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Abstract

Neural QCFG is a grammar-based sequence-to-
sequence (seq2seq) model with strong induc-
tive biases on hierarchical structures. It excels
in interpretability and generalization but suffers
from expensive inference. In this paper, we
study two low-rank variants of Neural QCFG
for faster inference with different trade-offs be-
tween efficiency and expressiveness. Further-
more, utilizing the symbolic interface provided
by the grammar, we introduce two soft con-
straints over tree hierarchy and source cover-
age. We experiment with various datasets and
find that our models outperform vanilla Neural
QCFG in most settings.

1 Introduction

Standard neural seq2seq models are versatile and
broadly applicable due to its approach of factoring
the output distribution into distributions over the
next words based on previously generated words
and the input (Sutskever et al., 2014; Gehring
et al., 2017; Devlin et al., 2019). Despite showing
promise in approximating complex output distri-
butions, these models often fail when it comes to
diagnostic tasks involving compositional general-
ization (Lake and Baroni, 2018; Bahdanau et al.,
2019; Loula et al., 2018), possibly attributed to a
lack of inductive biases for the hierarchical struc-
tures of sequences (e.g., syntactic structures), lead-
ing to models overfitting to surface clues.

In contrast to neural seq2seq models, traditional
grammar-based models incorporate strong induc-
tive biases to hierarchical structures but suffer from
low coverage and the hardness of scaling up (Wong
and Mooney, 2006; Bos, 2008). To benefit from
both of these approaches, blending traditional meth-
ods and neural networks has been studied (Herzig
and Berant, 2021; Shaw et al., 2021; Wang et al.,
2021, 2022). In particular, Kim (2021) proposes
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Neural QCFG for seq2seq learning with a quasi-
synchronous context-free grammar (QCFG) (Smith
and Eisner, 2006) that is parameterized by neural
networks. The symbolic nature of Neural QCFG
makes it interpretable and easy to impose con-
straints for stronger inductive bias, which leads
to improvements in empirical experiments. How-
ever, all these advantages come at the cost of high
time complexity and memory requirement, mean-
ing that the model and data size is restricted, which
leads to a decrease in text generation performance
and limited application scenarios.

In this work, we first study low-rank vari-
ants of Neural QCFG for faster inference and
lower memory footprint based on tensor rank
decomposition (Rabanser et al., 2017), which is
inspired by recent work on low-rank structured
models (Cohen et al., 2013; Chiu et al., 2021;
Yang et al., 2021, 2022). These variants allow us
to use more symbols in Neural QCFG, which has
been shown to be beneficial for structured latent
variable models (Buhai et al., 2020; Chiu and
Rush, 2020; Yang et al., 2021, 2022). Specifically,
we study two low-rank variants with different
trade-off between computation cost and ranges
of allowed constraints: the efficient model (E
model), following the decomposition method in
TN-PCFG (Yang et al., 2021), and the expressive
model (P model), newly introduced in this paper.
Furthermore, we propose two new constraints
for Neural QCFG, including a soft version of
the tree hierarchy constraint used by vanilla
Neural QCFG, and a coverage constraint which
biases models in favour of translating all source
tree nodes1. We conduct experiments on three
datasets and our models outperform vanilla Neural
QCFG in most settings. Our code is available at
https://github.com/LouChao98/seq2seq_with_qcfg.

1Similar topics are discussed in the machine translation
literature (Tu et al., 2016; Li et al., 2018, among others).
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2 Preliminary: Neural QCFG

Let s1, s2 be the source and target sequences,
and t1, t2 be the corresponding constituency parse
trees (i.e., sets of labeled spans). Following
previous work (Smith and Eisner, 2006; Kim,
2021), we consider QCFG in Chomsky nor-
mal form (CNF; Chomsky, 1959) with restricted
alignments, which can be denoted as a tuple
G[t1] = (S,N ,P,Σ,R[t1], θ), where S is the
start symbol, N/P/Σ are the sets of nontermi-
nals/preterminals/terminals respectively, R[t1] is
the set of grammar rules in three forms:

S → A[αi] where A ∈ N , αi ∈ t1,

A[αi] → B[αj ]C[αk] where

A ∈ N , B,C ∈ N ∪ P, αi, αj , αk ∈ t1,

D[αi] → w where A ∈ P, αi ∈ t1, w ∈ Σ,

and θ parameterizes rule probablities pθ(r) for each
r ∈ R[t1].

