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Abstract

Automated completion of open knowledge
bases (Open KBs), which are constructed from
triples of the form (subject phrase, relation
phrase, object phrase), obtained via open in-
formation extraction (Open IE) system, are
useful for discovering novel facts that may
not be directly present in the text. How-
ever, research in Open KB completion (Open
KBC) has so far been limited to resource-rich
languages like English. Using the latest ad-
vances in multilingual Open IE, we construct
the first multilingual Open KBC dataset, called
mOKB6, containing facts from Wikipedia in
six languages (including English). Improving
the previous Open KB construction pipeline by
doing multilingual coreference resolution and
keeping only entity-linked triples, we create
a dense Open KB. We experiment with sev-
eral models for the task and observe a consis-
tent benefit of combining languages with the
help of shared embedding space as well as
translations of facts. We also observe that cur-
rent multilingual models struggle to remember
facts seen in languages of different scripts.1

1 Introduction

Open information extraction (Open IE) systems
(Mausam, 2016) such as ReVerb (Etzioni et al.,
2011) and OpenIE6 (Kolluru et al., 2020) can ex-
tract triples, or facts, of the form (subject phrase,
relation phrase, object phrase), which can be de-
noted as (s, r, o), from text (e.g., Wikipedia arti-
cles) without using any pre-defined ontology. Open
knowledge base (Open KB) is constructed using
these Open IE triples where the subject phrases and
object phrases are nodes and relation phrases are
labels on edges connecting the nodes in the graph.
Open knowledge base completion (Open KBC) is

† Major part of work done as students at IIT Delhi.
1Dataset and code released at github.com:dair-iitd/mokb6

the task of discovering new links between nodes us-
ing the graph structure of the Open KB. Knowledge
graph embedding (KGE) models are typically used
for the Open KBC task, where they are asked to
answer questions of the form (s, r, ?) and (?, r, o).

Research in Open KBC has been restricted to En-
glish (Vashishth et al., 2018) due to lack of Open
KBs in other languages. We aim to study multi-
lingual Open KBC, with the motivation that the
information available in high resource languages
like English may help when inferring links in Open
KBs that use low resource languages like Telugu.
Moreover, intuitively, if all the information in dif-
ferent languages can be pooled together, then it may
help the model learn better, and allow information
flow across Open KBs in different languages.

We design the first multilingual Open KB con-
struction pipeline (shown in Figure 1) using a multi-
lingual Open IE system, GEN2OIE (Kolluru et al.,
2022). We find that coreference resolution is miss-
ing in existing Open KB construction (Gashteovski
et al., 2019) but is important for increasing the
coverage of facts (as described in Figure 4). We
re-train a recent coref model (Dobrovolskii, 2021)
using XLM-R (Conneau et al., 2020) as the underly-
ing multilingual encoder and add it to our pipeline.
For constructing a high quality test set, we use 988
manually verified facts in English. For extending to
other languages, we automatically translate English
facts. The dataset thus constructed, called mOKB6,
contains 42K facts in six languages: English, Hindi,
Telugu, Spanish, Portuguese, and Chinese.

We report the first baselines for multilingual
Open KBC task. We find that they are able to ben-
efit from information in multiple languages when
compared to using facts from a single language.
Translations of Open KB facts also help the models.
However, we notice that although the multilingual
KGE models learn facts in a particular language,
they struggle to remember the same fact, when
queried in another language with different script.
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2 Related Work

Multilingual Open KBC datasets are absent in lit-
erature to the best of our knowledge, although
multiple English Open KBC datasets are available.
OLPBench (Broscheit et al., 2020), derived from
OPIEC (Gashteovski et al., 2019), is a large-scale
Open KBC dataset that contains 30M triples and is
constructed from English Wikipedia using MinIE
system (Gashteovski et al., 2017). The evaluation
data contains 10K triples randomly sampled from
1.25M linked triples. ReVerb45K (Vashishth et al.,
2018) and ReVerb20K (Galárraga et al., 2014)
are smaller Open KBC datasets constructed from
Clueweb09 corpus2 using ReVerb Open IE system
(Fader et al., 2011). Both the datasets keep only
those tuples in which both the subject phrase and
object phrase link to a finite set of Freebase entities.

