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Abstract

Widespread disparities in clinical outcomes ex-
ist between different demographic groups in the
United States. A new line of work in medical
sociology has demonstrated physicians often
use stigmatizing language in electronic medi-
cal records within certain groups, such as black
patients, which may exacerbate disparities. In
this study, we characterize these instances at
scale using a series of domain-informed NLP
techniques. We highlight important differences
between this task and analogous bias-related
tasks studied within the NLP community (e.g.,
classifying microaggressions). Our study es-
tablishes a foundation for NLP researchers to
contribute timely insights to a problem domain
brought to the forefront by recent legislation
regarding clinical documentation transparency.
We release data, code, and models.1

1 Introduction

Widespread and well-documented disparities in
healthcare outcomes between demographic groups
exist within the United States (Baciu et al., 2017;
Zavala et al., 2021). The sources of these disparities
are diverse and complex, with numerous interacting
factors contributing to worse outcomes for minor-
ity patients (Bell and Lee, 2011; Williams et al.,
2019). One source of disparities may stem from
latent biases of healthcare providers (Hall et al.,
2015). Multiple studies have highlighted the ten-
dency for providers to prescribe different treatment
plans to black patients compared to white patients
despite having similar clinical dispositions (Nelson,
2002; Green et al., 2007; Hoffman et al., 2016). El-
evated implicit bias scores have been associated
with these decisions and have been further linked
with decreased levels of patient-provider communi-
cation (Van Ryn et al., 2011; Cooper et al., 2012).
A major challenge with these biases is that they are
invoked unconsciously.

1github.com/kharrigian/ehr-stigma

A new line of work in medical sociology has
explored this issue through the lens of clinical doc-
umentation (Beach et al., 2021), in which bias may
be exhibited in how medical providers describe and
document patient interactions in the medical record.
In particular, studies have shown physicians often
use language that has subtle, stigmatizing connota-
tions (Wolsiefer et al., 2021). This documentation
practice may not only negatively frame patients to
future providers and thus influence their quality
of care, but also discourage patients from seeking
treatment altogether (Goddu et al., 2018; Werder
et al., 2022). The latter is especially pertinent given
the passage of the 21st Century Cures Act that man-
dates clinical notes are freely accessible by patients
in the US (Blease et al., 2021; Harris et al., 2022).

How is stigmatizing language in medical records
different from other forms of abusive language?
Prior studies of stigmatizing language in clinical
notes have relied on qualitative methods (Park et al.,
2021) or refrained from analyzing computational
nuances of the problem domain (Sun et al., 2022).
Modeling tasks such as hate-speech detection (Ja-
han and Oussalah, 2021; Garg et al., 2022) and
analyses of social bias encoded within language
models (Liang et al., 2021) share many similarities
with characterizing stigmatizing language in medi-
cal records. However, it is not clear a priori where
the task of characterizing stigmatizing language in
medical records falls within the broader abusive
language landscape.

In this paper, we demonstrate that characteriza-
tion of stigmatizing language in medical records
most strongly parallels the characterization of lin-
guistic microaggressions (Sue et al., 2007). How-
ever, unlike traditional microaggressions, biased
language in the clinical domain is concentrated in
unremarkable phrases and lacks any indication of
the targeted identity group. Our analysis estab-
lishes a foundation for a novel task that has high
importance to both patients and clinicians.
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2 Stigmatizing Language in Medical
Records as Abusive Language

Clinical stigmatizing language lies in the implicit
and directed quadrant of the typology of abu-
sive language introduced by Waseem et al. (2017).
Physicians generally use a vocabulary of common-
place terms and phrases which have negative impli-
cations only when interpreted in certain contexts
or by other physicians (Valdez, 2021; Beach et al.,
2021). This language almost always places the pa-
tient as the target of the stigma, even if they are not
the intended recipient (Ho et al., 2014).

Stigmatizing language in medical records shares
many similarities with linguistic microaggressions.
Both reflect an unconscious bias internalized by the
speaker and materialized through thinly veiled in-
nuendo (Sue et al., 2007; Raney et al., 2021). This
innuendo is not necessarily negative in affect (Glick
and Fiske, 2001; McMahon and Kahn, 2016).

One major difference between stigmatizing lan-
guage in the clinical domain and other forms of abu-
sive language is the notion of necessity. Whereas
most abusive language is better left unsaid, clin-
icians have a responsibility to document their in-
teraction with patients (Shanley et al., 2009). Of-
ten, this requires that they characterize socially-
stigmatized circumstances (e.g., substance use dis-
orders) and medically-relevant patient eccentrici-
ties (e.g., unfounded social histories). Minor dif-
ferences in phrasing may have a large impact on
whether a statement is stigmatizing to patients.

The idea of stigmatizing language in medical
records is relatively new, with Goddu et al. (2018)
providing the first qualitative evidence of negative
language in the medical record. Using word counts,
Beach et al. (2021) and Himmelstein et al. (2022)
later identified a higher prevalence of implicit bias
within records of black patients than white patients.

Sun et al. (2022) was the first to use machine
learning to analyze stigmatizing language in medi-
cal records. The authors identified sentences with
possible bias using a manually-curated word list
and then annotated whether each match was posi-
tive, negative, or out-of-context. A logistic regres-
sion classifier trained on a bag-of-words represen-
tation of the text achieved good performance (F1 of
0.935). Unfortunately, the authors did not provide
a baseline to indicate how valuable context around
the seed terms is for classification.

The more general task of identifying biased and
abusive language in text has garnered much atten-

tion from researchers in recent years (Schmidt and
Wiegand, 2017; Yin and Zubiaga, 2021). Breit-
feller et al. (2019) was the first to computation-
ally analyze microaggressions. The majority of
microaggression research published thereafter has
remained confined to using web data (Lees et al.,
2021; Sabri et al., 2021). Our study provides an
analysis of stigma in an important linguistic do-
main that differs dramatically from those currently
studied in the covert bias research space.

3 Data

We consider two clinical datasets. In addition to
covering different clinical specialties, they also fea-
ture different demographic compositions.