Recently, Kim (2021) proposes Neural QCFG
for seq2seq learning. He uses a source-side parser
to model p(t1|s1) and a QCFG to model p(t2|t1).
The log marginal likelihood of the target sequence
s2 is defined as follows:

log pθ,ϕ(s2|s1)
= log

∑

t1∈T (s1)

pθ(s2|t1)pϕ(t1|s1)

= log
∑

t1∈T (s1)

∑

t2∈T (s2)

pθ(t2|t1)pϕ(t1|s1),

where T (·) denotes the set of possible parse trees
for a sequence and θ, ϕ are parameters. Due to the
difficulty of marginalizing out t1 and t2 simultane-
ously, Kim (2021) resorts to maximizing the lower
bound on the log marginal likelihood,

log pθ,ϕ(s2|s1) ≥ Et1∼pϕ(t1|s1) [log pθ(s2|t1)] .

3 Low-rank Models

Marginalizing t2 in Neural QCFG has a high time
complexity of O(|N |(|N | + |P|)2S3T 3) where
S/T are the source/target sequence lengths. In par-
ticular, the number of rules in QCFG contributes
to a significant proportion, O(|N |(|N |+ |P|)2S3),
of the complexity. Below, we try to reduce this
complexity by rule decompositions in two ways.

A αi

R

αjB C αk

(a) E model

A αi

R

αjB C αk

(b) P model

Figure 1: Extended factor graph notation of decomposed
binary rules (Frey, 2002). Each square represents a
factor. Arrows indicate conditional probabilities.

3.1 Efficient Model (E Model)

Let R be a new set of symbols. The E model de-
composes binary rules rb into three parts: A[αi] →
R,R → B[αj ] and R → C[αk] (Fig. 1a), where
R ∈ R such that

p(A[αi] → B[αj ]C[αk]) =
∑

R

p(A[αi] → R)

× p(R → B[αj ])× p(R → C[αk]).

In this way, |N |(|N | + |P|)2S3 binary rules are
reduced to only GE := (3|N | + 2|P|)|R|S de-
composed rules, resulting in a time complexity of
O(GET

3)2 for marginalizing t2. Further, the com-
plexity can be improved to O(|R|T 3 + |R|2T 2)
using rank-space dynamic programming in Yang
et al. (2022)3.

However, constraints that simultaneously in-
volve αi, αj , αk (such as the tree hierarchy con-
straint in vanilla Neural QCFG and those to be
discussed in Sec. 4.1) can no longer be imposed
because of two reasons. First, the three nodes are
in separate rules and enforcing such constraints
would break the separation and consequently undo
the reduction of time complexity. Second, the
rank-space dynamic programming algorithm pre-
vents us from getting the posterior distribution
p(αi, αj , αk|t1, s2), which is necessary for many
methods of learning with constraints (e.g., Chang
et al., 2008; Mann and McCallum, 2007; Ganchev
et al., 2010) to work.

2Typically, we set |R| = O(|N |+ |P|).
3They describe the algorithm using TN-PCFG (Yang et al.,

2021), which decomposes binary rules of PCFG, A → BC,
into A → R,R → B and R → C. For our case, one
can define new symbol sets by coupling nonterminals with
source tree nodes: Nt = {(A,αi)|A ∈ N , αi ∈ t1} and
Pt = {(A,αi)|A ∈ P, αi ∈ t1}. Then our decomposition
becomes identical to TN-PCFG and their algorithm can be
applied directly.
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3.2 Expressive Model (P Model)
In the P model, we reserve the relation among
αi, αj , αk and avoid their separation,

p(A[αi] → B[αj ]C[αk]) =∑

R

p(A[αi] → R)× p(R,αi → αj , αk)×
p(R,αj → B)× p(R,αk → C),

as illustrated in Fig. 1b. The P model is still faster
than vanilla Neural QCFG because there are only
GP := |R|S3 + (3|N |+ 2|P|)|R|S decomposed
rules, which is lower than vanilla Neural QCFG
but higher than the E model. However, unlike the E
model, the P model cannot benefit from rank-space
dynamic programming4 and has a complexity of
O(|R|S2T 3+((2|N |+|P|)|R|S+|R|S3)T 2) for
marginalizing t2