Multilingual Open IE (mOpenIE) systems like
GEN2OIE (Kolluru et al., 2022) and Multi2OIE
(Ro et al., 2020) enable extracting facts from mul-
tiple languages. We use the GEN2OIE model for
constructing mOKB6 dataset as it is trained with
language-specific facts transferred from English,
while Multi2OIE relies on zero-shot transfer for
languages other than English.

Knowledge Graph Embedding (KGE) Models:
Conventional KGE models like TransE (Bordes
et al., 2013), ComplEx (Trouillon et al., 2016),
ConvE (Dettmers et al., 2018), and TuckER (Bal-
azevic et al., 2019) have been used for Open
KBC task (Gupta et al., 2019; Broscheit et al.,
2020; Chandrahas and Talukdar, 2021; Kocijan
and Lukasiewicz, 2021). Given a triple (s, r, o),
these models encode the subject phrase, relation
phrase, and object phrase from free text, and pass
the encodings to a triple-scoring function, which is
optimized using binary cross entropy loss. Com-
plEx has also been used for multilingual closed
KBC task (Chakrabarti et al., 2022).

Pretrained language models like BERT (Devlin
et al., 2019) have been used in KGE models for
the KBC task (Lovelace and Rosé, 2022; Lv et al.,
2022; Chandrahas and Talukdar, 2021; Kim et al.,
2020). SimKGC (Wang et al., 2022) is the state
of the art KGE model on closed KBC task. It
computes the score of a triple (s, r, o) as the cosine
similarity of the embeddings of (s; r) and (o), com-
puted using two separate pretrained BERT models
without any weight sharing.

2http://www.lemurproject.org/clueweb09.php/

3 Dataset Curation

We aim to construct a dense multilingual Open KB
that maximizes the information about a given real-
world entity, which may be represented as multiple
nodes across languages. Therefore, we consider
those Wikipedia articles3 that are available in six
languages: English, Hindi, Telugu, Spanish, Por-
tuguese, and Chinese4. This will also help the
model learn from facts in high resource language
like English and answer queries in low resource
language like Telugu. We work with 300 titles ran-
domly sampled from the ones common among all
six languages (found using MediaWiki-Langlinks
(MediaWiki, 2021)). Thus, we extract facts from
6×300 Wikipedia articles. We discuss the three
stages of our pipeline below.

Stage 1 We first process each Wikipedia article
through a coreference resolution system. Although
language-specific end-to-end neural coref models
have been developed (Žabokrtský et al., 2022; Xia
and Van Durme, 2021), multilingual models that
work on all our languages of interest are absent
in the literature. Therefore, we retrain wl-coref
(Dobrovolskii, 2021) with XLM-R (Conneau et al.,
2020) on the English training data (available in
OntoNotes (Weischedel et al., 2013)) that can work
zero-shot for other languages.

Coref models detect and cluster mentions, but
do not identify a canonical cluster name, which is
needed for standardizing all the mentions in the
cluster. To find cluster names, entity linking sys-
tems such as mGENRE (De Cao et al., 2022) or
Wikipedia hyperlinks can be used. However, we
found that they result in low recall, particularly for
low resource languages. Thus, we employ a heuris-
tic to find the cluster name and replace each of the
coreferent mentions with it. The score for each
mention is represented by a tuple, computed as:
Score(mention phrase) = (#proper nouns, #nouns,
#numerals, # adjectives, #pronouns, #verbs). The
tuple is ordered according to the importance of
each field (POS tags) for the cluster name, which is
determined empirically. Two tuples are compared
index-wise with higher priority given to lower in-
dices to determine the best scoring mention that is
chosen as the canonical name (Table 1).

Stage 2 We use GEN2OIE to extract Open IE
triples from the coreference resolved sentences.