JHM We retrospectively acquired a dataset of
128,343 English-language progress notes written
by physicians across 5 clinical specialties within
the Johns Hopkins Medicine (JHM) hospital sys-
tem — Internal Medicine, Emergency Medicine,
Pediatrics, OB-GYN, and Surgery. Notes were
processed in accordance with our institution’s pri-
vacy policy after approval by our Institutional Re-
view Board (IRB). Because the notes contain sensi-
tive identifiable information, they are unable to be
shared beyond our study team.

MIMIC To encourage future research, we
also include in our study the publicly-accessible
MIMIC-IV-Note dataset (v2.2) (Johnson et al.,
2023). This recently released extension of the
widely-adopted MIMIC-III dataset (Johnson et al.,
2016) consists of deidentified free-text clinical
notes for patients admitted to an intensive care unit
(ICU) or the emergency department at Beth Israel
Deaconess Medical Center in Boston, MA. We fo-
cus on the 331,794 available discharge summaries,
having found minimal evidence of stigmatizing lan-
guage in the associated radiology reports.

3.1 Annotation

Like Sun et al. (2022), we develop a two-stage
process to detect and characterize stigmatizing lan-
guage in clinical notes. Possible instances of bias
are first identified using anchor n-grams and then
classified using a machine learning classifier. We
take the union of n-grams curated by Beach et al.
(2021) and Sun et al. (2022) as our anchor set.

Unlike the single, sentiment-like classification
task considered by Sun et al. (2022), we formulate
three independent classification tasks that discrimi-
nate between instances of bias based on impact.
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1. Credibility & Obstinacy (Disbelief, Difficult,
Exclude): insinuation of doubt regarding a
patient’s testimony or describes the patient as
obstinate.

2. Compliance (Negative, Neutral, Positive): pa-
tient does not appear to follow medical advice.

3. Descriptors (Negative, Neutral, Positive, Ex-
clude): evaluates descriptions of patient be-
havior and demeanor.

We ran our anchor list against both datasets,
caching each match and up to 10 words to the left
and right which make up its context. A team of
annotators (research assistant and physician coau-
thors) labeled a random sample of 5,201 and 5,043
instances from the JHM and MIMIC datasets, re-
spectively. All instances in the JHM dataset and
the majority of the instances in the MIMIC dataset
were labeled independently by at least two annota-
tors.2 We include annotator agreement measures,
the label distribution, and full task taxonomy with
examples in Appendix A.

4 Characterizing Stigmatizing Language

4.1 What role does context play in
characterizing stigmatizing language?

Some forms of abusive language are stigmatizing
in isolation, while others critically depend on con-
text to invoke meaning (Waseem et al., 2017). Prior
work has not provided insight regarding where stig-
matizing language in medical records lies on this
spectrum (Sun et al., 2022). We hypothesize that
context around a stigmatizing instance is necessary,
but insufficient, for characterizing the utterance.

Methods We test our hypothesis by varying fea-
ture representations such that they encode different
degrees of the stigmatizing anchor term and its sur-
rounding context. We consider 3 classes of models.
The first two classes allow us to understand the in-
teraction between context and the anchor n-grams
in an additive manner. The third class captures
more complex dynamics between anchor n-grams
and their context. Additional training and evalua-
tion details are included in Appendix B.

1. Majority: Majority class and majority class
conditioned on anchor n-gram.

2. Logistic Regression (LR): TF-IDF represen-
tations. One version with the anchor n-gram
and one without.

2A small number of instances from MIMIC were labeled
by a single annotator after observing high agreement scores.

3. BERT: One version trained on web data (De-
vlin et al., 2018) and one version trained on
clinical notes (Alsentzer et al., 2019).

We also compare four methods of pooling
BERT’s final hidden layer for input into the task
classification head.

1. Anchor Mean: Arithmetic mean of tokens
(subwords) composing the anchor n-gram.

2. CLS: Embedding for the classification token.

3. Sentence Mean: Arithmetic mean of all to-
kens in the instance, excluding special tokens.

4. BERT Pooler: Weighted pooling of all to-
kens; weights learned at training time.

Results The final four rows in Table 1 show clin-
ical BERT’s test-set macro F1-score for each pool-
ing method across the three classification tasks; the
web version of BERT performs similarly. Although
not always statistically significant, the anchored
pooling method consistently outperforms the al-
ternative pooling approaches across all tasks and
datasets. Under this setting, the classification head
lacks direct access to information in each anchor’s
context window. Classification performance can be
thought of as a measure of how well the closed set
of anchor n-grams are separated in semantic space.
That the anchor pooling approach outperforms the
alternative methods suggests characterizing stigma-
tizing language in medical records can be thought
of as a word-sense-disambiguation task more than
a sequence classification task.

The majority and logistic regression model out-
comes (first four rows of Table 1) lend additional
support to this claim. We see that anchors used as
classification criteria in isolation provide a signifi-
cant improvement over the majority overall model
in all cases. The context window used in isola-
tion provides a relatively smaller increase in per-
formance over the majority overall model. Jointly
modeling the anchors and their context achieves
the largest improvement over the majority overall
model in 4 of 6 tasks. This outcome suggests that
both subsets of text provide different, but comple-
mentary, information.

