
N corresponding vectors, together with a vector
for the special prefix token [CLS] which can be
used as the representation of the sequence. We
refer readers to (Vaswani et al., 2017) for other
details about Transformer. Typically the question
encoder and passage encoder are initialized from a
pretrained language model such as BERT (Devlin
et al., 2019), but they are parameterized separately,
i.e., their parameters would differ after training.

The bi-encoder model independently encodes
questions and passages into d-dimension vectors,
using the final output vectors for [CLS] from
the corresponding encoders, denoted as q ∈ Rd

and p ∈ Rd, respectively. The relevance be-
tween a question and a passage can then be mea-
sured in the vector space using dot product, i.e.,
sim(q,p) = qTp. During training, the model is
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Figure 1: The architecture overview of TASER. The
specialized transformer block consists of a Q-FFN for
questions, a P-FFN for passages, and a router which
deterministically chooses between these two expert FFN
sub-layers based on input.

optimized based on a contrastive learning objective,

Lsim = − exp(sim(q,p+))∑
p′∈P∪{p+} exp(sim(q,p′))

, (2)

where p+ is the relevant (positive) passage for the
given question, and P is the set of irrelevant (nega-
tive) passages. During inference, all passages are
pre-converted into vectors using the passage en-
coder. Then, each incoming question is encoded
using the question encoder, and a top-K list of
most relevant passages are retrieved based on their
relevance scores with respect to the question.

Although the bi-encoder dense retrieval archi-
tecture has achieved impressive results in ODQA,
few work has attempted to improve its parameter
efficiency. Further, compared to the spare vector
space model BM25 (Robertson and Walker, 1994),
such bi-encoder dense retrievers sometimes suf-
fer from inferior generalization performance, e.g.,
when the training data is extremely biased (Lebret
et al., 2016; Karpukhin et al., 2020) or when there
is a distribution shift (Sciavolino et al., 2021). In
this paper, we conjecture that the unstable gen-
eralization performance is partially related to the
unnecessary number of learnable parameters in the
model. Therefore, we develop a task-aware spe-
cialization architecture for dense retrieval with pa-
rameter sharing between the question and passage
encoders, which turns out to improve both parame-
ter efficiency and generalization performance.

3 Proposed Model: TASER

As shown in Fig. 1, TASER interleaves shared
Transformer blocks with specialized ones. The
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shared Transformer block is identical to the Trans-
former block used in the bi-encoder architecture,
but the entire block is shared for both questions
and passages. In the specialized block, we apply
MoE-style task-aware specialization to the FFN
sub-layer, following (Fedus et al., 2021), where the
router always routes the input to a single expert
FFN sub-layer. In our experiments, we use a sim-
ple yet effective routing mechanism, which uses an
expert sub-layer (Q-FFN) for questions and another
(P-FFN) for passages. The router determines the
expert FFN sub-layer based on whether the input is
a question or a passage. Other routing mechanisms
are discussed in Appendix A.
TASER uses one specialized Transformer block

after every T shared Transformer blocks in the
stack, starting with a shared one at the bottom. Our
preliminary study indicates that the model perfor-
mance is not sensitive to the choice of T , so we use
T = 2 for experiments in this paper.

Similar to the bi-encoder architecture, TASER
is trained using the contrastive learning objective
Lsim defined in Equation 2. Specifically, the ob-
jective needs to use a set of negative passages P
for each question. Following Xiong et al. (2020)
and Qu et al. (2021), we construct P via hard neg-
atives mining (Appendix B). Our experiments use
the multi-set training paradigm, i.e., the model is
trained by combining data from multiple datasets
to obtain a model that works well across the board.

4 Experiments

4.1 In-Domain Evaluation

We carry out in-domain evaluations on five ODQA
datasets: NaturalQuestions (NQ; Kwiatkowski
et al., 2019a), TriviaQA (TQ; Joshi et al., 2017),
WebQuestions (WQ; Berant et al., 2013), Cu-
ratedTrec (CT; Baudiš and Šedivý, 2015), and
SQuAD (Rajpurkar et al., 2016). All data splits
and the Wikipedia collection for retrieval used in
our experiments are the same as Karpukhin et al.
(2020). The top-K retrieval accuracy (R@K) is
used for evaluation, which evaluates whether any
gold answer string is contained in the top K re-
trieved passages.