3Wikidump of April 02, 2022
4languages are chosen to match availability of Gen2OIE
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Figure 1: Our three-staged multilingual Open KB construction pipeline for mOKB6. mCoref is multilingual
coreference resolution system, having XLM-R (Conneau et al., 2020) encoder based wl-coref (Dobrovolskii, 2021),
and mOpenIE is multilingual open information extraction system, consisting of GEN2OIE (Kolluru et al., 2022).

Mentions Scores Cluster Name

Barack Obama (2,0,0,0,0,0)
Obama (1,0,0,0,0,0) Barack Obama
He (0,0,0,0,1,0)

Table 1: Parts of speech tags are used to find the canon-
iccal name of the coreferent cluster of entity mentions.

Stage 3 Similar to Gashteovski et al. (2019), we
apply various filters to remove noisy triples that
have empty or very long arguments, or have less
confidence than 0.3 (as assigned by GEN2OIE).
We further only keep triples that have the article’s
title as either the subject phrase or object phrase,
to avoid generic or specific triples, valid only in the
particular context. Examples of contextual triples
(Choi et al., 2021) are discussed in Appendix E.
See Appendix A for further data curation details.

These automatically extracted triples form the
train set of mOKB6. To form a high quality test
set in six languages with limited access to experts
in all languages, the test set is created in a semi-
automatic way. We sample 1600 English triples
from the train set (which are subsequently filtered)
and manually remove noisy triples. We use inter-
annotation agreement between two annotators to
check if they both agree that the given triple is
noisy or clean. With an agreement of 91%, we
retain 988 English triples, which we automatically
translate to the other five languages. As illustrated
in Figure 2, to translate a triple, we convert it to a
sentence after removing tags and use Google trans-
late5 for translating the triple-converted sentence
to the remaining five languages. We observed high
quality of translated triples, with 88% satisfactory
translations as determined by native-speakers of
three languages on a set of 75 translated triples. To
get the Open IE subject phrase, relation phrase and
object phrase tags, we project the labels from the
original English triple to the translated sentence
using word alignments (Kolluru et al., 2022). Fi-
nally, we are left with 550 triples in each language
after removing examples where some labels could

5https://translate.google.co.in/

not be aligned. We use these 6×550 triples as the
test sets. The train and dev sets are created from
the remaining triples in each language such that the
dev set has 500 randomly sampled triples (Table 2).

Figure 2: Method to translate Open IE triple using
Google translate, and followed by label projection us-
ing word alignments (Kolluru et al., 2022).

We analyse the entity overlap across languages
and find that on an average, a test entity (which is
present in either the subject phrase or object phrase
of a test tuple) is present 17.73 times in English,
0.94 times in Hindi, 0.47 times in Telugu, 2.33
times in Spanish, 1.69 times in Portuguese, and
1.45 times in Chinese train set.

Our construction pipeline improves over OPIEC
in three ways: (1) we use a multilingual Open IE
system, instead of an English-specific Open IE sys-
tem like in OPIEC, enabling us to curate Open
KBs in many languages, (2) we add a multilingual
coreference resolution system in our pipeline, and
(3) the English test triples are manually verified.
Further, we manually evaluate and review the noise
at each step of data curation in Section 4.

En Hi Te Es Pt Zh

#entity 20637 4625 3972 5651 5304 5037
#relation 7870 2177 1907 2823 2644 2325
#train 20195 2786 1992 3966 3528 3420

Table 2: Statistics of individual Open KBs in mOKB6
in English (En), Hindi (Hi), Telugu (Te), Spanish (Es),
Portuguese (Pt), and Chinese (Zh). The dev and test set
for each Open KB contain 500 and 550 triples each.
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4 Noise Evaluation

Curating an Open KB involves various stages and
each stage induces its noise in the construction
pipeline (Gashteovski et al., 2019). We manually
evaluate the noise induced at each stage of our
pipeline (Figure 1) and discuss the same in this
section. We ask native speakers of four (out of six)
languages - English, Hindi, Telugu, and Chinese
to assess the output quality, or precision, of each
stage as discussed below.

