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Abstract

Reasoning is one of the most important ele-
ments in achieving Artificial General Intelli-
gence (AGI), specifically when it comes to Ab-
ductive and counterfactual reasoning. In order
to introduce these capabilities of reasoning in
Natural Language Processing (NLP) models,
there have been recent advances toward train-
ing NLP models to better perform on two main
tasks - Abductive Natural Language Inference
(αNLI) and Abductive Natural Language Gen-
eration Task (αNLG). This paper proposes CO-
GEN, a model for both αNLI and αNLG tasks
that employs a novel approach of combining
the temporal commonsense reasoning for each
observation (before and after a real hypothesis)
from pre-trained models with entailment-based
filtering for training. Additionally, we use state-
of-the-art semantic entailment to filter out the
contradictory hypothesis during the inference.
Our experimental results show that COGEN
outperforms current models and set a new state
of the art in regards to αNLI and αNLG tasks.
We make the source code of the COGEN model
publicly available for reproducibility and to fa-
cilitate relevant future research.

1 Introduction

Different kinds of reasoning can be categorized
into three classes (Walton, 2014): Deduction, In-
duction, and Abduction. In deduction, the truth of
the conclusion is already provided in the premise,
therefore, it is impossible that the premises are true
and the conclusion is false. Induction is the pro-
cess of going from the truth of some premises to
the conclusion. Finally, abduction is the process
of forming the most plausible hypothesis based on
incomplete observations. The focus of this paper is
on abductive reasoning.

The abductive inference could be viewed as go-
ing backward from the conclusions of a valid deduc-
tive inference to the premises to find its plausible
causes and effects. In terms of classical logic, this

is a fallacy (Andersen, 1973). Abductive reason-
ing is defeasible (and also non-monotonic) which
means the conclusions can be refuted in the light of
new data. Although abductive reasoning forms one
of the core abilities of human cognition, its research
in the area of NLP is still widely unexplored.

Recent work on large language models like GPT-
3 (Brown et al., 2020) and GPT-Neo (Gao et al.,
2020) had impressive results on different NLP
tasks but still struggled with Abductive Natural
Language Inference (αNLI ) tasks. These models
embed a great deal of world knowledge (Petroni
et al., 2019; Wang et al., 2020), but their potential
for commonsense reasoning (e.g. abductive rea-
soning) has not been fully harnessed. The task of
abductive commonsense language generation can
be defined as generating reasons given incomplete
observations.

Abductive commonsense language generation
can be formulated as a controlled language gener-
ation task. Like other controllable language gen-
eration problems that involve maintaining fluency
and relevance of the generated text conditioned on
some property, such as sentiment (Lample et al.,
2018), topic (Zandie and Mahoor, 2021), and style
(Shen et al., 2017), the abductive commonsense
language generation can be viewed as a control-
lable language generation task that is conditioned
on incomplete observations.

In this paper, we introduce COGEN1, a model
for generating and inferring abductive reasons that
are compatible with observations. This combines
temporal commonsense reasoning for each obser-
vation (before and after the hypothesis) from pre-
trained models with contextual filtering for training.
Contextual filtering refers to the technique of refin-
ing temporal entailment during text generation to
produce more coherent and contextually relevant
output. We also use state-of-the-art semantic entail-

1Codes and Data are publicly available at: https://
github.com/roholazandie/abduction_modeling
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Figure 1: COGEN first uses Temporal Reasoner to produce before and after commonsense then with a Cross-Encoder
it filters unrelated temporal commonsense based on the context. With GPT-2 the system takes both observations and
contextual knowledge as inputs a set of hypotheses H will be generated that in semantic entailment will be cleaned
up from contradictions by a BERT model. The bold arrows indicate a set of inputs.

ment to filter out contradictory hypotheses during
the inference. Our results show that COGEN out-
performs all previous models regarding αNLI and
αNLG tasks.

Our main contributions are the following:

1. Using temporal commonsense reasoning for
augmenting the observations - a crucial step
in the abductive hypothesis generation as this
task requires understanding the temporal rela-
tionships such as causes, effects, reasons, and
intents.

2. Using contextual filtering to help narrow down
the space of generated commonsense reason-
ing to the ones that are relevant to both obser-
vations.

3. Using the semantic entailment filtering to rule
out the possibility of generating contradictory
hypotheses given both observations.

4. Releasing the source code of the COGEN

model for reproducibility and assisting rel-
evant future research.

2 Related Work

Previous research on reasoning in NLP mainly fo-
cuses on monotonic reasoning, which is usually
about finding the “entailment”, “contradiction” or
“neutral” relationships between a premise and a
hypothesis. For example, SNLI (Bowman et al.,
2015) and MultiNLI (Williams et al., 2018) are
both datasets that focus on monotonic inference.
There is a choice of plausible reasoning task with
the COPA dataset (Roemmele et al., 2011) which
is designed for causal reasoning.