Besides BERT-base, coCondenser-Wiki (Gao
and Callan, 2022) is also used to initialize TASER
models. We further present results of hybrid mod-
els that linearly combine the dense retrieval scores
with the BM25 scores. See Appendix D for de-
tails. Evaluation results are summarized in Ta-

NQ TQ WQ CT SQuAD

BM25(1) 62.9 76.4 62.4 80.7 71.1

Multi-Set Training (without SQuAD)

DPR(1) 79.5 78.9 75.0 88.8 52.0
DPRBM25

(1) 82.6 82.6 77.3 90.1 75.1
xMoCo(2) 82.5 80.1 78.2 89.4 55.9
SPARWiki

(3) 83.0 82.6 76.0 89.9 73.0
SPARPAQ

(4) 82.7 82.5 76.3 90.3 72.9

Multi-Set Training (with SQuAD)

DPR† 80.9 79.6 74.0 88.0 63.1
DPR⋄ 82.5 81.8 77.8 91.2 67.0
DPR⋆ 83.7 82.6 78.9 91.6 68.0
TASER⋄ 83.6 82.0 77.9 91.1 69.7
TASER⋆ 84.9 83.4 78.9 90.8 72.9
TASER⋆

BM25 85.0 84.0 79.6 92.1 78.0

Table 1: In-domain evaluation results (test set R@20).
(1): (Ma et al., 2021). (2): (Karpukhin et al., 2020).
(3): (Yang et al., 2021). (4): (Chen et al., 2022). BM25:
combined with BM25 scores. †: initialized from BERT-
base and without hard negatives mining. ⋄: initialized
from BERT-base. ⋆: initialized from coCondenser-Wiki.
The last five models are trained with the same hard
negatives mining.

ble 1.1 Note that the last five models Table 1 are
trained with the same hard negatives mining.

All prior work excludes SQuAD from the multi-
set training, as suggested by Karpukhin et al.
(2020). We instead train models using all five
datasets. Specifically, we observe that this would
not hurt the overall performance, and it actually
significantly improves the performance on SQuAD,
comparing DPR(1) with DPR†.

Comparing models initialized from BERT-base,
TASER⋄ significantly outperforms xMoCo (Yang
et al., 2018) and is slightly better than DPR⋄, using
around 60% parameters. SPAR (Chen et al., 2022)
is also initialized from BERT-base, but it augments
DPR with another dense lexical model trained on
either Wikipedia or PAQ (Lewis et al., 2021), which
doubles the model sizes (Table A3). TASER⋄ is
mostly on par with SPAR-Wiki and SPAR-PAQ,
except on SQuAD, but its model size is about a
quarter of SPAR.

Gao and Callan (2022) has shown the coCo-
denser model outperforms DPR models initialized
from BERT-base in the single-set training setting.
Here, we show that using coCondenser-Wiki for
initialization is also beneficial for TASER under
the multi-set setting, especially for SQuAD where

1We also report R@100 scores in Table A2 and correspond-
ing model sizes in Table A3.
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R@20 nDCG@10
EQ AA DBP FEV HQA

BM25 71.2 31.5 31.3 75.3 60.3

DPRMulti 56.7 17.5 26.3 56.2 39.1
TASER⋄ 64.7 32.8 31.4 59.6 50.7
TASER⋆ 66.7 30.5 31.6 58.8 54.5

Table 2: Out-of-domain evaluation results on
EntityQuestions (R@20) and four BEIR datasets
(nDCG@10). BM25 and DPRMulti results are from (Sci-
avolino et al., 2021) and (Thakur et al., 2021).

R@20 is improved by 3.2 points. Notably, SQuAD
is the only dataset among the five where DPR un-
derperforms BM25, due to its higher lexical over-
lap between questions and passages. Nevertheless,
TASER⋆ surpasses BM25 on all five datasets, and
they are either on-par or better than state-of-the-
art dense-only retriever models, demonstrating its
superior parameter efficiency.