In the first stage, we assess the performance of
the coreference resolution system over Wikipedia
articles. We find a high precision of 95.5% in
coref’s mention clustering and 89.82% accuracy in
finding canonical cluster name (using the heuristic
illustrated in Table 1), computed over 40 randomly
sampled coref clusters (10 in each language).

For evaluating the Open IE system, GEN2OIE,
in the second stage, we mark an extraction of a
sentence as correct if it has syntactically correct
arguments and it is coherent with the sentence. We
get an average precision of 63.4% on 80 extractions
(20 in each language).

We evaluate the triples, or Open KB facts, at
the last stage after passing through various noise-
removing filters. Note that these triples also form
the train set (and dev set) in mOKB6 dataset. We
mark triples as correct when they contain real-
world entities, and also, factual information about
them. If the triple is very generic or contextual (see
Appendix E), it is marked as incorrect. We find the
train (and dev) set quality to be 69.3%, averaged
over 80 triples in four languages.

5 Experiments

Our experimental study on multilingual open KBC
task investigates the following research questions:

1. Does the KGE model benefit from facts in
different languages? (Section 5.1)

2. Can translation help transfer among lan-
guages? (Section 5.2)

3. Does the KGE model remember facts seen
across different languages? (Section 5.3)

We use SimKGC model (Wang et al., 2022) with
pretrained mBERT initialization to run our exper-
iments, after comparing with recent KGE models
(Appendix C). For evaluation, we use three metrics
— hits at rank 1 (H@1), hits at rank 10 (H@10), and
mean reciprocal rank (MRR). The formal defini-
tions of them are provided in Appendix B. We dis-
cuss further model training details in Appendix D.

5.1 Training on Multilingual Facts

We train and compare monolingual model, called
MONO, with multilingual models, UNION and
UNION w/o En. In MONO, we train one model
for each language using its respective Open KB,
whereas in UNION, a single model is trained on
six languages’ Open KBs together. UNION out-
performs MONO in all languages by an average of
4.6% H@10 and 2.8% MRR (see Table 3), which
provides evidence of information flow across lan-
guages and the model benefits from it.

To check the extent of flow from (high-resource)
English to the other languages, we also train on
the five languages except English, which we call
UNION w/o En. We find UNION w/o En also out-
performs MONO by 2.7% H@10 and 1.2% MRR
over the five languages, hinting that interlingual
transfer is more general and pervasive.

5.2 Open KB Facts Translation

Apart from relying only on multilingual trans-
fer in the embedding space, we analyse the ef-
fect of using translated triples in the training
of the KGE model. We translate the English
training triples6 to the other five languages (Sec-
tion 3) and train monolingual models using only
the translated triples (TRANS). To leverage facts
present in each language’s Open KB, we make
MONO+TRANS, where we add language-specific
MONO data to the translated triples. Table 3 shows
that MONO+TRANS is better than MONO by a
large margin of 15.5% H@1, 29.2% H@10, and
20.0% MRR, averaged over five languages. Also,
MONO+TRANS improves over TRANS by 2.1%
H@10 and 2.0% MRR, showcasing the importance
of facts in each language’s Open KBs.

To effectively gain from transfer in both the em-
bedding space as well as translation, we introduce
UNION+TRANS. We train one model for each lan-
guage, on the combination of UNION triples and
the translated train triples from English Open KB
to that language. UNION+TRANS is better than
UNION by 25.9% H@10 and 18.4% MRR. This
suggests that the model is able to benefit from En-
glish facts when they are translated to the query
language, unlike in UNION where the English facts
are present only in English.