The BERT models effectively capture the inter-
action between anchors and their surrounding con-
text. Fine-tuning both BERT models significantly
increases macro F1 over the best non-BERT model
in all settings. Interestingly, the difference in perfor-
mance between the web and clinical BERT models
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Credibility & Obstinacy Compliance Descriptors

Model JHM MIMIC JHM MIMIC JHM MIMIC

Majority Overall 0.21 ± 0.00 0.17 ± 0.00 0.29 ± 0.00 0.24 ± 0.00 0.16 ± 0.00 0.19 ± 0.00
Majority Per Anchor 0.67 ± 0.10 0.55 ± 0.04 0.68 ± 0.04 0.73 ± 0.01 0.82 ± 0.01 0.83 ± 0.00

LR (Context) 0.60 ± 0.05 0.58 ± 0.04 0.55 ± 0.01 0.68 ± 0.02 0.74 ± 0.03 0.60 ± 0.04
LR (Context + Anchor) 0.69 ± 0.02 0.65 ± 0.03 0.68 ± 0.04 0.80 ± 0.02 0.86 ± 0.02 0.76 ± 0.05

Bert (Web) 0.85 ± 0.04 0.76 ± 0.02 0.86 ± 0.01 0.92 ± 0.02 0.93 ± 0.01 0.86 ± 0.01
Bert (Clinical) 0.89 ± 0.03 0.78 ± 0.03 0.85 ± 0.02 0.92 ± 0.02 0.93 ± 0.02 0.86 ± 0.01

– CLS Token 0.89 ± 0.04 0.69 ± 0.03 0.84 ± 0.03 0.92 ± 0.01 0.90 ± 0.01 0.84 ± 0.03
– Sentence Mean 0.85 ± 0.06 0.69 ± 0.06 0.84 ± 0.03 0.92 ± 0.01 0.91 ± 0.01 0.84 ± 0.02
– BERT Pooler 0.83 ± 0.08 0.70 ± 0.07 0.84 ± 0.02 0.91 ± 0.02 0.89 ± 0.03 0.80 ± 0.03

Table 1: Test macro F1 (µ± σ) for each classification task. Underlining indicates a pooling method is significantly
worse than anchor mean pooling (paired t-test p < 0.05). The best model(s) for each classification task are bolded.

is not significant. We hypothesize that understand-
ing social bias may be more important than under-
standing clinical jargon for our tasks, but leave this
as an open question for future work.

4.2 Is stigma conveyed in the same manner
about different demographic groups?

The majority of bias-related tasks in NLP exam-
ine language which, while covert, contains some
indication of the targeted demographic of iden-
tity group (e.g., racial slurs, sexist microaggres-
sions) (Sue, 2010; Waseem et al., 2017). Here, we
show that stigmatizing language in medical records
uniquely does not target any racial group or sex.

Methods Results from §4.1 verify that our BERT
encoders learn semantic representations of the an-
chor n-grams which are informative for the down-
stream stigma characterization tasks. If language is
used differently for different demographic groups,
we expect the encoders to reflect this (Adam et al.,
2022). We can test our hypothesis by attempting
to infer a patient’s self-reported race and sex using
each anchor n-gram’s BERT representation.

Because our datasets represent a concatenation
of notes from multiple clinical specialties which
each have a unique demographic pool, it’s possi-
ble to conflate the encoding of specialty knowl-
edge with demographic knowledge. Additionally,
any differences in the prevalence of our anchor
n-grams or their associated labels between demo-
graphic groups could be exploited by a classifier.
For this reason, we ground inference performance
against baselines which model one-hot-encoded
representations of the anchor n-gram, clinical spe-
ciality, and the primary classification task label.
We also consider a version of the anchor embed-
dings generated after replacing gender-indicative

pronouns (e.g., himself, her) and other identifiers
with non-uniform gender associations (e.g., woman,
husband) with gender-neutral alternatives. As be-
fore, additional experimental details are included
in the appendix.

Results We present demographic inference re-
sults for the JHM dataset in Table 2 and report
MIMIC results in the appendix. Across all but
one experimental setting, inference performance
achieved using the gender-neutral version of the
embeddings is not significantly different from what
is achieved by the metadata-only baselines. This
trend suggests that the learned embeddings encode
little to no information about a patient’s race or
sex that cannot be explained by underlying differ-
ences in prevalence between patient populations.
Future work is necessary to understand whether
there exist semantic differences along other axes
(e.g., socioeconomic status, substance use, obesity)
(Healy et al., 2022).

4.3 Is stigma conveyed in the same manner
across different patient populations?

Machine learning models trained on one distribu-
tion often experience a loss in performance when
evaluated on a different distribution (Blitzer et al.,
2006; Harrigian et al., 2020). Understanding the
causes of this loss is necessary for ensuring sys-
tems do not exacerbate existing social disparities
(Bender et al., 2021). Here, we identify speciality-
specific nuances in stigmatizing language and high-
light limitations of anchor-focused modeling.

Methods We evaluate models trained using the
JHM dataset in §4.1 on the test set of the MIMIC
dataset, and vice-versa. We also conduct a qualita-
tive error analysis to understand how stigmatizing
language differs between the two datasets.
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Credibility & Obstinacy Compliance Descriptors

Model Sex Race Sex Race Sex Race

Majority Baseline 0.37 ± 0.01 0.26 ± 0.02 0.37 ± 0.02 0.29 ± 0.01 0.35 ± 0.02 0.26 ± 0.01
Anchor 0.50 ± 0.04 0.31 ± 0.05 0.42 ± 0.02 0.29 ± 0.01 0.50 ± 0.02 0.30 ± 0.03
Label 0.37 ± 0.01 0.27 ± 0.03 0.37 ± 0.02 0.29 ± 0.01 0.46 ± 0.07 0.26 ± 0.01
Specialty 0.44 ± 0.04 0.36 ± 0.04 0.53 ± 0.04 0.29 ± 0.01 0.58 ± 0.03 0.32 ± 0.03
Anchor × Label 0.50 ± 0.03 0.31 ± 0.05 0.46 ± 0.03 0.30 ± 0.01 0.53 ± 0.02 0.32 ± 0.04
Anchor × Speciality 0.51 ± 0.04 0.38 ± 0.03 0.54 ± 0.02 0.35 ± 0.03 0.56 ± 0.04 0.34 ± 0.02
Label × Speciality 0.47 ± 0.04 0.38 ± 0.04 0.53 ± 0.05 0.32 ± 0.02 0.58 ± 0.04 0.32 ± 0.03
Anchor × Label × Speciality 0.54 ± 0.01 0.35 ± 0.03 0.54 ± 0.03 0.36 ± 0.02 0.55 ± 0.03 0.36 ± 0.02

Embedding 0.76 ± 0.02 0.34 ± 0.02 0.57 ± 0.01 0.36 ± 0.02 0.61 ± 0.04 0.34 ± 0.03
Embedding (Gender Neutral) 0.59 ± 0.02 0.34 ± 0.06 0.52 ± 0.01 0.35 ± 0.01 0.52 ± 0.03 0.34 ± 0.02

Table 2: Average held-out macro F1-score (µ±σ) for the demographic inference tasks in the JHM dataset. Inference
performance using the gender-neutral embeddings is only significantly different from the baselines in one setting.