Consistent with previous work, combining
BM25 with dense models can further boost the per-
formance, particularly on SQuAD. However, the
improvement is more pronounced on DPR as com-
pared to TASER⋆, indicating that TASER⋆ is able
to capture more lexical overlap features. Finally,
TASER⋆BM25 sets new state-of-the-art performance
on all five ODQA datasets.

We also compare the computation time needed
for one epoch of training and validation. The base-
line DRP model takes approximately 15 minutes,
whereas TASER takes 11 minutes (26% improve-
ment), both measured using 16 V100-32G GPUs.

4.2 Out-of-Domain Evaluation

We use two benchmarks to evaluate the out-of-
domain generalization ability of TASER⋄ and
TASER⋆ from Table 1 . EntityQuestions (EQ; Sci-
avolino et al., 2021) is used to measure the model
sensitivity to entity distributions, as DPR is found
to perform poorly on entity-centric questions con-
taining rare entities. BEIR (Thakur et al., 2021) is
used to study the model generalization ability in
other genres of information retrieval tasks. Specifi-
cally, we focus on four datasets from BEIR where
DPR underperforms BM25, i.e., ArguAna (AA;
Wachsmuth et al., 2018), DBPedia (DBP; Hasibi
et al., 2017), FEVER (FEV; Thorne et al., 2018),
and HotpotQA (HQA; Yang et al., 2018). Results
are summarized in Table 2. For EntityQuestions,
we report R@20 scores following Sciavolino et al.

(2021).2 For BEIR datasets, nDCG@10 scores are
used following Thakur et al. (2021).

On EntityQuestions, both TASER⋄ and TASER⋆

outperform the doubly parameterized DPRMulti
(Karpukhin et al., 2020), with TASER⋆ being
slightly better. Similar to the in-domain evaluation
results, TASER can effectively reduce the perfor-
mance gap between the dense retrievers and BM25.
These results further support our hypothesis that
more parameter sharing can improve the model
robustness for dense retrievers.

On BEIR datasets, we also observe that TASER
models consistently improve over DPRMulti across
the board. Notably, TASER⋄ and TASER⋆ can
actually match the performance of BM25 on Ar-
guAna and DBpedia. Interestingly, coCondenser
pre-training has mixed results here, i.e., TASER⋆

is only better than TASER⋄ on HotpotQA and on
par or worse on other datasets.

5 Related Work

Recent seminal work on dense retrieval demon-
strates its effectiveness using Transformer-based
bi-encoder models by either continual pre-training
with an inverse cloze task (Lee et al., 2019) or care-
ful fine-tuning (Karpukhin et al., 2020). One line
of follow-up work improves dense retrieval mod-
els via various continual pre-training approaches
(Guu et al., 2020; Chang et al., 2020; Izacard et al.,
2021; Gao and Callan, 2022; Oğuz et al., 2021).
Better contrastive learning objectives are also in-
troduced (Xiong et al., 2020; Qu et al., 2021; Yang
et al., 2021). Motivated by the success of augment-
ing dense models with sparse models, Chen et al.
(2022) combine the dense retriever with a dense
lexical model that mimics sparse retrievers. All
above work focus on improving the accuracy of bi-
encoder dense retrievers, whereas our work tackles
the parameter efficiency issue.

Unlike most bi-encoder dense retrievers which
measure the similarity between a question and a
passage using their corresponding [CLS]vectors,
ColBERT (Khattab and Zaharia, 2020) develops a
late-interaction paradigm and measures the similar-
ity via a MaxSim operator that computes the maxi-
mum similarity between a token in a sequence and
all tokens in the other sequence. Such architecture
has shown promising results in ODQA (Khattab
et al., 2021) and the BEIR benchmark (Santhanam

2The R@20 scores are averaged over all relations. More
evaluation metrics are reported in Table A4.
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et al., 2022). Our work instead focus on the im-
provement on the underlying text encoders, and the
MaxSim operator introduced by ColBERT can be
applied on top of TASER.

Xiong et al. (2021) use the BERT-Siamese archi-
tecture for dense retrieval, where all Transformer
blocks are shared. Compared with this architec-
ture, TASER is a more effective and general way to
increase the parameter efficiency, by interleaving
specialized Transformer blocks with shared ones.