5.
Rule R,αi → αj , αk is an interface for design-

ing constraints involving αi, αj , αk. For example,
by setting p(R,α1 → α2, α3) = 0 for all R ∈ R
and certain αi, αj , αk, we can prohibit the gener-
ation A[α1] → B[α2]C[α3] in the original QCFG.
With this interface, the P model can impose all con-
straints used by vanilla Neural QCFG as well as
more advanced constraints introduced next section.

4 Constraints

4.1 Soft Tree Hierarchy Constraint
Denote the distance between two tree nodes6

as d(αi, αj) and define d(αi, αj) = ∞ if αj

is not a descendant of αi. Then, the dis-
tance of a binary rule is defined as d(r) =
max(d(αi, αj), d(αi, αk)).

Neural QCFG is equipped with two hard hi-
erarchy constraints. For A[αi] → B[αj ]C[αk],
αj , αk are forced to be either descendants of αi

(i.e., d(r) < ∞), or more strictly, distinct direct
children of αi (i.e., d(r) = 1). However, we be-
lieve the former constraint is too loose and the
latter one is too tight. Instead, we propose a soft
constraint based on distances: rules with smaller
d(r) are considered more plausible. Specifically,

4Below is an intuitive explanation. Assume there is only
one nonterminal symbol. Then we can remove A,B,C be-
cause they are constants. The decomposition can be sim-
plified to αi → R,Rαi → αjαk, which is equivalent to
αi → αjαk, an undecomposed binary rule. The concept
“rank-space” is undefined in an undecomposed PCFG.

5It is better than O(GPT
3) because we can cache some

intermediate steps, as demonstrated in Cohen et al. (2013);
Yang et al. (2021). Details can be found in Appx. A.

6The distance between two tree nodes is the number of
edges in the shortest path from one node to another.

we encode the constraint into a reward function
of rules, ζ(d(r)), such that ζ(1) > ζ(2) > . . .
and ζ(a)ζ(b) > ζ(c)ζ(d) for a + b = c + d and
max(a, b) < max(c, d). A natural choice of the
reward function is ζ(d(r)) := d(r)e−d(r). We op-
timize the expected rewards with a maximum en-
tropy regularizer (Williams and Peng, 1991; Mnih
et al., 2016), formulated as follows:

log
∑

t2∈T (s2)

pθ(t2|t1)ζ(t2) + τH (pθ(t2|t1, s2)) ,

where ζ(t2) =
∏

r∈t2 ζ(d(r))
7, pθ(t2|t1, s2) =

pθ(t2|t1)/
∑

t∈T (s2)
pθ(t|t1), H represents en-

tropy, and τ is a positive scalar.

4.2 Coverage Constraint

Our experiments on vanilla neural QCFG show that
inferred alignments could be heavily imbalanced:
some source tree nodes are aligned with multiple
target tree nodes, while others are never aligned.
This motivates us to limit the number of alignments
per source tree node with an upper bound8, u. Be-
cause the total number of alignments is fixed to
|t2|, this would distribute alignments from popu-
lar source tree nodes to unpopular ones, leading to
more balanced source coverage of alignments. We
impose this constraint via optimizing the posterior
regularization likelihood (Ganchev et al., 2010),

Et1 (log pθ(s2|t1) + γminq∈QKL(q(t2)||pθ(t2|t1, s2))) ,

where KL is the Kullback-Leibler divergence (KL),
γ is a positive scalar and Q is the constraint set
{q(t2)|Eq(t)ϕ(t) ≤ ξ}, i.e., expectation of feature
vector ϕ over any distribution in Q is bounded by
constant vector ξ. We define the target tree feature
vector ϕ(t2) ∈ N|t1| such that ϕi(t2) represents the
count of source tree node αi being aligned by nodes
in t2 and ξ = u1. Ganchev et al. (2010) provide
an efficient algorithm for finding the optimum q,
which we briefly review in Appx. C. After finding
q, the KL term of two tree distributions, q and pθ,
can be efficiently computed using the Torch-Struct
library (Rush, 2020).