Credibility & Obstinacy Compliance Descriptors

Target → JHM MIMIC JHM MIMIC JHM MIMIC

Source ↕ JHM 0.89 ± 0.03 0.70 ± 0.01 0.85 ± 0.02 0.86 ± 0.03 0.93 ± 0.02 0.81 ± 0.03
MIMIC 0.81 ± 0.03 0.78 ± 0.03 0.82 ± 0.02 0.92 ± 0.02 0.89 ± 0.03 0.86 ± 0.01

Table 3: Average test macro F1-score (µ ± σ) when transferring between datasets. There exists a statistically
significant loss in performance (paired t-test p < 0.05) within all transfer settings (columns).

Results We observe consistent drops in perfor-
mance when models are evaluated in a different
domain than which they were trained (i.e., Table 3).
This performance loss is significant in all 6 transfer
settings. What causes this loss? Are there spurious
artifacts to which our models overfit (Wang et al.,
2022)? Or does each dataset contain unique stig-
matizing language that arises disproportionately
across patient populations?

Although many transfer errors can be attributed
to differences in each dataset’s joint anchor-label
distribution, some special cases emerge. For exam-
ple, models trained on the JHM dataset incorrectly
characterize instances in MIMIC which describe
parties secondary to the patient (e.g., family). This
situation is more common in the MIMIC dataset
due to ICU patients often being incapacitated. Mod-
els trained on the JHM dataset also struggle with
statements in MIMIC from Psych ICU notes, where
patients frequently describe their own behavior.

One on hand, these shortcomings appear to be
a consequence of covariate shift (Sugiyama et al.,
2007), for which many general mitigation strate-
gies exist (Ramponi and Plank, 2020). On the
other hand, each of the errors we observe presents a
unique linguistic challenge that may be better han-
dled using targeted interventions. Few-shot word
sense disambiguation techniques may improve
transfer for low-volume anchor-label pairs (Kumar

et al., 2019; Scarlini et al., 2020), while augmented
annotations may reduce speaker/receiver confusion
(Rashkin et al., 2016; Hovy and Yang, 2021).

5 Discussion

The covert, highly contextual, and non-
demographically aligned nature of stigmatizing
language in medical records places it in a unique
area of the abusive language research landscape.
The current reliance on domain experts to identify
possible instances of bias using anchor terms is
limiting given the adversarial relationship been
abusive language and speakers (Nobata et al.,
2016). It also does not address abstract forms
of stigma (Kopera et al., 2015) or stigmatizing
pragmatics (Beach and Saha, 2021).

Methods for discovering stigmatizing language
in medical records are poised to be highly im-
pactful (Field and Tsvetkov, 2020). Counterfac-
tual analyses may be instrumental for better char-
acterizing the nuance between stigmatizing and
non-stigmatizing clinical language (Kaushik et al.,
2019). Whether these nuances are uniform across
patient populations (e.g., hospital systems, regions)
and providers (e.g., nurses, resident physicians) re-
mains an open question not answerable from our
datasets alone. Likewise, future work is necessary
to understand whether clinical knowledge is neces-
sary for models in this domain (Roberts, 2016).
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Ethics Statement

Our datasets were collected from real patients, con-
tain protected health information (PHI), and are
subject to HIPAA regulations. As a result, we took
the utmost care to maintain data integrity and pri-
vacy. First, we obtained IRB approval to access
and process the data. Second, we obtained permis-
sion and approval for all applications and libraries
used to process the data. Third, data storage and
computational experimentation was done on IRB-
approved platforms.

Limitations

In our work we faced numerous types of limitations
that fall under different categories.

Data Our relatively small dataset size limits our
analysis, especially with the use of language mod-
els. Furthermore, the label distribution is skewed
across the different specialties (domains), which
affects model performance, robustness and gener-
alizability. The differences in distribution might
be the result of how the data was collected, which
was not in light of the anchor words, or due to
the domain’s nature and/or the medical providers’
language of that specialty. Furthermore, the time
frame that the data was sampled from might mani-
fest certain biases that are different from other time
frames. Finally, our datasets are only representative
of a small number of specialties from two medical
institutions. Patient populations and providers may
vary greatly across medical fields and additional
institutions.

Task The formulation of the labels for our task
imposes limitations and challenges. Stigmatizing
language is subjective and can vary between the
perspective of the patient and the medical provider.
As a result, we are aware that our medical experts’
annotations might impose a bias. Additionally, the
negative connotations of language might be am-
biguous and can change depending on a medical
expert’s identity, background and specialty, which
creates a bias that is hard to mitigate.

Computational Resources We only used IRB-
approved servers to access the dataset and perform
the experiments. Because these platforms had lim-
ited computational capacity and lacked the spec-
ifications required to build more complex neural
models, we were not able to include more recent
language models in our experiments that might

have yielded better performance. In the future, we
hope to have access to machines that support more
recent and state-of-the-art models.
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A Data

A.1 Task Taxonomy

We present the task taxonomy developed for this
study in Table 4, along with de-identified exam-
ples for each of the stigmatizing language classes.
The taxonomy was developed by clinicians on
our team, drawing upon previous literature (Beach
et al., 2021; Sun et al., 2022). We plan to expand
our current anchor n-gram list in future work using
context-aware keyword discovery.

A.2 Anchor & Label Distribution

We provide the distribution of labels for each task
in Table 5. This distribution is further broken down
by anchor n-gram in Figure 1. Each task contains
a subset of anchors with extreme class imbalance.

Task Class JHM MIMIC

Credibility &
Obstinacy

Difficult 413 526
Disbelief 438 609
Exclude 77 115

Compliance
Negative 1,578 893
Neutral 283 439
Positive 357 271

Descriptors

Exclude 430 496
Negative 843 1,221
Neutral 233 96
Positive 549 377

Table 5: Label distribution for each task.