6 Conclusion

We propose a new parameterization framework,
TASER, for improving the efficiency and robust-
ness of dense retrieval for ODQA. It interleaves
shared encoder blocks with specialized ones in
a single encoder where some sub-networks are
task-specific. As the specialized sub-networks are
sparsely activated, TASER can provide better pa-
rameter efficiency with almost no additional com-
putation cost. Experiments show that TASER sub-
stantially outperforms existing fully supervised bi-
encoder dense retrievers on both in-domain and
out-of-domain generalization.

7 Limitations

In this section, we point out several limitations in
this work.

First, our in-domain evaluation experiments fo-
cus on passage retrieval for ODQA. While the
dense retriever is mostly successful in ODQA, it
can be also used in other types of retrieval tasks
which may have different input and output format.
For example, the KILT benchmark (Petroni et al.,
2021) provides several knowledge-intensive tasks
other than ODQA. The performance of TASER
models trained on such retrieval tasks remain un-
known.

Second, compared with traditional sparse vector
models like TF-IDF and BM25, the cost of training
is an inherent issue of dense retrievers. Although
TASER significantly reduce the number of model
parameters, the training cost is still high.

Third, in our experiments, we show that the
learned routing does not outperform the determinis-
tic routing. This may suggest a better architecture
and/or training algorithms for learned routing is
needed to fully unleash the power of MoE.

Last, as observed in §4.2, there is still a gap
between TASER and BM25 in out-of-domain eval-
uation. Therefore, how to close this gap will remain

a critical topic for future work on dense retrievers.
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A More Routing Mechanisms

In the paper, only input-dependent routing is con-
sidered. Here, we provide a more comprehen-
sive study of routing mechanisms. In particu-
lar, we introduce three routing mechanisms: the
deterministic routing (Det-R) which is used in
our main experiments, the sequence-based routing
(Seq-R), and the token-based routing (Tok-R).
Both Seq-R and Tok-R are learned jointly with
the task-specific objective.

Specifically, Det-R is the input-dependent rout-
ing studied in the main paper where two expert FFN
sub-layers are needed for ODQA retrieval, one for
questions and one for passages. In this case, the
router determines the expert FFN sub-layer based
on whether the input is a question or a passage.

For Seq-R and Tok-R, the router uses a param-
eterized routing function

R(u) = GumbelSoftmax(Au+ c), (3)

where GumbelSoftmax (Jang et al., 2016) out-
puts a I-dimensional one-hot vector based on the
linear projection parameterized by A ∈ Rd×I and
c ∈ RI , I is the number of expert FFN sub-layers
in the specialized Transformer block, and u ∈ Rd

is the input of the routing function. Here, the rout-
ing function is jointly learned with all other param-
eters using the discrete reparameterization trick.
For Seq-R, routing is performed at the sequence
level, and all tokens in a sequence share the same u,
which is the FFN input vector h[CLS] representing
the special prefix token [CLS]. For Tok-R, the
router independently routes each token, i.e., for the
j-th token in the sequence, u is set to the corre-
sponding FFN input vector hj .

For Seq-R and Tok-R, to avoid routing all in-
puts to the same expert FFN sub-layer, we further
apply the entropic regularization

Lent = −
I∑

i=1

P (i) logP (i). (4)

where P (i) = Softmax(Ah+c)i is the probabil-
ity of the i-th expert FFN sub-layer being selected.
Hence, the joint training objective is

Ljoint = Lsim + βLent, (5)

where β is a scalar hyperparameter. In our work,
we fix β = 0.01.

Also, all specialized Transformer blocks use the
same number of expert FFN sub-layers for simplic-
ity.

Model I # Params Dev Test

DPR - 218M - 78.4
TASERShared 1 109M 78.2 79.3
TASERDet-R 2 128M 79.2 80.7
TASERSeq-R 2 128M 79.2 80.6
TASERSeq-R 4 166M 78.4 80.1
TASERToK-R 2 128M 78.5 79.8
TASERToK-R 4 166M 78.5 79.8

DPR† - 218M - 81.3
TASERDet-R† 2 128M 82.4 83.7

Table A1: R@20 on NQ dev and test sets under the
single-set training setting. I is the number of expert
FFNs. The # params column shows the number of pa-
rameters in the model. † means the model is trained
with hard negatives mining described in §B. The re-
sults for DPR and DPR† are reported in (Karpukhin
et al., 2020) and https://tinyurl.com/yckar3f6,
respectively.