7r ∈ t2 means the rule at each generation step of t2.
8We do not set lower bounds, meaning each source tree

node should be aligned at least n times, because our source-
side parser uses a grammar in CNF, and such trees could
contain semantically meaningless nodes, which are not wor-
thing to be aligned. For example, trees of Harry James Potter
must contain either Harry James or James Potter.
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Approach Simple Jump A. Right Length

vNQ1 96.9 96.8 98.7 95.7
EModel 9.01 - 1.2 -
PModel 95.27 97.08 97.63 91.72

Table 1: Accuracy on the SCAN datasets. vNQ1 is
vanilla Neural QCFG from Kim (2021). vNQ1 and
PModel use the hard constraint d(r) < ∞.
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Figure 2: BLEU-4 scores on the ATP task. No constraint
is placed. The horizontal axis represents |N |(= |P|).

5 Experiments

We conduct experiments on the three datasets used
in Kim (2021). Details can be found in Appx. D.1.

5.1 SCAN

We first evaluate our models on four splits of the
SCAN dataset (Lake and Baroni, 2018). We report
accuracy in Tab. 1. The P model equipped with
constraints can achieve almost perfect performance
similar to vanilla Neural QCFG, while the E model
fails due to a lack of constraints.

5.2 Style Transfer and En-Fr Translation

Next, we evaluate the models on the three hard
transfer tasks from the StylePTB dataset (Lyu et al.,
2021) and a small-scale En-Fr machine translation
dataset (Lake and Baroni, 2018). Tab. 2 shows
results of the models with different constraints9.
Low-rank models generally achieve comparable or
better performance and consume much less mem-

9Following Kim (2021), we calculate the metrics for
tasks from the StylePTB dataset using the nlg-eval li-
brary (Sharma et al. (2017); https://github.com/
Maluuba/nlg-eval) and calculate BLEU for En-Fr MT
using the multi-bleu script (Koehn et al. (2007); https:
//github.com/moses-smt/mosesdecoder).

Approach nil +H1 +H2 +S +C

Active to passive (ATP)
vNQ1 − 66.2 − − −
vNQ2 71.42 71.56 − 71.62 73.86
EModel 73.48 × × × 74.25
PModel 75.06 69.88 − 73.11 75.44

Adjective Emphasise (AEM)
vNQ1 − 31.6 − − −
vNQ2 28.82 31.52 − 36.77 30.81
EModel 28.33 × × × 28.67
PModel 31.81 29.14 − 35.91 30.12

Verb Emphasise (VEM)
vNQ1 − 31.9 − − −
vNQ2 26.09 29.64 − 30.50 28.50
EModel 25.21 × × × 24.67
PModel 27.43 24.77 − 26.81 30.66

En-Fr machine translation
vNQ1 − − 26.8 − −
vNQ2 28.63 − 29.10 30.45 31.87
EModel 28.93 × × × 29.33
PModel 29.27 − 29.76 30.51 29.69

Table 2: BLEU-4 for tasks from the StylePTB dataset
(the top three series) and BLEU for Fr-En machine trans-
lation against different models and constraints. vNQ2 is
our reimplementation of Kim (2021). nil means that no
constraint is placed. H1 and H2 is the hard constraint
d(r) < ∞ and d(r) = 1, respectively. S is the soft tree
hierarchy constraint. C is the coverage constraint. ×
means that the constraint is inapplicable and − means
we do not run the experiment or Kim (2021) does not
report the score.

ory10. We can also find that the soft tree hierarchy
constraint outperforms hard constraints and is very
helpful when it comes to extremely small data (i.e.,
AEM and VEM). The coverage constraint also im-
proves performance in most cases.