In (Qin et al., 2019), the authors introduced the
TimeTravel dataset which contains over 28k coun-
terfactual instances. The results show the current

language models lack understanding of the reason-
ing behind the stories, sometimes even adding more
samples will not improve the quality of the genera-
tion. (Qin et al., 2020) proposes Delorean, a new
unsupervised decoding algorithm based on back-
propagation that incorporates observations from
the past and future to generate constrained text in
between. They used the ART dataset (Bhagavatula
et al., 2019) which contains 20k samples.

The most relevant work to COGEN is Abductive
Commonsense reasoning (COMeTEmb+GPT2)
(Bhagavatula et al., 2019), which introduces ART
dataset consisting of 20k commonsense narrative
contexts with 200k explanations. They also intro-
duced two tasks: abductive NLI (αNLI) a multiple-
choice task for choosing the best hypothesis and
abductive NLG (αNLG) which generates an ab-
ductive hypothesis given the two before and after
contextual observations. Results showed that ab-
ductive NLG is much more challenging compared
to (αNLI) and needs further research. They also
used GPT-2 and COMET (Bosselut et al., 2019)
for commonsense reasoning to generate new ab-
ductive hypotheses. The human judgment results
show that only 44.56 percent of these generated
hypotheses make sense to evaluators. In (Paul and
Frank, 2021), they consider possible events emerg-
ing from the candidate hypothesis and then select
the one that is most similar to the observed outcome.
Their approach outperforms COMeTEmb+GPT2
on the αNLI task and achieves 72.2 on the test
set. (Ji et al., 2020) proposed GRF, which is based
on GPT-2 and dynamic multi-hop reasoning for
multi-relational paths extracted from ConceptNet
for αNLG.

REFLECTIVE DECODING (West et al., 2020)
is an unsupervised text generation algorithm for
text infilling that uses two pre-trained forward and
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backward language models. This algorithm out-
performs all unsupervised methods, but is still sig-
nificantly behind the fine-tuned model of COMe-
TEmb+GPT2 in abductive generation.

3 Method

Abductive reasoning can be formulated using a
single observation as a premise and generating a
hypothesis. However, following (Qin et al., 2020)
we formulate abductive commonsense language
generation as the task of generating a hypothesis
H given two observations, O1 and O2 that happen
at times t1 and t2, respectively, in which t2 > t1.
The hypothesis H happens between t1 and t2.

This shows abductive and temporal reasoning is
closely related to each other (Verdoolaege et al.,
2000). More specifically, abductive reasoning re-
quires temporal reasoning about the consequences
of events (what typically occurs after them) and the
reasons behind them (what may happen prior to or
trigger them).

Commonsense knowledge graphs (CSKB) are
knowledge graphs containing many commonsense
facts about the world that help to understanding
and reasoning about events, social interactions and
physical entities. ATOMIC2020 (Hwang et al.,
2020) is the largest CSKB having 1.33M tuples
about entities and events of inferential knowledge
and introduces 23 relation types. In this paper
we focus on two classes of these relations: before
relations and after relations. before relations are
those that take place before the observation or trig-
ger them, such as: isBefore, Causes, xEffect,
xReacts, xIntents, and xWants. after relations
are those that occur after the observation, such
as: isAfter, oReact, oWant, oEffect, xReason.
Neural Knowledge Graphs are models trained on
CSKB tuples and are able to generate tails given
the new heads. For instance, to predict the tail of
the tuple (X votes for Y, xIntents ?) is to gener-
ate “to give support”. We use the state-of-the-art
pretrained Bidirectional and Autoregressive Trans-
former (BART) (Lewis et al., 2020) named Comet
that is trained on ATOMIC2020.

For temporal commonsense augmentation, we
generate n after relation facts for O1 and n be-
fore relation facts for O2. The Comet(O,R) is
the function that generates the commonsense for
observation O for the relation R. If RA and RB are
the after and before relations, then the following
commonsense responses are generated:

CA = Comet(O1, RA) (1)

CB = Comet(O2, RB) (2)

However, not all after and before relations are
relevant for every situation. The generated com-
monsense facts should be filtered out based on the
context. For each commonsense relation, we chose
the most likely fact based on the semantic similar-
ity to the other observation. More specifically, the
most likely after (before) fact for O1 (O2) based
on the similarity to O2 (O1) is chosen:

cA = argmax
ci

Sim(O2, C
A
i ) (3)

cB = argmax
ci

Sim(O1, C
B
i ) (4)

where Sim is the cross-encoder (Reimers and
Gurevych, 2019) based on BERT that calculates
the similarity of two input texts. Figure 1 shows
the pipeline for temporal commonsense generation
and contextual filtering. This is similar to how we
consider possible conclusions from the observa-
tions. We try to limit these based on how well they
correspond to other observations in hand (Paul and
Frank, 2021).

Given the observations O1 = {tO1
1 . . . tO1

m },
O2 = {tO2

1 . . . tO2
n } and hypothesis H =

{tH1 . . . tHl } as a sequence of tokens, we can aug-
ment the input with the commonsense knowledge
from the previous step K = {cA, cB} as a se-
quence of tokens K = {tK1 . . . tKq }. The Abduc-
tive Commonsense Language Generation can be
formulated by minimizing the following negative
log-likelihood:

L = −
N∑

i=1

logP (tHi | tH<i, O1, O2,K) (5)

Training: We trained three different models for
αNLG - COGENLG, COGENMD and COGENSM

by fine-tuning three GPT-2 models of sizes large,
medium, and small, respectively. We used an em-
bedding size of 512 for all models with a maximum
token size of 128. The learning rate was set to 5e−4
with a weight decay of 0.01. We stopped training
after 5 epochs before overfitting to the training set
occurrs.