A.3 Annotator Agreement

Three annotators were responsible for labeling all
data used in our study – one clinician C1 and two re-
search assistants R1, R2. We present agreement ma-
trices in Figure 2 for the MIMIC and JHM datasets.
Each instance in the JHM dataset was labeled by
at least two annotators, with a subset labeled by
three. A subset of instances in the MIMIC dataset
were labeled by two annotators, with the remainder
labeled by a single annotator. Annotators labeled
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Stigma Type Class Definition Examples

Credibility
&

Obstinacy

Disbelief Insinuates doubt about a patient’s stated testimony.
adamant he doesn’t smoke;
claims to see a therapist

Difficult
Describes patient (or patient’s family) perspective as
inflexible/difficult/entrenched, typically with respect
to their intentions.

insists on being admitted; adamantly
opposed to limiting fruit intake

Exclude
Word/phrase is not used to characterize the patient
or describe the patient’s behavior; may refer to medical
condition or treatment or to another person or context.

patient’s friend insisted she go to
the hospital; test claims submitted to
insurance

Compliance

Negative
Patient not, unlikely to, or questionably following
medical advice.

adherence to therapeutic medication is unclear;
mother declines vaccines; struggles with medication
and follow-up compliance

Neutral

Not used to describe whether the patient is not
following medical advice or rejecting treatment; often
used to describe generically some future plan involving
a hypothetical. Alternatively, see Exclude (Credibility
& Obstinacy).

discussed the medication compliance; school
refuses to provide adequate accommodations;
feels that her parents’ health has declined

Positive Patient following medical advice.
continues to be compliant with aspirin regimen;
reports excellent adherence

Descriptors

Negative

Patient’s demeanor or behavior is cast in a negative
light; insinuates the patients is not being forthright or
transparent; patient may be falsifying symptoms to
get something they want.

drug-seeking behavior; concern for secondary
gain; unwilling to meet with case manager;
unfortunately a poor historian

Neutral
Negation of negative descriptors; insinuates the
patient was expected to have a negative demeanor
or be difficult to interact with.

his mother is the primary historian; interactive
and cooperative; not combative or belligerent;
dad seems angry with patient at times

Positive
Patient’s demeanor or behavior is described in a
positive light; patient is easy to interact with.

lovely 80 year old woman; well-groomed
and holds good eye contact; pleasant and
appropriate interaction with staff

Exclude
Patient self-description or description of another
individual. Alternatively, see Exclude (Credibility
& Obstinacy).

does not want providers to think she’s malingering;
reports feeling angry before her period; lives on
pleasant avenue downtown

Table 4: Taxonomy of stigmatizing language. Complete anchor sets for each task can be found in Figure 1.
Annotators were provided a comprehensive guide with general examples and edge cases for each anchor n-gram in
our taxonomy.

the data independently and then met with the larger
team to resolve disagreements and discuss ambigu-
ous cases.

Agreement scores prior to resolution were quite
high, suggesting 1) the annotation taxonomy was
clear and 2) the stigmatizing language we consid-
ered was generally not ambiguous in its impact.
We observed similar agreement trends for both
datasets; the Descriptors task had the highest agree-
ment, while the Credibility & Obstinacy task had
the lowest agreement. The former consists of sev-
eral highly polar anchor n-grams (e.g., pleasantly,
unkempt), while the latter requires a higher degree
of personal interpretation.

A.4 Preprocessing

All clinical free text in our datasets was case-
normalized and converted to an ASCII encoding
prior to additional processing. The MIMIC dataset
was de-identified before we obtained access to it.

The JHM dataset, however, was not subject to any
de-identification procedures because it is protected
within a secure cloud environment and we are not
distributing assets derived from it.

Anchor terms are identified using regular expres-
sions implemented in Python’s re package. Up to
10 words to the left and 10 words to the right of
the matched spans (based on whitespace) are main-
tained for annotation and modeling. Context sizes
were specified a priori based on guidance from our
clinical collaborators; future work may consider
evaluating the effect this choice has on annotation
and modeling outcomes.

For the logistic regression models, we use a cus-
tom pipeline to transform the raw text into feature
space. The text instances are first tokenized us-
ing a clinical domain tokenizer implemented in
the medspaCy library (Eyre et al., 2021). Tokens
are recursively merged together to form phrases
based on the bi-gram scoring function introduced
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by Mikolov et al. (2013) and implemented in Gen-
sim (Řehůřek and Sojka, 2010). We use a scoring
threshold of 10, minimum vocabulary frequency of
5, and recurse twice to identify 1-4 grams.

B The Role of Context (§4.1)

B.1 Experimental Design
The annotated dataset is split into training, develop-
ment, and test subsets at a 70/20/10 ratio. Instances
are assigned randomly into each subset, using their
associated patient identifiers as stratification crite-
ria to limit data leakage. The training and develop-
ment subsets are further split at random to facilitate
5-fold cross-validation.

B.2 Models
The Majority Per Anchor baseline outputs the fol-
lowing class probabilities given an input anchor
n-gram w:

p(y | w) = C(w, y) + α∑
y′∈Y C(w, y′) + |Y|α

where C(w, y) is the number of examples with an-
chor w having class y in the training data, Y is
the set of possible classes y, and α is a smooth-
ing hyperparameter. We use α = 1 for all of our
experiments.

The logistic regression baselines use scikit-
learn (Pedregosa et al., 2011) for data transfor-
mations and classifier training. For the TF-IDF
representations, we use an ℓ2 row-wise norm. As
a classifier, we use multinomial logistic regression
optimized using lbfgs (Zhu et al., 1997). We bal-
ance class weights and perform a grid search over
the following ℓ2 regularization parameters: 0.01,
0.03, 0.1, 0.3, 1, 3, 5, 10. The model which maxi-
mizes macro F1-score in each training split’s asso-
ciated development set is chosen for application on
the test set.