5.3 Analysis
We study how the number of nonterminals affects
performance. On our computer11, we can use
at most 18/64/128 nonterminals in vanilla Neural
QCFG/the P model/the E model, showing that our
low-rank models are more memory-friendly than
vanilla Neural QCFG. We report results in Fig. 2.
There is an overall trend of improved performance
with more nonterminals (with some notable ex-
ceptions). When the numbers of nonterminals are

10We report speed and memory usage briefly in Sec 5.4 and
in detail in Appx. D.3.

11One NVIDIA TITIAN RTX with 24 GB memory.
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Figure 4: Memory usage for training with batch size 1
on synthetic datasets with different length (x = S = T ).

the same, the P model outperforms vanilla Neural
QCFG consistently, showing its superior parameter
efficiency. In contrast, the E model is defeated by
vanilla QCFG and the P model in many cases, show-
ing the potential harm of separating αi, αj , αk.

5.4 Speed Comparison

We benchmark speed and memory usage using
synthetic datasets with different sequence lengths.
Fig. 3 and 4 illustrate the results. Compared to the
standard Neural QCFG, the E model and P model
are significantly faster and have a lower memory
footprint. This enables them to model longer se-
quences effectively. For data construction and more
results, please refer to Appx. D.3.

6 Conclusion

We have presented two low-rank variants of Neural
QCFG based on decomposition for efficiency and
two new constraints over tree hierarchy and source
coverage. Experiments on three datasets validate
the effectiveness and efficiency of our proposed
models and constraints.

7 Limitations

First, unlike decoders in neural seq2seq models,
which can attend to any previously generated to-
kens, QCFGs have a strong context-free indepen-
dence assumption during generation. With this as-
sumption, Neural QCFG cannot model some com-
plex distributions. A potential solution is to use
stronger grammars, such as RNNG (Dyer et al.,
2016) and Transformer Grammars (TG; Sartran
et al., 2022).

Second, we assume that both the grammars used
by the source-side parser and QCFG are in CNF.
Although it is convenient for discussion and im-
plementation, CNF does not suit for modeling the
structure of practical sequences. In semantic rep-
resentations (e.g., Abstract Meaning Representa-
tion (Banarescu et al., 2013)), a predicate could
have more than two arguments. Ideally, we should
represent n-ary predicates with n-ary rules. How-
ever, for grammars in CNF, n− 1 unnatural binary
rules are required to represent n-ary predicates. In
natural language, we will face semantically mean-
ingless spans due to CNF, which is discussed in
Sec 4.2.

Third, although using decomposition improves
the speed and the memory requirement, our low-
rank models still cost much more computation re-
sources than neural seq2seq models for two main
reasons. (1) A large amount of nonterminal sym-
bols increase the memory cost significantly. (2)
Because finding the most probable string t2 from
pθ(t2|t1) is NP-hard (Sima’an, 1996; Lyngsø and
Pedersen, 2002), we follow Kim (2021) to use a de-
coding strategy with heavy sampling. For real data,
we may need to sample hundreds or thousands of
sequences and then rank them, which can be much
slower than the decoding of neural seq2seq models.
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A Time Complexity of P Model

Let βij , βjk ∈ R|N |×|t1| be two cells in the
chart of the dynamic programming. βij(x, y) de-
notes indexing into the matrix. Denote A[α1] →
B[α2]C[α3] as rb. The state transition equation is

βik(A,α1) =
∑

j,B,C
α2,α3

p(rb)βij(B,α2)βjk(C,α3).