6English source achieved the best translation quality.
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English (En) Hindi (Hi) Telugu (Te) Spanish (Es) Portuguese (Pt) Chinese (Zh)
H@1 H@10 MRR H@1 H@10 MRR H@1 H@10 MRR H@1 H@10 MRR H@1 H@10 MRR H@1 H@10 MRR

MONO 14.8 38.7 22.8 3.0 14.8 7.2 1.5 8.1 3.9 6.4 23.7 12.3 6.3 21.7 11.4 2.4 13.1 6.2
UNION w/o En 5.7 21.5 10.9 2.9 15.4 7.4 1.8 10.2 4.9 8.1 27.8 14.5 6.7 26.1 12.9 3.2 15.5 7.5
UNION 16.7 40.8 24.8 3.6 16.6 8.1 1.5 9.3 4.5 10.6 32.2 17.6 9.7 29.3 16.6 4.0 18.8 8.9
TRANS - - - 20.5 47.6 29.7 8.7 28.7 15.5 23.2 50.6 32.4 20.5 50.7 30.5 14.0 39.4 22.5
MONO+TRANS - - - 20.2 45.4 28.4 14.3 38.5 22.2 23.5 51.5 32.9 21.4 48.9 30.7 17.9 43.2 26.6
UNION+TRANS - - - 23.3 49.7 32.3 15.1 38.5 23.1 23.9 52.4 33.4 23.5 52.1 33.1 16.9 43.6 26.0

Table 3: Performance (%) of SimKGC model on mOKB6 dataset, comprising of Open KBs in six languages.
MONO, TRANS, and MONO+TRANS are monolingual models trained only on facts of one language whereas
UNION, UNION w/o En, and UNION+TRANS are multilingual models trained with facts from multiple languages.
All reported numbers are an average of three runs using different seeds. Best scores are highlighted in bold.

5.3 Cross-lingual Memorization

Pretrained multilingual language models such as
mBERT have demonstrated strong cross-lingual
transfer capabilities (Wu and Dredze, 2019). We
investigate cross-lingual memorization of the KGE
model by showing facts in one language and query-
ing the same facts in other five languages. For each
language, L, we take the UNION model and train it
further on the test set of that language’s Open KB,
which we call MEMORIZEL model. Then, we test
each MEMORIZEL model on the six test sets. Since
the test sets (in mOKB6 dataset) of the different
languages contain the same facts, this experiment
allows us to investigate cross-lingual memoriza-
tion. We provide the H@10 scores of MEMORIZE

models in Figure 3 and the performance on other
metrics (H@1 and MRR) is reported in Table 7.

The model achieves at least 97% H@10 when
tested on the language used for training (diago-
nal). We observe that there is relatively good cross-
lingual memorization among languages that share
the same script (Latin in English, Spanish, and Por-
tuguese), but the model struggles to remember facts
when seen in languages of different scripts. Many
entities look similar in shared scripts, possibly lead-
ing to better information transfer. For example, the
MEMORIZEEn achieves H@10 of 50.7% in Span-
ish (Es) compared to 22.3% in Chinese (Zh) and
11% in Telugu (Te).

6 Conclusion and Future Work

We create and release the mOKB6 dataset, the first
multilingual Open Knowledge Base Completion
dataset with 42K facts in six languages: English,
Hindi, Telugu, Spanish, Portuguese, and Chinese.
Its construction uses multilingual coreference reso-
lution, entity-mention cluster naming, multilingual
open information extraction and various filtering

Figure 3: Performance (H@10) of MEMORIZE models.
Row L shows the performance of MEMORIZEL model
across the test sets of all languages (columns). For ex-
ample, the performance of MEMORIZEEn when tested
on English (En) is 97.1% H@10, and MEMORIZEEn

when tested on Spanish (Es) gives 50.7% H@10. We
find relatively good cross-lingual transfer among lan-
guages that use same script (Latin in English, Span-
ish and Portuguese) compared to those using different
scripts (English, Hindi, Telugu and Chinese).

steps to improve the quality of the extracted facts.
We also report the first baselines on the task using
the existing state of the art KGE models trained
with facts from different languages using various
augmentation strategies.