We use Hugging Face’s transformers library
(Wolf et al., 2019) to initialize all BERT mod-
els and fine-tune them using code written in Py-
Torch (Paszke et al., 2019). We train all mod-
els using a batch size of 16, a fixed learning rate
of 5e-05, a dropout probability of 0.1, and class-
balanced cross-entropy loss. As an optimizer, we
use AdamW (Loshchilov and Hutter, 2017). We
evaluate the model every 50 updates and save the
model which maximizes macro F1-score on the
training split’s associated development data. Due
to compute limitations in our HIPAA-compliant

environment (i.e., limited GPU access), we do an
initial exploration of the ℓ2 regularization strength
on one split of the data for each classification task.
We find the regularization strength to have minimal
effect on performance for decay values of 1e-5, 1e-
4, and 1e-3; we set a decay weight of 1e-5 for all
remaining experiments.

Readers should keep in mind that the clinical
BERT models (Alsentzer et al., 2019) were pre-
trained on MIMIC-III (Johnson et al., 2016), which
may have a small amount of note and/or patient
overlap with our MIMIC-IV discharge summary
sample. Despite this potential leakage, the clini-
cal BERT models do not consistently outperform
the BERT models pretrained using general web
data (Devlin et al., 2018). Understanding whether
clinical knowledge is necessary to fully understand
stigmatizing language in the context of a medi-
cal record is left as an open question for future
research. Provided sufficient data privacy protec-
tions, we also see opportunities to leverage larger
generative models.

All experiments were run in a HIPAA-compliant
remote computing environment secured with OS-
level group permissions. We used servers outfitted
with NVIDIA Tesla M60 GPUs (2 x 8 GB VRAM)
and Intel Xeon E5-3698 CPUs (2.20 GHz).

C Demographic Differences in
Stigmatizing Language (§4.2)

C.1 Experimental Design

We train new clinical BERT models for each of
the three classification tasks. This time, we forego
cross-validation and instead use a single training,
development, and test split. We detach each task’s
classification head and pass the anchor n-grams
through their respective models to extract their in-
ternal mean-pooled representation.

Maintaining separation between the three clas-
sification tasks, we randomly split the subset of
patients whose data was used for training the BERT
models into 5 non-overlapping groups and use
these groups as folds for cross-validation. Using 4
of the groups for training, an unregularized logistic
regression classifier is fit to independently predict
race and sex from the internal semantic representa-
tions. We evaluate separation using data from the
held-out group. This process is repeated 5 times un-
til each patient group has been used as the held-out
test group.

The joint race and sex distribution of instances is
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JHM Black or
African American

White or
Caucasian Other

Task Class Female Male Female Male Female Male

Credibility &
Obstinacy

Difficult 159 (129) 94 (76) 87 (60) 40 (29) 11 (10) 17 (13)
Disbelief 160 (133) 142 (117) 59 (46) 47 (39) 8 (7) 18 (17)
Exclude 20 (18) 20 (17) 20 (13) 11 (9) 3 (3) 3 (2)

Compliance
Negative 714 (499) 480 (324) 187 (146) 104 (81) 22 (20) 41 (29)
Neutral 107 (102) 87 (81) 43 (37) 31 (29) 4 (4) 4 (3)
Positive 146 (135) 105 (93) 50 (45) 35 (31) 9 (7) 6 (5)

Descriptors

Exclude 146 (132) 132 (108) 68 (55) 58 (56) 8 (8) 11 (9)
Negative 253 (172) 254 (189) 134 (72) 144 (89) 17 (11) 34 (18)
Neutral 78 (69) 51 (50) 54 (52) 32 (29) 6 (5) 8 (8)
Positive 232 (185) 117 (98) 111 (91) 59 (48) 19 (16) 9 (9)

MIMIC Black or
African American

White or
Caucasian Other

Task Class Female Male Female Male Female Male

Credibility &
Obstinacy

Difficult 35 (32) 48 (47) 177 (167) 189 (177) 31 (29) 32 (31)
Disbelief 64 (64) 56 (55) 209 (198) 191 (179) 31 (30) 41 (41)
Exclude 13 (13) 8 (8) 36 (36) 43 (43) 7 (6) 7 (7)

Compliance
Negative 127 (121) 109 (93) 232 (219) 277 (258) 64 (61) 56 (54)
Neutral 30 (30) 26 (25) 146 (140) 160 (157) 23 (23) 35 (33)
Positive 23 (23) 23 (22) 81 (79) 93 (90) 23 (22) 21 (19)

Descriptors

Exclude 50 (49) 36 (35) 161 (157) 171 (162) 29 (29) 19 (19)
Negative 106 (84) 126 (112) 341 (309) 514 (419) 49 (44) 49 (46)
Neutral 4 (4) 10 (9) 38 (38) 29 (29) 5 (5) 6 (6)
Positive 33 (33) 13 (13) 157 (152) 105 (104) 37 (35) 20 (20)

Table 6: Joint sex, race, and label distribution for the JHM and MIMIC datasets. The format is “# Examples (#
Patients)”. These distributions are insufficient for characterizing the extent to which demographic disparities are
replicated within our dataset. A more thorough statistical analysis which controls for differences in anchor term
usage, repeated measures, underlying conditions, and clinical specialty is necessary to make any substantive claims.

provided in Table 6. Note that we ignore instances
in which a patient either declined to report or did
not self-report their race or sex. After this exclu-
sion, we are left with 5,129 of the original 5,201
instances for the JHM dataset, and 4,875 of the
original 5,043 instances for the MIMIC dataset.

C.2 Baselines
Our clinical datasets represent a concatenation of
notes from different specialties. Each speciality
has a unique patient demographic pool and thus
invites the possibility of conflating the encoding
of specialty-specific knowledge with demographic-
specific knowledge. For example, OB-GYN notes
come specifically from female patients and our sam-
ple of JHM pediatric notes come from a population
which is 95% black. Encoding the speciality would
naturally allow inference of patient demographics.

Additionally, any differences in prevalence of
our anchor n-grams between demographic groups
may be exploited by the linear classifier. The lat-
ter is expected given the extant literature which

highlights demographic disparities in usage of stig-
matizing language (Beach and Saha, 2021; Beach
et al., 2021).