B Hard Negative Mining

Recall that in Equation 2 the objective Lsim needs
to use a set of negative passages P for each ques-
tion. There are several ways to construct P . In
(Karpukhin et al., 2020), the best setting uses two
negative passages per question: one is the top pas-
sage retrieved by BM25 which does not contain
the answer but match most question tokens, and
the other is chosen from the gold positive passages
for other questions in the same mini-batch. Re-
cent work shows that mining harder negative ex-
amples with iterative training can lead to better
performance (Xiong et al., 2020; Qu et al., 2021).
Hence, in this paper, we also train TASER with
hard negatives mining. Specifically, we first train a
TASER model with negative passages P1 same as
Karpukhin et al. (2020). Then, we use this model to
construct P2 by retrieving top-100 ranked passages
for each question excluding the gold passage. In
the single-set training, we combine P1 and P2 to
train the final model. In the multi-set training, only
use P2 is used to train the final model for efficiency
consideration.

C Comparing TASER Variants

In this part, we compare different TASER variants
discussed in §A by evaluating their performance
on NQ under the single-set training setting. We use
the bi-encoder dense passage retriever (DPR) from
(Karpukhin et al., 2020) as our baseline. All models
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NQ TriviaQA WebQ TREC SQuAD
Model @20 @100 @20 @100 @20 @100 @20 @100 @20 @100

BM25(1) 62.9 78.3 76.4 83.2 62.4 75.5 80.7 89.9 71.1 81.8

Single-Set Training

DPR(2) 78.4 85.4 79.4 85.0 73.2 81.4 79.8 89.1 63.2 77.2
DPR-PAQ(3) 84.7 89.2 - - - - - - - -
coCondenser(4) 84.3 89.0 83.2 87.3 - - - - - -

Multi-Set Training (without SQuAD)

DPR(1) 79.5 86.1 78.9 84.8 75.0 83.0 88.8 93.4 52.0 67.7
DPR(1)

BM25 82.6 88.6 82.6 86.5 77.3 84.7 90.1 95.0 75.1 84.4
xMoCo(5) 82.5 86.3 80.1 85.7 78.2 84.8 89.4 94.1 55.9 70.1
SPAR-Wiki(6) 83.0 88.8 82.6 86.7 76.0 84.4 89.9 95.2 73.0 83.6
SPAR-PAQ(6) 82.7 88.6 82.5 86.9 76.3 85.2 90.3 95.4 72.9 83.7

Multi-Set Training (with SQuAD)

DPR† 80.9 86.8 79.6 85.0 74.0 83.4 88.0 94.1 63.1 77.2
DPR⋄ 82.5 88.0 81.8 86.4 77.8 84.7 91.2 95.5 67.1 79.8
DPR⋆ 83.7 88.7 82.6 86.7 78.9 85.3 91.6 95.1 68.0 80.2
TASER⋄ 83.6 88.6 82.0 86.6 77.9 85.4 91.1 95.7 69.7 81.2
TASER⋄BM25 83.8 88.6 83.3 87.1 78.7 85.7 91.6 95.8 77.2 86.0
TASER⋆ 84.9 89.2 83.4 87.1 78.9 85.4 90.8 96.0 72.9 83.4
TASER⋆BM25 85.0 89.2 84.0 87.5 79.6 85.8 92.1 96.0 78.0 87.0

Table A2: In-domain evaluation results. Test set R@20 and R100 are reported. (1): (Ma et al., 2021). (2): (Karpukhin
et al., 2020). (3): (Oğuz et al., 2021) (4): (Gao and Callan, 2022). (5): (Yang et al., 2021). (6): (Chen et al., 2022).
BM25: combined with BM25 scores. †: initialized from BERT-base and without hard negatives mining. ⋄: initialized
from BERT-base. ⋆: initialized from coCondenser-Wiki. The last five models are trained with the same hard
negatives mining.