Our work opens many important research ques-
tions: (1) Can we develop better strategies to com-
bine facts in different languages? (2) Can we build
models that achieve strong information transfer
across unrelated languages with same or different
scripts? (3) Can we train the neural model to ignore
contextual triples (Appendix E), thus improving
overall performance? and (4) Can tying the same
entities across various languages help the model
generalize better? We leave these questions to be
addressed in future work.
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8 Limitations

Although multilingual, the constructed open KB
is limited to the sampling of the chosen six lan-
guages. We do not know how well the system will
generalize to various language families that have
not been considered here. Further, even among
the languages considered, the performance of even
the best-performing systems, as measured through
H@1 is still in the low 20’s. Therefore the mod-
els are not yet ready to be deployed for real-world
applications.
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mOKB6: A Multilingual Open Knowledge Base Completion Benchmark
(Appendix)

A Dataset Curation

As discussed in Section 3, we construct mOKB6
dataset in three stages after extracting the
Wikipedia articles (using WikiExtractor7) from the
Wikidump of April 02, 2022. We run our con-
struction pipeline (as shown in Figure 1) for all six
languages on a single V100 (32 GB) GPU, which
required 14 hours of computation to create mOKB6
dataset.

In the first stage, we keep the sentences con-
taining at least 6 and at most 50 tokens since we
find that most of the short sentences are headings
or sub-headings present in Wikipedia articles, and
very long sentences can’t be input to GEN2OIE
(in second stage) due to maximum sequence length
constraint of 1024 in mT5 (Xue et al., 2021) based
GEN2OIE. This filtering step discards 18.9% of
sentences on an average in all six languages. We
use Stanza (Qi et al., 2020) to perform sentence-
and word-segmentation on Wikipedia articles in all
six languages. After filtering the sentences, the arti-
cles are processed for coreference resolution using
XLM-R (Conneau et al., 2020) encoder based wl-
coref (Dobrovolskii, 2021), followed by replacing
the coreferent cluster mentions with their canon-
ical cluster name using the heuristic discussed in
Section 3.

In the second stage, the coreference resolved arti-
cles are passed through GEN2OIE to get the Open
IE triples. The confidence scores for these triples
are computed using label rescoring, for which we
refer the readers to Kolluru et al. (2022) for more
details.

Finally, in the last stage, we apply various filters,
adapted from Gashteovski et al. (2019), to remove
triples that are of no interest to Open KBC task,
like the triples: (1) having any of its argument or
relation empty, (2) containing more than 10 tokens
in any of its arguments or relation, (3) having
confidence score less than 0.3, (4) containing
pronouns (found using Stanza) in its arguments,
(5) having same subject and object (i.e. self loops),
and (6) that are duplicates. These filters keep
91.6% of the triples obtained from stage 2 in all
six languages.

7https://github.com/samuelbroscheit/
wikiextractor-wikimentions

Further in the last stage, in order to create a dense
Open KB containing minimum noise and maxi-
mum facts about the entities, we keep the triples
having the Wikipedia article’s title as either the
subject phrase or object phrase and discard the rest.
We do this by finding all the coreference clusters
(of entity mentions) that contain the titles, then get
the entities, or cluster names, of those clusters us-
ing the heuristic discussed in section 3, and keep
those triples that contain these cluster names. This
filtering step retains 23.6% of the triples.

B Metrics

We follow the previous works (Wang et al., 2022)
on the evaluation methodology of Open KBC task
and apply it to the multilingual Open KBC task,
containing facts in multiple languages. Given an
Open KB, containing a finite set of entities and
open relations, the KGE model answers forward
and backward queries of the form (s, r, ?) and
(?, r, o) respectively. The model ranks all the en-
tities based on their correctness with, say, s and
r in the forward query. Further, the evaluation is
in filtered setting, where the other known correct
answers, apart from o, are removed from rank list.

The commonly used evaluation metrics are hits
at rank N (H@N), where N is a natural number,
and mean reciprocal rank (MRR). Suppose, the
model ranks o at R among all entities. Then, H@N
measures how many times R is less than or equal
to N . MRR is the average of reciprocal ranks ( 1

R ).
Both, H@N and MRR, are computed as average
over both forms of queries over the full test set.