Let’s define following terms:

β̃ij(R,α2) =
∑

B

p(R,α2 → B)βij(B,α2)

β̃jk(R,α3) =
∑

C

p(R,α3 → C)βij(C,α3)

p̂ = p(A[α1] → R)p(R,α1 → α2, α3)

Then the state transition equation can be reformu-
lated as:

βik(A,α1) =
∑

R,α2,α3

p̂
∑

j

β̃ij(R,α2)β̃jk(R,α3)

︸ ︷︷ ︸
β̂ik

,

where β̂ij ∈ R|R|×|t1|×|t1|. We can compute β̃ij in
O((|N | + |P|)|R|S) and cache it for composing
β̂ij . Then β̂ik can be computed in O(|R|S2T ). Fi-
nally, we can compute βik in O(|R|S3+ |N ||R|S)
by sum out α2, α3 first:

βik(A,α1) =∑

R

p(A[α1] → R)
∑

α2,α3

p(R,α1 → α2, α3)β̂ik

So, summing terms of all the above steps
and counting the iteration over i, k, we will get
O(|R|S2T 3 + ((2|N |+ |P|)|R|S + |R|S3)T 2).

B Neural Parameterization

We mainly follow (Kim, 2021) to parameterize the
new decomposed rules. First, we add embeddings
of terms on the same side together. For example,
we do two additions elhs = eR + eαi and erhs =
eαj+eαk

for R,αi → αj , αk, where ex denotes the
embedding of x. Note that we use the same feed-
forward layer f as (Kim, 2021) to obtain ex from
some feature hx. i.e. ex = f(hx). Then, we com-
pute the inner products of embeddings obtained
in the previous step as unnormalized scores. For
example, p(R,αi → αj , αk) ∝ exp(e⊤lhserhs).

C Posterior Regularization

The problem minq∈QKL(q(t2)||p(t2|t1, s2)) has
the optimal solution

q∗ =
1

Z(λ∗)
p(t2|t1, s2) exp{−λ∗ϕ(t2)},

where

Z(λ∗) =
∑

t2

p(t2|s1, t1) exp{−λ∗ϕ(t2)}

and λ∗ is the solution of the dual problem:

max
λ≥0

−b · λ− logZ(λ)

We can reuse the inside algorithm to compute
Z(λ∗) efficiently because our ϕ(t) can be factored
as p(t2|t1, s2):

p(t2|t1, s2) =
∏

r∈t2
pθ(r)

ϕ(t) =
∑

r∈t2
ϕ(r, t1),

where ϕ(r, t1) = 1 if t1 is in the left-hand side of r
and ϕ(r, t1) = 0 otherwise. Then, the solution q∗

can be written as

q∗(t2) ∝
∏

r∈t2
pθ(r) exp{−λϕ(r, t1)}.

Recall that we define ϕ(t) to be the counts of
source nodes being aligned by nodes in t. We can
factor ϕ(t) in terms of r because each target tree
non-leaf node invokes exactly one rule and only
occurs on the left-hand side of that rule. So, the
sum over r is equivalent to the sum over target tree
nodes.
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D Experiments

D.1 Experimental Details
We implement vNQ2, the E model, and the P model
using our own codebase. We inherit almost all hy-
perparameters of Kim (2021) and a basic constraint:
the target tree leaves/non-leaf nodes can only be
aligned to source tree leaves/non-leaf nodes, and
especially, the target tree root can only be aligned
to the source tree root. One major difference is that,
in our experiments, we do not use early-stopping
and run fixed optimization steps, which are much
more than the value set in Kim (2021) (i.e., 15). It
is because in preliminary experiments12, we found
that the task metric (e.g., BLEU) almost always get
improved consistently with the process of training,
while the lowest perplexity occurs typically at an
early stage (which is the criteria of early-stopping
in Kim (2021)), and computing task metric is very
expensive for Neural QCFGs. We report metrics on
test sets averaged over three runs on all datasets ex-
cept for SCAN. As mentioned in the code of Kim
(2021), we need to run several times to achieve
good performance on SCAN. Therefore, we report
the maximum accuracy in twenty runs.
SCAN (Lake and Baroni, 2018) is a diagnostic
dataset containing translations from English com-
mands to machine actions. We conduct experi-
ments on four splits: We evaluate our models on
four splits of the SCAN (Lake and Baroni, 2018)
dataset: simple, add primitive (jump), add tem-
plate (around right) and length. The latter three
splits are designed for evaluating compositional
generalization. Following (Kim, 2021), we set
|N | = 10, |P| = 1.
StylePTB (Lyu et al., 2021) is a text style tran-
fer dataset built based on Penn Treebank (PTB;
Marcus et al., 1993). Following Kim (2021), we
conduct experiments on three hard transfer tasks:
textitactive to passive (2808 examples), adjective
emphasis (696 examples) and verb emphasis (1201
examples). According to Tab. 2, we set |N | =
|P| = 32, |R| = 100 for the E model and set
|N | = |P| = 64, |R| = 100 for the P model.
En-Fr MT (Lake and Baroni, 2018) is a small-
scale machine translation dataset. We use the
same split as Kim (2021). The size of train-
ing/validate/test set is 6073/631/583. We set
|N | = |P| = 32, |R| = 100 for the E model
and |N | = |P| = 32, |R| = 196 for the P model.