For these reasons, we ground the predictive per-
formance achieved using the semantic representa-
tions against simple logistic regression baselines
which model one-hot-encoded representations of
the anchor n-gram, clinical speciality, and the pri-
mary stigmatizing language classification label. A
qualitative review of instances in both datasets sug-
gest there are likely additional auxiliary attributes
not accounted for here (e.g., diagnoses) that would
further explain the encoding of race and sex in the
embeddings. For the MIMIC dataset, we consider
the service which wrote the discharge summary
(e.g., SURG, GYN, PSYCH) to be the speciality.

In Table 7, we include our ability to infer each
of these baseline attributes considered within the
experiment. The anchor n-grams, task label, and
speciality are all predictable from the BERT em-
beddings, confirming the necessity of the baselines.
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Credibility & Obstinacy
JHM MIMIC

Anchor Label Speciality Sex Race Anchor Label Speciality Sex Race

Majority Baseline 0.03 ± 0.00 0.20 ± 0.02 0.11 ± 0.01 0.37 ± 0.01 0.26 ± 0.02 0.02 ± 0.00 0.22 ± 0.01 0.06 ± 0.01 0.33 ± 0.01 0.27 ± 0.01

Anchor – 0.51 ± 0.05 0.14 ± 0.03 0.50 ± 0.04 0.31 ± 0.05 – 0.51 ± 0.02 0.07 ± 0.01 0.52 ± 0.04 0.27 ± 0.01
Label 0.08 ± 0.01 – 0.11 ± 0.01 0.37 ± 0.01 0.27 ± 0.03 0.09 ± 0.01 – 0.06 ± 0.01 0.51 ± 0.05 0.27 ± 0.01
Speciality 0.07 ± 0.02 0.31 ± 0.02 – 0.44 ± 0.04 0.36 ± 0.04 0.05 ± 0.01 0.32 ± 0.03 – 0.55 ± 0.05 0.28 ± 0.02
Anchor × Label – – 0.18 ± 0.05 0.50 ± 0.03 0.31 ± 0.05 – – 0.07 ± 0.01 0.49 ± 0.04 0.28 ± 0.02
Anchor × Speciality – 0.52 ± 0.06 – 0.51 ± 0.04 0.38 ± 0.03 – 0.60 ± 0.07 – 0.51 ± 0.02 0.28 ± 0.02
Label × Speciality 0.11 ± 0.02 – – 0.47 ± 0.04 0.38 ± 0.04 0.10 ± 0.02 – – 0.54 ± 0.04 0.27 ± 0.01
Anchor × Label × Speciality – – – 0.54 ± 0.01 0.35 ± 0.03 – – – 0.51 ± 0.02 0.29 ± 0.02

Embedding 0.76 ± 0.05 0.95 ± 0.03 0.24 ± 0.03 0.76 ± 0.02 0.34 ± 0.02 0.92 ± 0.02 0.87 ± 0.03 0.11 ± 0.01 0.75 ± 0.02 0.30 ± 0.03
Embedding (Gender Neutral) 0.77 ± 0.06 0.93 ± 0.02 0.25 ± 0.04 0.59 ± 0.02 0.34 ± 0.06 0.92 ± 0.01 0.86 ± 0.06 0.10 ± 0.01 0.49 ± 0.03 0.33 ± 0.02

Compliance
JHM MIMIC

Anchor Label Speciality Sex Race Anchor Label Speciality Sex Race

Majority Baseline 0.01 ± 0.00 0.28 ± 0.01 0.08 ± 0.00 0.37 ± 0.02 0.29 ± 0.01 0.01 ± 0.00 0.24 ± 0.01 0.05 ± 0.00 0.33 ± 0.01 0.26 ± 0.01

Anchor – 0.59 ± 0.02 0.18 ± 0.04 0.42 ± 0.02 0.29 ± 0.01 – 0.66 ± 0.02 0.05 ± 0.00 0.54 ± 0.02 0.27 ± 0.02
Label 0.03 ± 0.00 – 0.14 ± 0.01 0.37 ± 0.02 0.29 ± 0.01 0.03 ± 0.01 – 0.05 ± 0.00 0.47 ± 0.03 0.26 ± 0.01
Speciality 0.03 ± 0.00 0.28 ± 0.01 – 0.53 ± 0.04 0.29 ± 0.01 0.02 ± 0.01 0.34 ± 0.03 – 0.55 ± 0.02 0.26 ± 0.01
Anchor × Label – – 0.27 ± 0.02 0.46 ± 0.03 0.30 ± 0.01 – – 0.07 ± 0.01 0.52 ± 0.03 0.31 ± 0.02
Anchor × Speciality – 0.62 ± 0.05 – 0.54 ± 0.02 0.35 ± 0.03 – 0.67 ± 0.03 – 0.56 ± 0.02 0.30 ± 0.02
Label × Speciality 0.08 ± 0.01 – – 0.53 ± 0.05 0.32 ± 0.02 0.08 ± 0.02 – – 0.56 ± 0.03 0.28 ± 0.01
Anchor × Label × Speciality – – – 0.54 ± 0.03 0.36 ± 0.02 – – – 0.54 ± 0.01 0.30 ± 0.02

Embedding 0.77 ± 0.04 1.00 ± 0.00 0.38 ± 0.05 0.57 ± 0.01 0.36 ± 0.02 0.86 ± 0.04 1.00 ± 0.00 0.13 ± 0.04 0.56 ± 0.03 0.33 ± 0.02
Embedding (Gender Neutral) 0.74 ± 0.04 1.00 ± 0.00 0.39 ± 0.05 0.52 ± 0.01 0.35 ± 0.01 0.85 ± 0.03 1.00 ± 0.00 0.12 ± 0.02 0.50 ± 0.04 0.34 ± 0.02

Descriptors
JHM MIMIC

Anchor Label Speciality Sex Race Anchor Label Speciality Sex Race

Majority Baseline 0.01 ± 0.00 0.14 ± 0.01 0.10 ± 0.01 0.35 ± 0.02 0.26 ± 0.01 0.00 ± 0.00 0.18 ± 0.00 0.05 ± 0.00 0.34 ± 0.02 0.28 ± 0.00