C Knowledge Graph Embedding Models

SimKGC (Wang et al., 2022) is a text-based KGE
model that uses two unshared pretrained BERT
models (Devlin et al., 2019) for encoding (subject
phrase; relation phrase) and object phrase sep-
arately. GRU-ConvE (Kocijan and Lukasiewicz,
2021) encodes both the relation phrase and argu-
ment phrase from their surface forms using two
unshared GRU (Cho et al., 2014). CaRe (Gupta
et al., 2019) learns separate embeddings for each
argument phrase and uses a bi-directional GRU to
encode the relation phrase from its surface form.
Both, GRU-ConvE and CaRe, are initialised with
Glove embeddings (Pennington et al., 2014).
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Figure 4: Previous Open KB construction pipelines like Gashteovski et al. (2019) (shown by green arrows) lack
coreference resolution system, which result in filtering important facts like (Barack Obama; returned to Honolulu,
Hawaii in; 1971). Our pipeline (shown by blue arrows) increases the coverage of facts due to mCoref system.

To choose the best model for our experiments
(Table 3, Figure 3), we train the recent knowledge
graph embedding (KGE) models — CaRe„ GRU-
ConvE and SimKGC on the English Open KB in
mOKB6. We report performance in Table 4 using
the three metrics: hits at rank 1 (H@1), hits at 10
(H@10), and mean reciprocal rank (MRR). We find
that SimKGC with BERT encoder outperforms the
other two models.

H@1 H@10 MRR

CaRe 6.6 11.3 8.3
GRU-ConvE 12.4 27.8 17.8
SimKGC (BERT) 16.1 40.0 24.3

SimKGC (mBERT) 14.8 38.7 22.8
SimKGC (XLM-R) 13.8 35.8 21.3

Table 4: Performance (%) of the KGE models on the
English test set in mOKB6 dataset. The reported num-
bers are an average of three runs using different seeds.

Since BERT supports only English language, we
replace BERT in SimKGC with multilingual pre-
trained language models like mBERT (Devlin et al.,
2019) or XLM-R (Conneau et al., 2020), to extend
SimKGC model to other languages. We find in Ta-
ble 4 that SimKGC with mBERT is better than with
XLM-R by 2.9% H@10 and 1.5% MRR, possibly
because mBERT (and mOKB6) uses Wikipedia
while XLM-R uses CommonCrawl (Wenzek et al.,
2020) during pre-training. Thus, we use SimKGC
with mBERT as the underlying encoder to run our
experiments for all the languages.

D KGE Model Training Details

We use the code from official repositories of the
KGE models — SimKGC (Wang et al., 2022),
GRU-ConvE (Kocijan and Lukasiewicz, 2021), and
CaRe (Gupta et al., 2019) for our experiments. The
models are trained using Adam optimizer (Kingma
and Ba, 2015) on a single A100 (40 GB) GPU
with three different random seeds and we report the
average of three evaluation runs.

We do not perform hyperparameter search tri-
als, except for batch size, and use the default hy-
perparameters from the respective codes of KGE
models (see Table 5). We use early stopping to
find the best model checkpoints based on HITS@1.
The dev set is different for each baseline: MONO,
TRANS, MONO+TRANS, and UNION+TRANS use
individual language’s dev set, whereas UNION w/o
En and UNION use the English dev set. We report
the performance of baseline models on the dev sets
in Table 9 and Table 10.

Hyperparameter SimKGC GRU-ConvE CaRe

#epochs 100 500 500
#patience epochs 10 10 10
learning rate 3e-5 3e-4 1e-3
dropout 0.1 0.3 0.5
batch size 256 1024 128
additive margin 0.02 N/A N/A

Table 5: Hyperparameters of the KGE models.

We provide the number of trainable parameters
of each KGE model in Table 6. Based on the batch
size and model size, different experiments consume
different GPU hours. To train on English Open
KB (in mOKB6 dataset), CaRe and GRU-ConvE
models took 2.5 hours and 0.5 hours, respectively,
whereas SimKGC takes nearly 1 hour of GPU time.