12We run 100 epochs and evaluate task metrics on validation
sets every 5 epochs.

D.2 Tune Hyperparameter
We tune hyperparameters according to metrics
on validation sets, either manually or with the
Bayesian Optimization and Hyperband (BOHB)
search algorithm (Falkner et al., 2018) built in the
wandb library. First, we tune |N |, |P|, |R| and
the learning rate of parameters for parameteriz-
ing QCFG. We freeze hyperparameters related to
the source-side parser, the contextual encoder (i.e.,
LSTM), and the TreeLSTM (Tai et al., 2015; Zhu
et al., 2015). For the ATP task from StylePTB,
we run the grid search to plot Fig. 2 and choose
the best hyperparameters. For other tasks, we run
about 20 trials according to BOHB for each man-
ually set search range. Typically, the size of a
search range is 256 (four choices for each tunable
hyperparameter). Next, we tune the strength of the
coverage constraint for all models by running with
γ = 0.5, 1, 2.

D.3 Speed and Memory Usage Comparison
Tab. 3 shows the time and memory usage on
synthetic datasets. Each synthetic dataset con-
tains 1000 pairs of random sequences with the
same length sampled from a vocabulary with size
5000, i.e., {(s1, s2)1, . . . (s1, s2)1000}, s1, s2 ∈
Σv, |Σ| = 5000 where v is the length. We set
|N | = |P| = 8 for vanilla Neural QCFG and
|N | = |N | = 50, |R| = 200 for others. We train
models on a computer with an NVIDIA GeForce
RTX3090. Note that we disable the copy mech-
anism in Kim (2021) because of its complicated
effects on memory usage, such that the results dif-
fer from Fig. 2 (in which models enable the copy
mechanism).
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v Approach Constraint Batch size Time (s) GPU Memory (GB)

10

vNQ2

nil 8 25.6 1.42
+H1 8 25.5 1.43
+H2 8 113.8 7.67
+S 8 60.5 2.46
+C 8 132.7 3.08

EModel
nil 8 20.1 1.59
+C 8 40.4 1.59

PModel

nil 8 30.7 3.78
+H1 8 31.3 3.79
+H2 8 64.0 6.41
+S 8 45.8 4.08
+C 8 73.9 4.02

20

vNQ2

nil 8 341.2 14.49
+H1 8 342.4 14.60
+H2 1 ≈16539.4 14.13
+S 2 ≈1734.4 8.93
+C 2 ≈4657.1 12.24

EModel
nil 8 40.0 4.58
+C 4 173.4 14.48

PModel

nil 8 111.3 8.25
+H1 8 110.8 8.29
+H2 4 452.3 9.83
+S 8 269.8 18.76
+C 4 643.5 18.20

40

vNQ2 1 × ×
EModel

nil 8 82.5 14.95
+C 8 177.0 14.95

PModel

nil 4 ≈2102.7 16.78
+H1 4 ≈2097.6 16.96
+H2 1 × ×
+S 2 ≈2729.3 10.63
+C 1 × ×

Table 3: Time and memory usage on synthetic datasets. We report statistics with as large as possbile batch size (in
1, 2, 4, 8). × represents that we get an out-of-memory error even if we set batch size to 1. ≈ represents that the
value is estimated using a small portion of the dataset.
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