We also propose the fine-tuned COGENRB

model for αNLI, which is based on the large
ROBERTA (Liu et al., 2019) model. We set the

297



Model BERT-Score BLEURT BLEU TER METEOR ROUGE Human
COMeT-Emb+GPT2 88.25 -1.07 3.22 106.31 9.74 17.42 44.56
COGENLG 88.74 -1.12 28.80 123.47 21.62 26.75 52.00
COGENMD 89.75 -0.83 37.15 104.19 22.56 30.58 69.2
COGENSM 88.14 -0.99 10.25 103.40 11.50 20.62 43.2

Table 1: The automatic evaluations of generative models on the test set of ART Dataset (Bhagavatula et al., 2019)

first 20% for the warm-up with the learning rate of
1e− 5 and after that decrease it linearly by a ratio
of 0.01.

Inference: For inference, we use beam search
decoding with a beam size of 5. We chose this
search as it works best with controllable lan-
guage generation (Zandie and Mahoor, 2021). For
each pair of observations, multiple hypotheses
are generated and then filtered out based on en-
tailment. We use the pre-trained semantic entail-
ment BERT cross-encoder (Reimers and Gurevych,
2019), trained on SNLI (Bowman et al., 2015)
and MultiNLI (Williams et al., 2018), to filter out
each generated hypothesis H , if the O1 → H or
H → O2 is a contradiction. Using this technique
we can remove undesired hypotheses that are in-
compatible with the given observations.

4 Result

We report BERT-Score (Zhang* et al., 2020),
BLEURT (Sellam et al., 2020), BLEU (Papineni
et al., 2002), TER (Snover et al., 2006), METEOR
(Banerjee and Lavie, 2005) and ROUGE (Lin,
2004) for automatic evaluation of our model. The
results in Table 2 show that both COGENMD and
COGENLG outperform the best model in (Bhaga-
vatula et al., 2019), which is COMeT-Emb+GPT2
model on all metrics on the test set of the ART
dataset (Bhagavatula et al., 2019). Additionally,
COGENMD performs the best among all the mod-
els.

We assessed human evaluations on 100 randomly
selected results from the test set. The evaluation
was completed by five graduate students unrelated
to our research, providing us with unbiased data.
These evaluations, shown in Table 2, are consistent
with previous automatic results. These results show
that COGENMD generates better results compared
to the base model (COMeT-Emb+GPT2) and the
Real Hypothesis in most cases. Also, COGENLG

outperforms the base model.
Finally, we show the results of αNLI task from

different models in Table 3. This table displays

Model < Neutral < Comparator
COGENLG 48.00 22.20 29.80 RH
COGENLG 37.00 17.00 46.00 CM
COGENMD 30.60 32.80 36.40 RH
COGENMD 23.80 23.40 52.40 CM
COGENSM 56.60 24.20 19.00 RH
COGENSM 42.00 32.20 25.80 CM

Table 2: Human Judgements of COGEN as compared to
the comparators - Real Hypothesis (RH) and COMeT-
Emb+GPT2 (CM).“Neutral” means our model is equally
good to the comparator. The left and right columns
to Neutral means the model is worse and better than
comparator respectively.

Model Dev Acc (%) Test Acc (%)
ESIM+ELMo 58.20 58.80
BERTLarge 69.10 68.90
COMeT-Emb+GPT2 69.40 69.10
LMI + MTL 72.90 72.20
COGENRB 82.90 83.26

Table 3: Results on αNLI task. Last row in bold shows
the performance of COGENRB based on ROBERTA

that COGENRB surpasses the previous model used
(LMI + MTL) (Paul and Frank, 2021) by a sub-
stantial margin. The results of αNLI show the
importance of temporal reasoning and contextual
filtering along with ROBERTA.

5 Conclusion

We present COGEN, a novel approach to generate
abductive reasoning given incomplete observations
in three different sizes. This integrates temporal
reasoning, context filtering, and semantic entail-
ment to complete the base GPT-2 model for better
reasoning. Both human and automatic evaluations
assessed in this study show that COGEN outper-
forms previous methods used for abductive reason-
ing. Our approach sets a new state-of-the-art for
αNLI and αNLG tasks on ART dataset.
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Limitations

The CoGEN model introduced in this paper uses
temporal relations as a process of abductive rea-
soning. Although, temporal relations have been
shown to be very useful in abductive reasoning
(Verdoolaege et al., 2000), the measure of the ef-
fectiveness of other types of relations about an ob-
servation have not been evaluated in this paper. In
addition, because of the unavailability of a large
number of human evaluators, we randomly selected
100 selected results as opposed to the entire result
which would have been ideal.
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