KGE model #trainable parameters

CaRe 12,971,423
GRU-ConvE 12,085,523
SimKGC (BERT) 216,620,545
SimKGC (mBERT) 355,706,881
SimKGC (XLM-R) 1,119,780,865

Table 6: Number of trainable parameters in the KGE
models.
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English Hindi Telugu Spanish Portuguese Chinese
H@1 H@10 MRR H@1 H@10 MRR H@1 H@10 MRR H@1 H@10 MRR H@1 H@10 MRR H@1 H@10 MRR

English 68.4 97.1 78.8 3.4 17.2 8.3 1.6 11 5 17.8 50.7 28.6 17 44.6 26 5.4 22.3 11.1
Hindi 19 42.2 26.7 80.6 99.5 88.3 2.4 12.5 5.9 12.3 36 19.9 12.3 33.9 19.7 5.3 21.9 10.8
Telugu 19.5 42.2 27.2 4.3 18.7 9.4 74.4 99.5 84.2 10.9 35.4 18.9 10.7 34 18.5 4.7 21.4 10.1
Spanish 27.9 60.4 38.8 4.1 17.8 8.9 1.8 10.7 5.1 84 100 90.3 37.6 74 50.1 6.5 24.9 12.8
Portuguese 27.8 58.7 38.2 4.4 18.2 9.3 1.7 10.5 5.1 41.5 78.5 53.6 84.2 99.9 90.8 6.6 26 13.2
Chinese 22.1 48.4 30.6 3.5 18.5 8.8 1.8 12.2 5.4 14.8 42.8 24.2 15.7 41.6 24.1 81.6 99.8 89.2

Table 7: Performance (%) of the six MEMORIZE models, which have been trained on each language’s test set and
tested on all the test sets in mOKB6 dataset.

E Contextual Triples

Open IE triples are of various kinds and not all
of them can be used for Open KBC task. Various
filtering steps are used to remove some of these
in data curation (Section 3). We define contextual
triples as another kind of noisy triples, which are
specific to, and are not interpretable out of, the
context of text from which they are extracted.

(Max Born; continued; scientific work)
(Robb Gravett; won; the championship)

(George Herbert Walker Bush; was; out of touch)
(Christianity; is; dominant)

Table 8: Examples of contextual triples.

From the first two triples in Table 8, it is un-
clear which scientific work Max Born continued, or
which championship Robb Gravett has won. The
last two triples are too specific to the context and
contain no factual information.
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English (En) Hindi (Hi) Telugu (Te) Spanish (Es) Portuguese (Pt) Chinese (Zh)
H@1 H@10 MRR H@1 H@10 MRR H@1 H@10 MRR H@1 H@10 MRR H@1 H@10 MRR H@1 H@10 MRR

MONO 16.2 38.7 23.9 18.2 39.4 25.9 8.5 20 12.5 17.3 36.6 23.7 17.6 39.6 25.3 10.8 31.9 17.8
TRANS - - - 8.1 23.7 13.5 3.3 15.4 7.5 12.9 33.6 20.3 12.6 37.2 20.6 5 20.8 10.3
MONO+TRANS - - - 20.8 43.2 28.6 7.8 24.8 13.4 20.2 46 28.8 21 45.9 29.2 10.6 30.1 16.7
UNION 19.9 39.6 26.4 14.5 38.2 22.4 5.9 20 10.6 19.8 43.2 27.9 19.7 43.8 28 11.2 33 18.8
UNION w/o En 5.8 19.5 10.6 15.4 39.3 23.3 6.3 20.5 11.1 19.4 41.6 26.4 16.9 42.9 25.9 11.3 33 18.4
UNION+TRANS - - - 20.8 44.9 28.8 7.3 27.1 14 21.4 45.3 29.6 19.4 49.1 29.1 6.9 31 15.1

Table 9: Performance (%) of SimKGC on the dev sets (of mOKB6 dataset) in six languages.

H@1 H@10 MRR

CaRe 7.1 11.1 8.5
GRU-ConvE 16.8 31.5 22.1
SimKGC (BERT) 20.3 40.1 27.1

SimKGC (mBERT) 16.2 38.7 23.9
SimKGC (XLM-R) 17 36.6 23.2

Table 10: Performance (%) of the KGE models on dev set of English Open KB in mOKB6 dataset.
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