Model Num. Parameters

DPR 218M
coCodenser 218M
xMoCo 218M
SPAR-Wiki; SPAR-PAQ 436M
DPR-PAQ 710M

TASER⋄; TASER⋆ 128M

Table A3: Number of parameters for models reported in
Table A2.

including DPR are initialized from the BERT-base
(Devlin et al., 2019).3 All TASER models are fine-
tuned up to 40 epochs with Adam (Kingma and
Ba, 2014) using a learning rate chosen from {3e−
5, 5e − 5}. Model selection is performed on the
development set following (Karpukhin et al., 2020).

3Without further specification, we only consider the un-
cased version throughout the paper.

Results are summarized in Table A1.

TASERShared is a variant without any task-aware
specialization, i.e., there is a single expert FFN sub-
layer in the specialized Transformer block and the
router is a no-op. As shown in Table A1, it outper-
forms DPR while using only 50% parameters.

Task-aware specialization brings extra improve-
ments, with little increase in model size. Compar-
ing the two learned routing mechanisms, Seq-R
achieves slightly better results than Tok-R, indi-
cating specializing FFNs based on sequence-level
features such as sequence types is more effective
for ODQA dense retrieval. This is consistent with
the positive results for Det-R, which consists of
two expert FFNs specialized for questions and pas-
sages, respectively. We also find that adding more
expert FFNs does not necessarily bring extra gains,
and I = 2 is sufficient for NQ. Consistent with
the results on DPR, the hard negatives mining de-
scribed in §B can further boost TASERDet-R per-
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Macro R@20 Micro R@20 Micro R@100

BM25 71.2 70.8 79.2

DPRMulti 56.7 56.6 70.1
TASER⋄ 64.7 64.3 76.2
TASER⋆ 66.7 66.2 77.9

Table A4: Out-of-domain evaluation results on EntityQuestions. We report macro R@20 scores which are used in
(Sciavolino et al., 2021) as well as micro R@20 and R@100 scores which are used in (Chen et al., 2022). Results
for BM25 and DPRMulti are from (Sciavolino et al., 2021) and (Chen et al., 2022).

formance by 3.0 points in test set R@20. Since
Det-R achieves the best R@20, our subsequent
experiments focus on this simple and effective spe-
cialization strategy. In the remainder of the paper,
we drop the subscript and simply use TASER to
denote models using Det-R.

D Details about In-Domain Evaluations

All TASER models are fine-tuned up to 40 epochs
with Adam (Kingma and Ba, 2014) using a learning
rate chosen from {3e − 5, 5e − 5}. In our exper-
iments, hard negatives are mined from NQ, Triv-
iaQA and WebQ. We combine NQ and TriviaQA
development sets for model selection.

We also present results of hybrid models that
linearly combine the dense retrieval scores with the
BM25 scores,

sim(q,p) + α · BM25(q,p). (6)

We search the weight α in the range [0.5, 2.0] with
an interval of 0.1 based on the combined devel-
opment set mentioned above. Unlike (Ma et al.,
2021), we use a single α for all five datasets instead
of dataset-specified weights so that the resulting
hybrid retriever still complies with the multi-set
setting in a strict sense. The same normalization
techniques described in (Ma et al., 2021) is used.
Similar to (Karpukhin et al., 2020; Ma et al., 2021),
we separately retrieve K ′ candidates from TASER
and BM25, and then retain the top K based on the
hybrid scores, though we use a smaller K ′ = 100.

We used 16 V100-32GB GPUs and it took 9
hours to train our models.

E Dataset Licenses and Intended Use

All datasets used in our experiments are English
datasets. The datasets used in this paper are re-
leased under the following licenses.

• NaturalQuestions (Kwiatkowski et al., 2019b):
CC-BY-SA 3.0 License

• TriviaQA (Joshi et al., 2017): non-
commercial research purposes only

• WebQuestions (Berant et al., 2013): CC-BY
4.0 License.

• SQuAD (Rajpurkar et al., 2016): CC-BY-SA
4.0 License

• EntityQuestions (Sciavolino et al., 2021):
MIT License

• ArguAna (Wachsmuth et al., 2018): not speci-
fied

• DBPedia (Hasibi et al., 2017): not specified

• FEVER (Thorne et al., 2018): license terms
described on the applicable Wikipedia article
pages, and CC BY-SA 3.0 License

• HotpotQA (Yang et al., 2018): CC BY-SA 4.0

Our use is consistent with their intended use.
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