Anchor – 0.83 ± 0.03 0.22 ± 0.02 0.50 ± 0.02 0.30 ± 0.03 – 0.87 ± 0.03 0.13 ± 0.01 0.56 ± 0.03 0.28 ± 0.01
Label 0.07 ± 0.00 – 0.10 ± 0.01 0.46 ± 0.07 0.26 ± 0.01 0.03 ± 0.00 – 0.06 ± 0.01 0.58 ± 0.03 0.28 ± 0.00
Speciality 0.01 ± 0.00 0.28 ± 0.03 – 0.58 ± 0.03 0.32 ± 0.03 0.03 ± 0.00 0.27 ± 0.03 – 0.44 ± 0.03 0.28 ± 0.00
Anchor × Label – – 0.30 ± 0.02 0.53 ± 0.02 0.32 ± 0.04 – – 0.13 ± 0.01 0.56 ± 0.02 0.29 ± 0.01
Anchor × Speciality – 0.84 ± 0.03 – 0.56 ± 0.04 0.34 ± 0.02 – 0.86 ± 0.02 – 0.57 ± 0.02 0.31 ± 0.02
Label × Speciality 0.09 ± 0.01 – – 0.58 ± 0.04 0.32 ± 0.03 0.11 ± 0.01 – – 0.57 ± 0.04 0.28 ± 0.00
Anchor × Label × Speciality – – – 0.55 ± 0.03 0.36 ± 0.02 – – – 0.58 ± 0.02 0.30 ± 0.02

Embedding 0.82 ± 0.06 1.00 ± 0.00 0.45 ± 0.02 0.61 ± 0.04 0.34 ± 0.03 0.91 ± 0.02 1.00 ± 0.00 0.24 ± 0.05 0.58 ± 0.02 0.33 ± 0.02
Embedding (Gender Neutral) 0.82 ± 0.07 1.00 ± 0.00 0.44 ± 0.04 0.52 ± 0.03 0.34 ± 0.02 0.90 ± 0.03 1.00 ± 0.00 0.24 ± 0.04 0.54 ± 0.03 0.31 ± 0.02

Table 7: Macro F1 (µ±σ) for each attribute considered in §4.2. Higher inference performance suggests an attribute
is more strongly encoded by (or correlated with) a given feature set. Differences in the prevalence of racial groups
and sexes across auxiliary attributes (e.g., speciality, labels) can be exploited when inferring race and sex from the
anchor embeddings.

C.3 Demographic-Neutral Substitutions

Sex During an initial run of the experiment, we
recognized that patient sex could be easily inferred
from the semantic representations due to the cues
from gender-specific language. We adopt a naive
approach to mitigate the presence of overt gender-
informative language affecting conclusions within
the demographic inference experiments. We re-
place gendered pronouns (e.g., he, herself), iden-
tifiers of sex (e.g., male, Mrs. Smith), and terms
with non-uniform gender associations (e.g., hus-
band, wife). The full mapping of substitutions is
provided below in Table 8.

There are two limitations with this approach.
First, we do not make substitutions for any patient
names in the text. Second, we do not address any
grammatical issues that arise after substitution of a
gendered word (e.g., “he denies” → “they denies”).
In practice, the former implies that true amount of
the sex-related information encoded in the learned
embeddings may be lower than current estimates
suggest. This case would only further strengthen

our current conclusions. Regarding the latter, we
find that any grammatical inconsistencies do not af-
fect our ability to infer the stigma labels associated
with each anchor embedding (Table 7).
Race We briefly explored using rules to obfuscate
racial identifiers as well (e.g, “43 y.o. Asian”). We
found this procedure difficult to perform automati-
cally (e.g., “wearing black T-shift”) and likely to be
a low-yield process based on a qualitative review
of the instances in both datasets. For this reason,
we opted not to include any race-neutral substitu-
tions. Nonetheless, the lack of obfuscation should
be noted while interpreting our results.

D Dataset Differences in Stigmatizing
Language (§4.3)

D.1 Experimental Design
We use the clinical BERT models trained during
the §4.1 experiments to evaluate domain-transfer.
That is, we take the clinical BERT models (with an-
chor pooling) trained within each cross-validation
fold and apply them to the test set of the oppo-
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Original Replacement

He, She They
Him, Her Them
His, Hers Their
Himself, Herself Themselves
Male, Female, Girl, Boy, Man, Woman Person
Mr. XX, Ms. XX, Mrs. XX, Miss. XX Patient
Husband, Wife Partner

Table 8: Gender-informative words and their associated
gender-neutral substitutions.

site dataset (JHM → MIMIC, MIMIC → JHM).
We do not modify or otherwise tune the existing
models to improve transfer performance, with the
primary goal being to understand differences in
stigmatizing language usage between datasets (not
to optimize generalization). To facilitate our quali-
tative analysis, we cache all test-set predictions and
organize them into four groups based on whether
the in-domain (source = target) and out-of-domain
(source ̸= target) models characterized them cor-
rectly.

D.2 Error Distribution
Errors made by both the in-domain and out-of-
domain models are those which appear to be a con-
sequence of task difficulty and model underspecifi-
cation. Examples include hypothetical statements
(e.g., “if the patient declines”) and instances con-
taining both positive and negative sentiment (e.g,
“disinhibited, but charming”).

Errors made by the out-of-domain model, but
not the in-domain model, are a consequence of
distribution shift. The two notable areas of shift
include 1) the prevalence of statements regarding
individuals other than the patient (e.g., family),
and 2) differences in class priors conditioned on
each anchor. The latter is sometimes the result of
speciality-specific nuances (e.g., psychiatry notes
include more self-descriptions).

Errors made by the in-domain model, but not the
out-of-domain model, are generally a consequence
of the out-of-domain model having seen more train-
ing examples containing the test example’s anchor.
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Figure 1: Joint anchor and label distribution for each task.
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Figure 2: Pairwise interannotator agreement for the MIMIC dataset (first row) and JHM dataset (bottom 3 rows).
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